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Abstract We present a study of spectrum estimation of relic gravitational waves (RGWs) as a Gaussian

stochastic background from output signals of future space-borne interferometers, like LISA and ASTROD.

As the target of detection, the analytical spectrum of RGWs generated during inflation is described by three

parameters: the tensor-scalar ratio, the spectral index and the running index. The Michelson interferometer

is shown to have a better sensitivity than Sagnac and symmetrized Sagnac. For RGW detection, we analyze

the auto-correlated signals for a single interferometer, and the cross-correlated, integrated as well as un-

integrated signals for a pair of interferometers, and give the signal-to-noise ratio (SNR) for RGW, and obtain

lower limits of the RGW parameters that can be detected. By suppressing noise level, a pair has a sensitivity

2 orders better than a single for one year observation. SNR of LISA will be 4–5 orders higher than that of

Advanced LIGO for the default RGW. To estimate the spectrum, we adopt the maximum likelihood (ML)

estimation, calculate the mean and covariance of signals, obtain the Gaussian probability density function

(PDF) and the likelihood function, and derive expressions for the Fisher matrix and the equation of the ML

estimate for the spectrum. The Newton-Raphson method is used to solve the equation by iteration. When

the noise is dominantly large, a single LISA is not effective for estimating the RGW spectrum as the actual

noise in signals is not known accurately. For cross-correlating a pair, the spectrum cannot be estimated from

the integrated output signals either, and only one parameter can be estimated with the other two being either

fixed or marginalized. We use the ensemble averaging method to estimate the RGW spectrum from the

un-integrated output signals. We also adopt a correlation of un-integrated signals to estimate the spectrum

and three parameters of RGW in a Bayesian approach. For all three methods, we provide simulations to

illustrate their feasibility.
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1 INTRODUCTION

Gravitational waves (GWs) are a prediction of Einstein’s

theory of general relativity, and have been the subject of

theoretical study and continuous detection hunting. There

are two kinds of GWs, i.e., the first includes those gener-

ated by astrophysical processes such as inspiral of com-

pact binaries, merging of massive black holes, supermas-

sive black hole binaries (Sesana et al. 2008; Janssen et al.

2015), etc. The frequencies of these sources are typically in

the range f ∼ 10−9 − 103 Hz. Examples are GW150914,

GW151226 and GW170104 from merging of binary black

holes and GW170817 from a binary neutron star inspi-

ral that was recently reported by Advanced LIGO and

Advanced Virgo as the first direct detections (Abbott et al.

2016c,b,a, 2017b,d,c,a).

Another kind is the relic gravitational wave (RGW),

which is generated during the inflation stage of cos-

mic expansion, as generically predicted by inflation mod-

els (Grishchuk 1975, 1997, 2001; Ford & Parker 1977;

Starobinskiǐ 1979; Starobinskii 1985; Fabbri & Pollock

1983; Abbott & Wise 1984; Allen 1988; Sahni 1990;

Giovannini 1999). RGW carries crucial information about

the very early Universe, such as the energy scale and slope
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of inflation potential, the initial quantum states during in-

flation (Zhang et al. 2005, 2006; Zhao & Zhang 2006b;

Wang et al. 2016), as well as the reheating process (Tong

et al. 2014). This is because, to the linear level of metric

perturbations, RGW is independent of other matter com-

ponents and its propagation is almost free. The influences

due to neutrinos free-streaming (Weinberg 2004; Miao &

Zhang 2007), quark-hadron transition and e+e− annihila-

tion are minor modifications (Wang et al. 2008). This is in

contrast to the scalar metric perturbation, which is always

coupled to cosmic matters and whose short wavelength

modes have gone into nonlinear evolution at present. The

second-order perturbation beyond the linear perturbation

has been also studied for RGW (Ananda et al. 2007;

Baumann et al. 2007; Wang & Zhang 2017; Zhang et al.

2017).

RGW has several interesting properties that are quite

valuable for GW detection. It is a stochastic background

of spacetime fluctuations distributed everywhere in

the present Universe, just like the cosmic microwave

background (CMB). Moreover, RGW also exists all the

time, and its spectrum changes very slowly on a cosmic

timescale, so that its detections can be repeated at any

time, in contrast to short-duration GW radiations events

such as merging of binaries. Another big plus of RGW

for detections is that its frequency range is extremely

broad, stretching over f ∼ 10−18 − 1011 Hz. Thus,

RGW is a major target for various kinds of GW detectors

at various frequency bands, using various technologies

(Tong & Zhang 2009), such as CMB anisotropies and

polarization measurements (10−18 − 10−16 Hz), by COBE

(Smoot et al. 1992; Bennett et al. 1992), WMAP (Bennett

et al. 2003; Hinshaw et al. 2003; Komatsu et al. 2011),

Planck (Planck Collaboration et al. 2016a,b,c,d), etc,

pulsar timing arrays (10−9 − 10−7 Hz) (Hobbs 2005;

http://www.ipta4gw.org/; http://www.skatelescope.org/),

space laser interferometers (10−5 − 100 Hz), for LISA

(Bender et al. 1998; Bender 2003; Danzmann & LISA

Study Team 1997; Prince et al. 2009; Amaro-Seoane

et al. 2012; Estabrook et al. 2000; http://lisa.nasa.gov/;

http://elisa-ngo.org/), (10−6 − 100 Hz) for ASTROD

(Ni et al. 2004; Ni 2008, 2010, 2013) and for Tianqin

and Taiji (Hu & Wu 2017; Liu et al. 2016; Wan et al.

2017; Wang et al. 2018), ground-based laser interfer-

ometers (10 − 2000Hz), like LIGO (Abramovici et al.

1992; The LIGO Scientific Collaboration & The Virgo

Collaboration 2012; https://losc.ligo.org/archive/S6/;

https://losc.ligo.org/timeline/; https://dcc.ligo.org/), Virgo

(Acernese et al. 2005), GEO (Willke et al. 2002), KAGRA

(Aso et al. 2013) etc, cavity detectors (∼ 4000 Hz)

(Ballantini et al. 2005), waveguide detectors (∼ 108 Hz)

(Cruise & Ingley 2006; Tong & Zhang 2008) and polarized

laser beam detectors (∼ 1010 Hz) (Li et al. 2003; Tong

et al. 2008).

A primary feature of the RGW spectrum is that it

has higher amplitude at lower frequencies (Zhang et al.

2005, 2006; Zhao & Zhang 2006b). The highest ampli-

tude is located around (10−18−10−16) Hz which is the tar-

get of CMB measurements. So far, the magnetic polariza-

tion CBB
l induced by RGW (Basko & Polnarev 1980b,a;

Polnarev 1985; Zaldarriaga & Harari 1995; Kosowsky

1996; Kamionkowski et al. 1997; Zhao & Zhang 2006a;

Xia & Zhang 2008, 2009) has not yet been detected, and

only some constraint is given in terms of the tensor-scalar

ratio of metric perturbations r < 0.1 (Planck Collaboration

et al. 2016a,b,c,d). On the other hand, Advanced LIGO-

Virgo so far has not detected RGW, but rather has only

been applied to predict a total stochastic GW background

with amplitude 1.8+2.7
−1.3 × 10−9 near 25 Hz contributed to-

gether by unresolved binaries, RGW, etc (Abbott et al.

2018). In between is the band of the space-borne facilities,

LISA and ASTROD, where the amplitude of RGW is higher

by 5–6 orders than that in the LIGO band. This great en-

hancement increases the chance for space-borne interfer-

ometers to detect RGWs if their sensitivity level is compa-

rable to LIGO.

In this paper, we shall study RGW detection by space-

borne interferometers, such as LISA and ASTROD and the

like, and show how to estimate the spectrum and param-

eters of RGW from output signals of future observations.

For this purpose, we shall first briefly introduce the theoret-

ical RGW spectrum as a scientific target, resulting from an

analytical solution that covers from inflation to the present

acceleration (Zhang et al. 2005, 2006; Zhao & Zhang

2006b). Accurate estimation of this spectrum will also con-

firm the details of inflation for the very early Universe.

In this sense, this will be a direct detection of inflation.

For the RGW spectrum in this paper, we focus on three

parameters determined by inflation: the tensor-scalar ratio

r, the spectral index β and the spectral running index αt

(Tong & Zhang 2009; Wang et al. 2016). Small modifica-

tions of RGW in Weinberg (2004), Miao & Zhang (2007)

and Wang et al. (2008) are not considered. We do not con-

sider the Doppler modulation due to orbital motion or re-

lated causes (Cornish & Larson 2003a,b; Hellings 2003;

Timpano et al. 2006; Ungarelli & Vecchio 2001b). One

of the main obstacles to detecting RGW is the stochastic

foreground of a GW resulting from the superposition of a
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large number of unresolved astrophysical sources. To have

a definite model of the power spectrum of the stochastic

foreground, one has to know the spectrum for each type

of source, as well as the evolution of each type. There are

several categories of these source types. Due to their large

abundance, Galactic white dwarf binaries are generally

considered one of the main components of the foreground

in the ∼ 10−3 Hz frequency band (Evans et al. 1987; Hils

et al. 1990; Bender & Hils 1997). Nelemans et al. (2001b),

Nelemans et al. (2001a), Ruiter et al. (2009), Seto &

Cooray (2004), Adams et al. (2012) and Adams & Cornish

(2014) provide several models of the foreground gener-

ated by distribution of these binaries. Sesana et al. (2004),

Sesana et al. (2005) have studied a stochastic foreground

from massive black hole binaries and its contribution to the

LISA data stream. Hils & Bender (2000),Nelemans et al.

(2004), Solheim (2010) show the possibility of a fore-

ground generated by an AM CVn binary system. To ex-

plore the effects of these foreground models on a spaced-

based detector, simulation methods to generate a fore-

ground data stream for LISA have been studied by the

Mock LISA data challenge project (Arnaud et al. 2007;

Babak et al. 2008; https://astrogravs.nasa.gov/docs/mldc/)

and other groups (Cornish & Crowder 2005; Cornish &

Robson 2017). Based on these dummy data streams, sev-

eral techniques for model selection and parameter estima-

tion have been developed (Seto & Cooray 2004; Robson

& Cornish 2017; Cornish & Littenberg 2007; Cornish

& Robson 2017; Adams & Cornish 2014). Crowder &

Cornish (2007) and Robson & Cornish (2017) have pro-

vided methods to detect resolvable sources in a foreground

of unresolvable sources. Adams & Cornish (2014) inves-

tigated approaches to discriminate the GW background

from a stochastic foreground according to the differences

in spectral shapes and time modulation of the signal.

Currently, the foreground is still under intensive study but

is not fully understood. At this stage of our study we do

not include the foreground in this paper.

GW radiation from a finite source usually has a def-

inite waveform (fixed direction, amplitude, etc) and the

match-filter method (Helstrom 1960; Jaranowski & Królak

2005) is commonly used to estimate the waveform against

certain theoretical templates. Cutler & Flanagan (1994)

and Finn (1992) studied the methods of parameter estima-

tion for ground-based LIGO detectors. Cutler (1998) and

Moore & Hellings (2002) studied detection of a GW radi-

ated from merging compact binaries using LISA detectors.

In contrast, RGW is of stochastic nature, incident from

all directions, containing modes of all possible frequen-

cies and amplitudes. Flanagan (1993), Allen (1997) and

Allen & Romano (1999) systematically studied detection

of RGW using LIGO, and obtained a formula for signal-

to-noise ratio (SNR) as a criterion for detection. Binétruy

et al. (2012) and Caprini et al. (2016) discussed possi-

ble detection by eLISA of GW backgrounds due to first-

order phase transitions, cosmic strings, bubble collision,

etc. Ungarelli & Vecchio (2001a) discussed the possibility

of RGW detection by LISA. So far in the literature, how-

ever, RGW detection by space-based interferometers has

not been systematically studied, in particular, estimation of

the RGW spectrum has not been analyzed. We shall derive

formulations for estimation of the RGW spectrum, using

a single or a pair of space-based interferometers like LISA

and ASTROD.

For this purpose, we shall briefly examine the three

kinds of interferometers: Michelson, Sagnac and sym-

metrized Sagnac (de Vine et al. 2010; Cornish & Rubbo

2003; Shaddock 2004; Estabrook et al. 2000; Cornish &

Hellings 2003; Schilling 1997; Vallisneri 2008; Larson

et al. 2000; Cornish 2001; Cornish & Larson 2001;

Robinson et al. 2008), whose sensitivity depends on both

the noise and transfer function, which in turn depends on

the detector geometry. We shall show explicitly that the

Michelson has the best sensitivity, which will be taken

as a default interferometer. For a single interferometer

in space, we give SNR and a criterion to detect RGW.

As a Gaussian stochastic background, RGW is similar to

CMB anisotropies, and the statistical methods employed

in CMB studies can be used (Gorski et al. 1994; Jungman

et al. 1996; Tegmark et al. 1997; Oh et al. 1999; Hinshaw

et al. 2003). We shall apply the maximum likelihood (ML)

method (Kay 1993a,b) to estimate the RGW spectrum.

We give the probability density function (PDF) explicitly,

and derive the estimation equation of an RGW spectrum.

However, in practice, our knowledge of the spectrum of

noise that is actually occurring in the detector is not suf-

ficient so that a single case is not effective to estimate the

RGW spectrum when the noise is dominantly large.

For a pair, the noise level will be suppressed by cross-

correlation. We shall introduce cross-correlated, integrated

output of the pair, in a fashion similar to the ground-based

LIGO (Allen 1997; Allen & Romano 1999), calculate the

overlapping reduction function, give the sensitivity and

compare with that of a single case, and analyze possible

detection and constraints on RGW parameters. However,

the spectrum as a function of frequency cannot be es-

timated from the integrated output, since the frequency-

dependence has been lost in integration. One can esti-
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mate only one parameter in the Bayesian approach by ML-

estimation, using the Newton-Raphson method (Oh et al.

1999; Hinshaw et al. 2003; Press et al. 1992). To estimate

the spectrum, we propose the ensemble averaging method,

and directly take the cross-product of un-integrated output

signals from a pair. The method does not depend on precise

knowledge of the noise spectrum. We estimate the spec-

trum using simulated data for illustration, but one cannot

estimate the parameters. Seto (2006) suggested a method

of correlation for un-integrated signals, by which the whole

frequency range of the data is to be divided into many small

segments of frequency, and the mean value of a correlation

variable over each small segment is taken as the represen-

tative point for the segment. In this way, as an approxi-

mation, the correlation variable as a function of frequency

is defined on the whole range. Seto (2006) considered a

simple power-law spectrum of stochastic GW, analyzing

the resolution of parameter estimation, but did not give

an estimation of the spectrum. We adopt this as the third

method to estimate the RGW spectrum by ML-estimation,

as well as the three parameters (r, β, αt) simultaneously

in a Bayesian approach. For all these three methods for a

pair, we shall provide numerical simulations, demonstrat-

ing their feasibility.

The outline of the paper is as follows. In Section 2,

we give a short review of the theoretical RGW spectrum.

In Section 3 we compare briefly the sensitivity of three

types of interferometers, and give a constraint on RGW

by a single Michelson in space. In Section 4, we examine

signals from a single by the ML method and show that it

is not effective to estimate the RGW spectrum when the

noise is dominantly large. Section 5 is about the cross-

correlated, integrated output signals for a pair. In Section 6,

we show that the integrated output signals from a pair can

be used to estimate one parameter, but not the spectrum. In

Section 7 we use the ensemble averaging method to esti-

mate the spectrum directly. In Section 8, we use the corre-

lation method for un-integrated output signals to estimate

the spectrum and parameters of RGW. Appendix A gives

the derivation of the Fisher matrix for a pair.

2 RELIC GRAVITATIONAL WAVE

This section reviews the main properties of RGWs rel-

evant to detection by LISA. RGW as the tensor metric

perturbations of spacetime is generated during inflation

and exists as a stochastic background of fluctuations in

the Universe. It has an extremely broad spectrum, ranging

from 10−18 Hz to 1011 Hz. In particular, it has a character-

istic amplitude of 10−22 ∼ 10−24 around f ∼ 10−3 Hz

(see Fig. 1) and can serve as a target for LISA. The exact

solution and corresponding analytical spectrum of RGW

have been obtained (Zhang et al. 2005, 2006; Zhao &

Zhang 2006b; Wang et al. 2016) that cover the whole

course of expansion, from inflation, reheating, radiation,

matter, to the present accelerating stage.

For a spatially flat Robertson-Walker spacetime, the

metric with tensor perturbation is

ds2 = a(τ)2[−dτ2 + (δij + hij)dxidxj ] , (1)

where hij is the tensor perturbation and τ is the conformal

time. From inflation to the accelerating expansion, there

are five stages, with each stage being described by a power-

law scale factor a(τ) ∝ τd where d is a constant (Zhang

et al. 2005, 2006; Zhao & Zhang 2006b). The particularly

interesting stage is inflation with

a(τ) = l0|τ |1+β , −∞ < τ ≤ τ1, (2)

where β is the expansion index. For the exact de Sitter,

β = −2, and for generic inflation models, β can deviate

slightly from −2 (Zhang et al. 2005, 2006; Zhao & Zhang

2006b). The present accelerating stage has

a(τ) = lH |τ − τa|−γ , τE ≤ τ ≤ τH , (3)

where γ = 2.018 is taken for ΩΛ = 0.71 (Wang et al.

2016). The normalization is taken as a(τH) = lH = γ/H0,

where H0 is the present Hubble constant.

The tensorial perturbation hij as a quantum field is de-

composed into Fourier modes,

hij(x, τ) =

∫

d3k

(2π)3/2

∑

A=+,×
ǫA
ij(k)

×
[

aA
k hA

k (τ)eik·x + aA †
k

hA ∗
k (τ)e−ik·x

]

,

k =kk̂ ,
(4)

where aA
k

and aA †
k

are the annihilation and creation op-

erators respectively of a graviton with wavevector k and

polarization A, satisfying the canonical commutation rela-

tion
[

aA
k
, aA′ †

k′

]

= δAA′ δ3(k − k′) . (5)

Two polarization tensors satisfy

ǫA
ij(k)δij = 0, ǫA

ij(k)ki = 0, ǫA
ij(k)ǫA′

ij (k) = 2δAA′ ,

(6)

and can be taken as

ǫ+ij(k) = (lilj − mimj) , ǫ×ij(k) = (limj + milj) ,
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where l, m are mutually orthogonal unit vectors normal to

k. In fact, as an observed quantity for LISA, RGW can be

also treated as a classical, stochastic field

hij(τ, x) =

∫

d3k

(2π)3/2

∑

A=×,+

ǫA
ij(k)hA

k (τ)eik·x , (7)

where the k-mode hA
k is stochastic, independent of other

modes. The physical frequency at present is related to the

conformal wavenumber via f = ck/2πa(τH) (Zhang et al.

2005, 2006; Zhao & Zhang 2006b). For RGW, the two po-

larization modes h+
k and h×

k are assumed to be independent

and statistically equivalent, so that the superscript +,× can

be dropped, and the wave equation is

h′′
k(τ) + 2

a′(τ)

a(τ)
h′

k(τ) + k2hk(τ) = 0 . (8)

The quantum state during inflation is taken to be |0〉 such

that

as
k|0〉 = 0 , (9)

i.e., only the vacuum fluctuations of RGW are present dur-

ing inflation, and the solution of RGW is

hk(τ) =

√
32πG

a(τ)

√

πk|τ |
2k

(

−ie−iπβ/2
)

H
(2)

β+ 1
2

(k|τ |) , −∞ < τ ≤ τ1 ,

(10)

which is the positive-frequency mode hk →√
32πG
a(τ)

1√
k
e−ikτ and gives a zero point energy 1

2~ω

in each k-mode and each polarization in the high fre-

quency limit. The wave equation, Equation (8), has been

solved also for other subsequent stages, i.e., reheating,

radiation dominant, matter dominant and accelerating. The

solution of Equation (8) is simply a combination of two

Hankel functions, τd−1/2H
(1)
d−1/2 and τd−1/2H

(2)
−d+1/2.

By continuously joining these stages, the full analytical

solution hk(τ) has been obtained, which covers the whole

course of evolution, in particular, for the present stage of

acceleration, it is given by (Wang et al. 2016)

hk(τ) =

√
32πG

a(τ)

√

πs

2k

[

e−iπγ/2βkH
(1)

−γ− 1
2

(s)

+ eiπγ/2αkH
(2)

−γ− 1
2

(s)

]

, τE < τ ≤ τH ,

(11)

where s ≡ k(τ − τa) and the coefficients βk, αk are

Bogoliubov coefficients (Parker & Toms 2009; Birrell &

Davies 1982) satisfying |αk|2 − |βk|2 = 1. |βk|2 is the

number of gravitons at the present stage, and the expres-

sions βk, αk are explicitly given by Wang et al. (2016). The

frequency range of space-borne interferometers is much

Fig. 1 The evolution of RGW spectrum from inflation to the present.

higher than the Hubble frequency H0 ≃ 2 × 10−18 Hz,

so that Equation (11) for these modes becomes

hk(τ) ≃
√

32πG

a(τ)

1√
k

e−ikτ for k ≫ 1/|τ | . (12)

Hence, for space-borne interferometers, RGW is practi-

cally a superposition of stochastic plane waves.

The auto-correlation function of RGW is defined by

the following expected value

〈0|hij(x, τ)hij(x, τ)|0〉 =
1

(2π)3

∫

d3k |hk|2 , (13)

where Equations (6) and (5) have been used. Defining the

power spectrum by

〈0|hij(x, τ)hij(x, τ)|0〉 ≡
∫ ∞

0

∆2
t (k, τ)

dk

k
, (14)

one reads off the power spectrum

∆2
t (k, τ) =

k3

2π2
|hk(τ)|2 , (15)

which is dimensionless. We also use a notation h(f, τH) ≡
√

∆2
t (k, τH). In the literature on GW detection, the char-

acteristic amplitude

hc(f) ≡ h(k, τH)

2
√

f
(16)

is often used (Maggiore 2000; Zhang et al. 2010), which

has dimension Hz−1/2. The definition (15) holds for any

time τ , from inflation to the accelerating stage.

Figure 1 shows the evolution of the RGW spec-

trum from inflation to the present acceleration stage.

Equivalently, one can also use the spectral energy density

Ωg ≡ ρg/ρc, where

ρg =
1

32πGa2
〈0|h′

ijh
′ij |0〉
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is the energy density of RGW (Brill & Hartle 1964; Su

& Zhang 2012; Weinberg 1972; Wang et al. 2016) and

ρc = 3H2
0/8πG is the critical density. The spectral en-

ergy density Ωg(f) is defined by Ωg ≡
∫

Ωg(f)df/f , and

given by

Ωg(f) =
π2

3
h2(f, τH)

(

f

H0

)2

, (17)

which holds for all wavelengths shorter than the horizon.

From the spectrum (15) during inflation, the analytic

expressions of spectral and running spectral indices have

been obtained (Wang et al. 2016)

nt ≡
d ln ∆2

t

d ln k
≃ 2β + 4 − 2

2β + 3
x2,

αt ≡
d2 ln ∆2

t

d(ln k)2
≃ − 4

2β + 3
x2

at x ≡ |kτ | ≪ 1, i.e., at far outside horizon, both related

to the inflation index β. In the limit k → 0, one has the

default values

nt = 2β + 4 , αt = 0 , (18)

which hold for the inflation models with a(τ) ∝ |τ |1+β .

It is incorrect to use nt and αt evaluated at the horizon-

crossing |kτ | = 1 (Kosowsky & Turner 1995). With these

definitions, the primordial spectrum in the limit k → 0 is

written as

∆t(k) = ∆R r1/2
( k

k0

)
1
2nt+

1
4 αt ln( k

k0
)

, (19)

where k0 is a pivot conformal wavenumber correspond-

ing to a physical wavenumber k0/a(τH) = 0.002 Mpc−1,

∆R is the value of curvature perturbation determined by

observations ∆2
R = (2.464 ± 0.072) × 10−9 and r ≡

∆2
t (k0)/∆2

R(k0) is the tensor-scalar ratio, with r < 0.1 by

CMB observations (Planck Collaboration et al. 2016b,c,d).

The primordial spectrum (19) describes the upper curve

(red) during inflation in Figure 1. The present spectrum

∆t(f, τH) and the primordial spectrum ∆t(k) are over-

lapped at very low frequencies f < 10−18 Hz, with both

being ∝ r1/2 as in (19). At f > 1011 Hz, ∆t(f, τH) rises

up and has an ultraviolet (UV) divergence, due to vacuum

fluctuations. In Wang et al. (2016), the UV divergence has

been adiabatically regularized. Higher values of (r, nt, αt)

give rise to higher amplitude of RGW. In particular, a slight

increase in αt will enhance greatly the amplitude of RGW

in the relevant band. In this paper, we take (r, nt, αt) as

the major parameters of RGW.

3

1

2

y

x

c

b

a

Fig. 2 The three spacecraft are located at points 1, 2 and 3, and

the vectors a, b and c label the directions of the three arms.

3 SENSITIVITY OF ONE INTERFEROMETER

AND RGW DETECTION

We briefly review detection of RGW by a single interfer-

ometer, which has been studied before and will be used

in this paper later. Figure 2 shows three identical space-

crafts that are placed in space, forming an equilateral tri-

angle. The three arms are of equal length, taken to be

L = 5×109 m by the original design of LISA (Bender et al.

1998) when no GW is passing by. This value is taken as an

example in our paper. In recent years, the designed arm-

length has been modified to be L = 1 × 109 m (Amaro-

Seoane et al. 2012) or L = 2.5 × 109 m (Amaro-Seoane

et al. 2017). Recently-proposed projects, like Tianqin and

Taiji, also will have L around this value. ASTROD has a

longer value of L = 260× 109 m (Ni et al. 2004; Ni 2008,

2010, 2013). Spacecraft 1 can shoot laser beams, which are

phase-locked, regenerated with the same phase at space-

crafts 2 and 3, and then sent back (Bender et al. 1998;

Amaro-Seoane et al. 2017). This forms one interferome-

ter. In the presence of a GW, the arm lengths and phases of

the beams will fluctuate. Combining the optical paths will

produce different interferometers (Vallisneri et al. 2008).

Here we only discuss three combinations, the Michelson,

the Sagnac and the symmetrized Sagnac (Cornish 2001;

Cornish & Larson 2001). To focus on the main issue of

spectral estimation for RGW, we do not consider the space-

craft orbital effects, Shapiro delay, etc., caused by the

Newtonian potential of the solar system (Rubbo et al. 2004;

Cornish & Rubbo 2003; Tinto & Armstrong 1999; Tinto

et al. 2004, 2005).
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3.1 The Response Tensors for Three Kinds of

Interferometers

First, the Michelson interferometer (Cornish 2001;

Cornish & Larson 2001; Maggiore 2000; Cutler 1998) is

considered. The optical path difference is proportional to

the strain

ho =
1

2L
[l12 + l21 − l13 − l31] , (20)

where l12 is the optical path of a photon emitted by space-

craft 1 traveling along arm 1-2, which has arrived at 2,

l21 is the one reflected at 2 and back to 1, etc. This is the

dimensionless strain measured by the interferometer, also

called the output response.

Next, the Sagnac interferometer (Shaddock 2004) is

described. One optical path is 1–2–3–1, and the other is

along 1–3–2–1. The strain is proportional to their differ-

ence

hos1 =
1

3L
[l13 + l32 + l21 − l12 − l23 − l31] , (21)

where the subscript “1” in hos1 refers to vertex 1. In a sim-

ilar fashion, one can get the output responses at vertex 2

and vertex 3. Last, the symmetrized Sagnac interferometer

is examined. Its output response is defined as the average of

three Sagnac signals for three vertices, 1, 2 and 3, respec-

tively (Armstrong et al. 1999; Prince et al. 2002; Robinson

et al. 2008)

hoss =
1

3
(hos1 + hos2 + hos3) . (22)

We shall study the ability to detect RGW with these three

kinds of interferometers when implemented in space.

Now we consider the responses of the three kinds of

interferometers to a GW. Let a plane GW, with frequency

f from a direction Ω̂, pass through the detector located at

r and at time t. The GW is denoted by h(Ω̂, f, t, r) as a

tensor. The output response of an interferometer is a prod-

uct

ho(Ω̂, f, t, r) = D(Ω̂, f) : h(Ω̂, f, t, r) , (23)

where D(Ω̂, f) is the response tensor, depending on the

orientation and geometry of LISA and the operating fre-

quency f . For the Michelson, the response tensor is

(Cornish & Larson 2001; Cornish 2001),

Dm(Ω̂, f) =
1

2
((a⊗a)Tm(a·Ω̂, f)−(c⊗c)Tm(−c·Ω̂, f)) ,

(24)

with a and c being the vectors of arms shown in Figure 2,

and Tm being the single-arm transfer function

Tm(a · Ω̂, f) =
1

2

[

sinc
( f

2f∗
(1 − a · Ω̂)

)

exp
(

− i
f

2f∗
(3 + a · Ω̂)

)

+ sinc
( f

2f∗
(1 + a · Ω̂)

)

exp
(

− i
f

2f∗
(1 + a · Ω̂)

)

]

,

(25)

where sinc(x) ≡ sin x
x , and f∗ ≡ c/(2πL) ≃ 0.0095 Hz

is the characteristic frequency of LISA. In expression (23),

“:” denotes a tensor product defined by

(a ⊗ a) : ǫ ≡ aiajǫij ,

where ǫij is the polarization tensor satisfying the condi-

tions of (6). The output response (23) indicates how the

interferometer transfers an incident GW into an output sig-

nal through a specific geometric setup. When passing, for

the ground-based case of LIGO, the working frequency

range is (101 ∼ 103) Hz (Abbott et al. 2016c,b, 2017b),

and f∗ ≃ 1.2×104 Hz for 4 km-long arms, so one can take

the low frequency limit f ≪ f∗, Tm ≃ 1, then Equation

(24) reduces to that of Allen (1997) and Allen & Romano

(1999).

The response tensor of the Sagnac is (Cornish 2001;

Kudoh & Taruya 2005)

Ds =
1

6

(

(a⊗a)Ta(f)+ (b⊗b)Tb(f)+ (c⊗c)Tc(f)
)

,

(26)

depending also on the vector arm b and the transfer func-

tions

Ta(f) =sinc
( f

2f∗
(1 + a · Ω̂)

)

exp
(

− i
f

2f∗
(1 + a · Ω̂)

)

− sinc
( f

2f∗
(1 − a · Ω̂)

)

× exp
(

− i
f

2f∗
(5 + a · Ω̂)

)

, (27)

Tb(f) =
[

sinc
( f

2f∗
(1 + b · Ω̂)

)

− sinc
( f

2f∗
(1 − b · Ω̂)

)]

× exp
(

− i
f

2f∗
(3 + a · Ω̂ − c · Ω)

)

,

(28)

Tc(f) =sinc
( f

2f∗
(1 + c · Ω)

)

exp
(

− i
f

2f∗
(5 − c · Ω)

)

− sinc
( f

2f∗
(1 − c · Ω)

)

× exp
(

− i
f

2f∗
(1 − c · Ω)

)

. (29)
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Notice that a factor of 1
2 is missed in the exponent function

in (9) of Cornish (2001). The response tensor of the sym-

metrized Sagnac is (Cornish 2001; Kudoh & Taruya 2005)

Dss(Ω̂, f) =
1

6

(

(a ⊗ a)Tss(a · Ω̂, f)

+ (b ⊗ b)Tss

(

b · Ω̂, f
)

+ (c ⊗ c)Tss

(

c · Ω̂, f
)

)

,

(30)

and

Tss

(

u · Ω̂, f
)

=
(

1 + 2 cos
f

f∗

)

exp
(

− i
f

2f∗
(3 + u · Ω̂)

)

×
[

sinc
( f

2f∗
(1 + u · Ω̂)

)

− sinc
( f

2f∗
(1 − u · Ω̂)

)]

.

(31)

Thus, for a given incident GW, these three kinds of inter-

ferometers will yield different output responses due to re-

sponse tensors.

The above output response (23) applies to GW emitted

by a fixed source far away from the detector. The matched

filter technique is usually used to search for a GW embed-

ded in the noise (Thorne 1987; Cutler & Flanagan 1994;

Finn 1992).

3.2 The Output Response to RGW and the Transfer

Function

RGW as a stochastic background contains a mixture of all

independent k modes of plane waves. In regards to its de-

tection by space-based interferometers, RGW in (7) can

be also written as a sum over frequencies and directions

(Allen 1997; Allen & Romano 1999; Cornish 2001)

hij(t, x) =
∑

A=×,+

∫ ∞

−∞
df

×
∫

dΩ̂ǫA
ij(Ω̂) h̃A(f, Ω̂)e−i2πftei2πfΩ̂·r/c ,

(32)

where Ω̂ = k/k, r = a(τH)x and

h̃A(f, Ω̂) =
2πa(τH)/c

(2π)3/2
k2hA

k (τ)ei2πft (33)

with the mode hA
k (τ) given in Equation (7). By its stochas-

tic nature, each mode of frequency f and in direction Ω̂

is random. Statistically, RGW can be assumed to be a

Gaussian random process, and the ensemble averages are

given by (Allen 1997; Allen & Romano 1999)

〈h̃A(f, Ω̂)〉 = 0 , (34)

〈h̃∗
A(f, Ω̂)h̃A′(f ′, Ω̂′)〉 =

1

2
δ(f − f ′)

δ2(Ω̂, Ω̂′)

4π

× δAA′Sh(f) ,

(35)

where δ2(Ω̂, Ω̂′) = δ(φ − φ′)δ(cos θ − cos θ′), and Sh(f)

is the spectral density, also referred to as the spectrum, in

the unit of Hz−1 satisfying Sh(f) = Sh(−f). The factor 1
2

is introduced considering that the variable f of Sh ranges

between −∞ and +∞. Equations (34) and (35) specify

fully the statistical properties of RGW. The normalization

of Sh(f) is chosen such that

〈h̃∗
A(f)h̃A′(f ′)〉 =

∫

dΩ̂dΩ̂′〈h̃∗
A(f, Ω̂)h̃A′(f ′, Ω̂′)〉

=
1

2
δ(f − f ′)δAA′Sh(f) . (36)

From Equations (32) and (35), the auto-correlation func-

tion of RGW can be written as

〈hij(t)h
ij(t)〉 = 2

∫ +∞

−∞
dfSh(f)

= 4

∫ ∞

0

d(log f)fSh(f) ,

(37)

so that the spectral density is related to the characteristic

amplitude (16 ) as the following

Sh(f) = h2
c(f) =

3H2
0

4π2

Ωg(f)

f3
, (38)

where Ωg(f) is the spectral energy density (17).

Let us consider the output response of an interfer-

ometer to RGW. Substituting hij of Equation (32) into

Equation (23) yields the output response

ho(t) =
∑

A=×,+

∫ +∞

−∞

df

×

∫

dΩ̂ h̃A(f, Ω̂)e−i2πftei2πfΩ̂·r/c
D(Ω̂, f) : ǫ

A(Ω̂) ,

(39)

which is valid for all three kinds of interferometers with

their respective response tensor D. Since the RGW back-

ground is isotropic in the Universe, we are free to take the

detector location at r = 0 (Cornish & Larson 2001), so

that Equation (39) becomes

ho(t) =
∑

A=×,+

∫ +∞

−∞
df

×
∫

dΩ̂h̃A(f, Ω̂)e−i2πft D(Ω̂, f) : ǫA(Ω̂) ,

(40)
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which is a summation over all frequencies, directions and

polarizations, in contrast to a GW from a fixed source. Its

Fourier transform is

h̃o(f) =
∑

A

∫

dΩ̂ h̃A(f, Ω̂)D(Ω̂, f) : ǫA(Ω̂) . (41)

The ensemble averages (34) and (35) lead to

〈h̃o(f)〉 = 0 ,

〈h̃∗
o(f)h̃o(f

′)〉 =
1

2
δ(f − f ′)Sh(f)R(f) .

(42)

The auto-correlation of output response is

〈h2
o(t)〉 =

∫ +∞

−∞
df

1

2
Sh(f)R(f)

=

∫ ∞

0

df Sh(f)R(f) ,

(43)

where the transfer function

R(f) =

∫

dΩ̂

4π

∑

A=×,+

FA∗(Ω̂, f) FA(Ω̂, f) , (44)

is a sum over all directions and polarizations, and the de-

tector response function

FA(Ω̂, f) = D(Ω̂, f) : ǫA(Ω̂) . (45)

R(f) is determined by the geometry of the interferometer

and transfers the incident stochastic RGW signal into the

output signal. A greater value of R(f) means a stronger

ability to transfer RGW into the output signal. Formula

(44) applies to the Michelson, Sagnac and symmetrized

Sagnac interferometers. Using Dm, Ds, Dss of (24),

(26) and (30) yields the transfer functions Rm(f), Rs(f)

and Rss(f), respectively. They are plotted in the top of

Figure 3. For the Michelson, R(f) ≃ 0.3 in low frequen-

cies, which is much greater than the corresponding value

for the Sagnac and symmetrized Sagnac, so the Michelson

has a stronger ability to transfer incident RGW into the

output signals.

3.3 The Sensitivity of one Interferometer and

Detection of RGW

Including the noise, the total output signal of an interfer-

ometer is a sum

s(t) = ho(t) + n(t) , (46)

where ho(t) is the output response of (40) and n(t) is a

Gaussian noise signal with a zero mean 〈n(t)〉 = 0, uncor-

related to ho. Define

〈n(t)n(t′)〉 =
1

2

∫ +∞

−∞
dfei2πf(t−t′)Sn(f) , (47)

where Sn(f) is the noise spectral density. It satisfies

〈n2(t)〉 =
1

2

∫ +∞

−∞
df Sn(f) =

∫ ∞

0

df Sn(f) . (48)

The noise in the frequency domain can be equivalently

specified by

〈ñ(f)〉 = 0 , 〈ñ∗(f)ñ(f ′)〉 =
1

2
δ(f − f ′)Sn(f) . (49)

There are two major kinds of noise (Bender et al. 1998;

Bender 2003; Cornish 2001). The first kind is called the

optical-path noise, which includes shot noise, beam point-

ing instabilities, thermal vibrations, etc. Among these, shot

noise is the most important and its noise spectral density is

given by (Cornish 2001)

Ss(f) =
1.21 × 10−22 m2 Hz−1

(5 × 109 m)2

= 4.84 × 10−42 Hz−1 .

(50)

The other kind of noise is the acceleration noise with a

spectral density

Sa(f) =
9 × 10−30 m2 s−4 Hz−1

(5 × 109 m)2(2πf)4

= 2.31 × 10−40

(

mHz

f

)4

Hz−1 .

(51)

From these follow the noise spectral density of the

Michelson

Sm
n (f) = 8Sa(f)

(

1 + cos2
(

f

f∗

))

+ 4Ss(f) , (52)

the noise spectral density of the Sagnac

Ss
n(f) = 6Ss(f) + 8

(

sin2 3f

2f∗
+ 2 sin2 f

2f∗

)

Sa(f) ,

(53)

and the noise spectral density of the symmetrized Sagnac

Sss
n (f) =

2

3

(

1 + 2 cos
( f

f∗

))2

×
(

Ss(f) + 4 sin2
( f

2f∗

)

Sa(f)
)

.

(54)

These are plotted in the bottom of Figure 3. It is seen that

the noise of the Michelson is larger than those of Sagnac

and symmetrized Sagnac, and the symmetrized Sagnac

has the least noise. Higher symmetries in the optical path

designs of Sagnac and symmetrized Sagnac cancel more

noise. The symmetric Sagnac has a transfer function sev-

eral orders of magnitude lower than Michelson of around

10−3 Hz, and can be used to monitor noise level in practice

(Tinto et al. 2001; Cornish 2001).
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To detect RGW by signals from one interferometer,

one considers the auto-correlation of the total output signal

〈s2(t)〉 =〈h2
o(t)〉 + 〈n2(t)〉 =

∫ ∞

0

df S(f) , (55)

where Equations (43) and (48) are used, and the total spec-

tral density

S(f) ≡ Sh(f)R(f) + Sn(f) . (56)

Equation (55) is equivalently written in the frequency do-

main

〈s̃∗(f)s̃(f ′)〉 =
1

2
δ(f − f ′)S(f) . (57)

Since both the RGW signal and noise occur in

Equation (56), the SNR for a single interferometer which

is denoted as SNR1 can be naturally defined as

SNR1 ≡ hc(f)

h̃(f)
, (58)

where hc(f) is related to Sh(f) by Equation (38), and the

sensitivity is introduced by

h̃(f) ≡
√

Sn(f)

R(f)
, (59)

which reflects the detection capability of one interferom-

eter. A smaller h̃(f) indicates a better sensitivity, which

requires a lower Sn and a greater R. Figure 4 shows the

sensitivity curves of three interferometers, which is similar

to the result of Cornish (2001). It is seen that the Michelson

has the best sensitivity level, h̃(f) ∼ 10−20 Hz−1/2 around

f∗ = c/(2πL) ≃ 10−2 Hz for the arm-length L =

5 × 109 m. This is because the transfer function R(f) of

the Michelson is greatest, giving rise to a lowest value for

h̃(f), even though its Sn(f) is slightly higher than the

other two. Therefore, we shall use the Michelson in the

subsequent sections. As a preliminary criterion, a single

interferometer will detect RGW when SNR1 > 1, i.e.,

hc(f) > h̃(f) . (60)

This criterion was used to constrain the RGW parameters

from the data of LIGO S5 (Abbott et al. 2009; Zhang et al.

2010). We plot hc(f) and h̃(f) in Figure 5 for a single

interferometer. When the data of space-borne interferom-

eters are available in the future, Equation (60) will put a

constraint on the parameters. The interferometer will be

able to detect RGW of αt > 0.016 at fixed r = 0.1 and

β = −2.016.

4 ESTIMATION OF RGW SPECTRUM BY ONE

INTERFEROMETER

Now we try to determine the RGW spectrum from the out-

put signals of one interferometer. This is a typical estima-

tion problem of statistical signals, which can be studied

by statistical methods. From the view of statistics, RGW

and CMB anisotropies share some similar properties; both

of them form a stochastic background in the Universe and

can be modeled by a Gaussian random field (Gorski et al.

1994; Jungman et al. 1996; Tegmark et al. 1997; Oh et al.

1999; Hinshaw et al. 2003).

The time series of the output signal (46) can be put

into the Fourier form in frequency domain

s̃(f) = h̃o(f) + ñ(f) .

For practical computation, the data set can be divided into

the following sample vector

s̃ = [s̃(f1), ..., s̃(fN )] , (61)

with fi+1 − fi = ∆f , i = 1, 2, · · · , N , where N is

a sufficiently large number. Since both h̃o(fi) and ñ(fi)

are Gaussian and independent, s̃(fi) is a Gaussian ran-

dom variable and s̃ consists of N statistically independent

Gaussian data points, having zero mean

〈s̃(fi)〉 = 0 . (62)

The covariance matrix is (57), which is written in the dis-

crete form

Σij = δij
1

2∆f
S(fi) ,

i, j = 1, 2, · · · , N (63)

where the Dirac delta function δ(f) has been replaced by

its discrete form (Finn 1992),

δ(fi − fj) = lim
∆f→0

1

∆f
δij . (64)

The total spectral density in (56) is also written in the dis-

crete form

S(fi) ≡ [Sh(fi)R(fi) + Sn(fi)] . (65)

The inverse covariance matrix is

(Σ−1)ij =
2∆fδij

S(fi)
, (66)

depending on the RGW signal Sh, the noise Sn and the

transfer function R of the interferometer. Note that here

Σij is diagonal since s̃(fi) and s̃(fj) are independent for
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i 6= j. Given the mean and covariance, the PDF of s̃ is

written as a multivariate Gaussian PDF (Kay 1993a,b)

f(s̃) =
1

(2π)
N
2 det

1
2 [Σ]

exp

{

−1

2
s̃ Σ

−1 s̃T

}

, (67)

and the likelihood function is

L ≡ − ln f(s̃) =
1

2
ln det[Σ] +

1

2
s̃ Σ

−1s̃T , (68)

(dropping an irrelevant additive constant 1
2N ln 2π). Once

the PDF is chosen, an estimator of the spectrum is a spec-

ification to give the value Sh for the given data set s̃. For

this, we shall adopt the ML method. In general, L can be

expanded in a neighborhood of some spectrum S̄h(f),

L =L̄ +
N
∑

k=1

∂L
∂Sh(fk)

(Sh(fk) − S̄h(fk))

+
1

2

N
∑

k, l=1

∂2L
∂Sh(fk)∂Sh(fl)

(

Sh(fk) − S̄h(fk)
)

×
(

Sh(fl) − S̄h(fl)
)

. (69)

We look for the most likely spectrum S̄h(f) at which L is

minimized
δL
δSh

∣

∣

∣

∣

S̄h

= 0 . (70)

Taking the derivative of Equation (68) with respect to

Sh(fi), and using the relations

∂ ln det[Σ]

∂Sh(f)
= tr

(

Σ
−1 ∂Σ

∂Sh(f)

)

,

∂Σ
−1

∂Sh(f)
= −Σ

−1 ∂Σ

∂Sh(f)
Σ

−1 ,

(71)

one produces the first order derivative (Kay 1993a,b)

∂L
∂Sh(fi)

=
1

2
tr

(

Σ
−1 ∂Σ

∂Sh(fi)

)

− 1

2
s̃Σ−1 ∂Σ

∂Sh(fi)
Σ

−1 s̃T ,

(72)

where the zero mean of s gives no contribution to (72).

From Equation (63), one calculates

∂Σkl

∂Sh(fi)
=

1

2

1

∆f
δklδkiR(fk) , k, l, i = 1, 2, · · · , N ,

(73)

where
∂Sh(fi)

∂Sh(fj)
= δij , i, j = 1, · · · , N (74)

has been used. Substituting (63) and (73) into (72) leads to

∂L
∂Sh(fi)

=
R(fi)

2[S(fi)]2

×
[

Sh(fi)R(fi) + Sn(fi) − 2s̃2
i ∆f

]

. (75)

Setting this to zero, one obtains the ML estimator of the

RGW spectrum

Sh(fi) =
2∆f

R(fi)
s̃2

i −
Sn(fi)

R(fi)
,

i = 1, 2, · · · , N . (76)

However, in practice, our knowledge is not sufficient for

the spectrum Sn(fi) due to noise that is actually inherent

in the data (Flanagan 1993; Tinto et al. 2001), so that the

formula (76) for a single case is not effective to estimate

the RGW spectrum when the noise is dominantly large. In

the following we turn to two detectors for estimation of the

RGW spectrum.

5 CROSS-CORRELATION OF A PAIR OF

INTERFEROMETERS

5.1 The Overlapping Function of a Pair Case for LISA

We present a pair of Michelson interferometers in space

which has been studied in Cornish & Larson (2001);

Cornish (2001). Based on the three spacecraft forming an

equilateral triangle in Figure 2, we consider two config-

urations of a pair. Config. 1 consists of the three space-

craft in one triangle, but with each spacecraft carrying two

sets of independent detection equipment. Then two inde-

pendent Michelson interferometers form (Cutler 1998): the

first having the point 1 as the vertex, and the second hav-

ing the point 2 as the vertex, differing from the first by

a rotation of 120◦, as in Figure 2. This configuration is

economically favored, however, a possible problem is that

the equipment on one craft may have dependent noise. For

simplicity we assume that the noises are independent by

better setup in the design. Config. 2 consists of two trian-

gles, equipped with six spacecraft, forming two interfer-

ometers in space (Cornish & Larson 2001). The second

triangle is rotated 180◦ from the first, as in Figure 6. This

configuration can ensure independent noise since the six

crafts are located far away from each other in space. For

both configurations, we assume that the noises from the

two interferometers are independent of each other, and in-

dependent of RGW.

GW signals are correlated in the two interferometers.

By cross-correlating the output data of the pair, the detec-

tion capability will be enhanced. Consider the output sig-

nals from a pair of two interferometers

s1(t) = h1(t) + n1(t) , (77)

s2(t) = h2(t) + n2(t) , (78)

in which each is similar to Equation (46). It is assumed that

〈hi(t)nj(t)〉 = 0 , 〈n1(t)n2(t)〉 = 0 , (79)
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and

〈n2
1(t)〉 =

∫ ∞

0

dfSn1(f) ,

〈n2
2(t)〉 =

∫ ∞

0

dfSn2(f) ,

(80)

where Sn1, Sn2 are the noise spectral densities of the two interferometers as in (48), and specified as in Equation (52) for

the Michelson. When the two interferometers are identical, one can take Sn1 ≃ Sn2.

Using the output response of (39) for each interferometer and formula (35), the ensemble average of the correlation

of two output responses is

〈h1(t)h2(t
′)〉 =

1

2

∫ +∞

−∞
dfSh(f) ×

∫

dΩ̂

4π

∑

A=×,+

FA∗
1 (Ω̂, f)FA

2 (Ω̂, f) × e−i2πfΩ̂·(r1−r2)ei2πf(t−t′)

=

∫ ∞

0

dfSh(f)R12(f)ei2πf(t−t′) ,

(81)

similarly, by (41) and (35),

〈h̃1(f)h̃2(f
′)〉 =

1

2
δ(f − f ′)Sh(f)R12(f) , (82)

where the transfer function R12(f) is

R12(f) ≡

∫

dΩ̂

4π

∑

A=×,+

F A∗

1 (Ω̂, f) × F A
2 (Ω̂, f)e−i2πfΩ̂·(r1−r2) , (83)

where r1 and r2 represent the respective positions of the vertices of the two interferometers. A higher value of R12(f)

means a better capability to transfer incoming RGW into signals from the detector.

In Figure 7 we plot the transfer function of a single and of a pair with conf.1 and conf.2. One introduces the over-

lapping reduction function γ(f) (Flanagan 1993; Allen 1997; Allen & Romano 1999) by normalizing R12(f) as the

following

γ(f) ≡ 5

sin2 β0

R12(f) =
20

3
R12(f) for conf.1, (84)

γ(f) ≡ 5

2 sin2 β0

R12(f) =
10

3
R12(f) for conf.2, (85)

where β0 = π/3 is the angle between arms of one interferometer, sin2 β0 = 3/4. Clearly, γ(f) depends on the geometry

of the pair and transfers the incident RGW from all the directions (by integration over angle Ω̂) into the output signal. We

compute γ(f) numerically and plot it in Figure 8 for configs. 1 (top) and 2 (bottom). At high frequencies, γ(f) oscillates

around zero. At low frequencies, γ(f) → 1 for both configurations. To a high accuracy, it can be fitted by the following

formula:

γ(f) =























































1 − 0.811508
(

f
f∗

)2

+ 0.241292
(

f
f∗

)4

− 0.0374118
(

f
f∗

)6

, f < f∗

0.43636 + 2.12337
(

f
f∗

)

− 4.00143
(

f
f∗

)2

+ 2.37321
(

f
f∗

)3

−0.588745
(

f
f∗

)4

+ 0.0528759
(

f
f∗

)5

, f∗ ≤ f < 3.3f∗

0.000311254− 0.11762e−0.37176f/f∗

[

0.0849126

− sin

(

2.89649− 2.40829
(

f
f∗

)

e0.00978685f/f∗

)]

, 3.3f∗ ≤ f

(86)
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for config. 1, and

γ(f) =























































1 − 383
504

(

f
f∗

)2

+ 893
3888

(

f
f∗

)4

− 5414989
143700480

(

f
f∗

)6

, f < f∗

0.629524 + 1.52435
(

f
f∗

)

− 3.23303
(

f
f∗

)2

+ 1.96633
(

f
f∗

)3

−0.496608
(

f
f∗

)4

+ 0.0454382
(

f
f∗

)5

, f∗ ≤ f < 3.3f∗

0.000190192− 0.157835e−0.570049f/f∗

[

0.264226

− sin

(

1.66131− 2.01502
(

f
f∗

)

e0.0349379f/f∗

)]

, 3.3f∗ ≤ f

(87)

for config. 2. γ(f) of configs. 1 and 2 looks the same except around f ≃ (2 ∼ 8) × 10−2 Hz. Formula (87) at f < f∗
agrees with that in Cornish & Larson (2001), which does not list the expression for the part f > f∗. See also Ungarelli &

Vecchio (2001a). In the following we shall mainly use config. 2 for demonstration.

5.2 SNR for a Pair Case for LISA

To suppress the noise of a pair, one defines the cross-correlated, integrated signal of s1(t) and s2(t
′) as the following

(Allen 1997; Allen & Romano 1999)

C ≡
∫ T/2

−T/2

dt

∫ +∞

−∞
dt′s1(t)s2(t

′)Q(t − t′) =

∫ ∞

−∞
df

∫ ∞

−∞
df ′δT (f − f ′)s̃ ∗

1 (f)s̃2(f
′)Q̃(f ′), (88)

where T is the observation time, s̃(f) = s̃(−f) is the Fourier transform of s(t) and s̃ ∗
1 (f) = s̃1(−f), Q(t− t′) is a filter

function to be determined by maximizing SNR12 (SNR for the pair). Its Fourier transform is Q̃(f) = Q̃(−f), and

δT (f) ≡
∫ T/2

−T/2

dt e−i2πft =
sin(πfT )

πf
, (89)

is the finite-time Dirac delta function. For a finite T , one has δT (0) = T , and in the limit T → ∞, δT (f) reduces to the

Dirac delta function δ(f). Given the frequency band of (10−4 − 10−1) Hz, one can take the length of each segment, say,

T ≃ 3 h ∼ 104 s. When T is large enough, δT (∆f) is sharply peaked over a narrow region of width ∼ 1/T . Thus, in the

integration (88), the product of s̃∗(f)s̃(f ′) contributes only in the region |f − f ′| < 1/T ∼ 10−4 Hz. The frequency band

contains ∼ 103 of these regions. By the central limit theorem, C is well-approximated by a Gaussian random variable.

In actual computations, the cross-correlated signal C can be expressed either in the time domain, or equivalently, the

frequency domain. In the following we shall use the frequency domain. By Equations (79) and (82), the mean of C is

µ = 〈C〉 =

∫ T/2

−T/2

df

∫ ∞

−∞
df ′δT (f − f ′)〈s̃∗1(f)s̃2(f

′)〉Q̃(f ′) =
3T

10

∫ ∞

0

dfSh(f)γ(f)Q̃(f). (90)

Notice that the mean µ is non-zero, in contrast to (62) for one interferometer. Furthermore, the noise terms disappear in

the above since they are removed by cross-correlation, and only the RGW signal accumulates with the observation time

T . This feature of a pair is the advantage over a single case. A greater value of µ is desired for RGW detection. The

covariance C is

σ2 =〈C2〉 − 〈C〉2 (91)

=

∫ ∞

−∞
df

∫ ∞

−∞
df ′
∫ ∞

−∞
dk

∫ ∞

−∞
dk′δT (f − f ′)δT (k − k′)Q̃(f ′)Q̃∗(k′)

×
〈[

h̃∗
1(f) + ñ∗

1(f)
] [

h̃2(f
′) + ñ2(f

′)
] [

h̃1(k) + ñ1(k)
] [

h̃∗
2(k

′) + ñ∗
2(k

′)
]〉

−
(∫ ∞

−∞
df

∫ ∞

−∞
df ′δT (f − f ′)

1

2
δ(f − f ′)Sh(f ′)R12(f)Q̃(f ′)

)2

. (92)

Using the “factorization” property (Allen 1997; Allen & Romano 1999)

〈x1x2x3x4〉 = 〈x1x2〉〈x3x4〉 + 〈x1x3〉〈x2x4〉 + 〈x1x4〉〈x2x3〉 ,
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valid for Gaussian random variables x1, x2, x3, x4, each having zero mean, and using Equations (42), (79) and (82), one

obtains

σ2 =
1

4

∫ ∞

−∞
df

∫ ∞

−∞
df ′δ2

T (f − f ′)
∣

∣

∣Q̃(f ′)
∣

∣

∣

2 [

S1n(f)S2n(f ′) + R(f ′)Sh(f ′)S1n(f)

+ R(f)Sh(f)S2n(f ′) + R(f)Sh(f)R(f ′)Sh(f ′) + R12(f)Sh(f)R12(f
′)Sh(f ′)

]

, (93)

where R(f) is the transfer function for a single case in (44), and R12(f) is the transfer function for a pair in (83). For T

sufficiently long, one δT (f − f ′) can be set to be the Dirac function δ(f − f ′), yielding

σ2 =
T

2

∫ ∞

−∞
df |Q̃(f)|2 M(f) , (94)

where the function

M(f) ≡ S1n(f)S2n(f) + R(f)
[

S1n(f) + S2n(f)
]

Sh(f) +
[

R2(f) + R2
12(f)

]

S2
h(f), (95)

which reduces to

M(f) ≃ S2
n(f) + 2R(f)Sh(f)Sn(f) +

[

R2(f) + R2
12(f)

]

S2
h(f) (96)

when S1n ≃ S2n = Sn. We plot the functions M , S2
n and

(

R2 + R2
12

)

S2
h of (96) for different values of parameters

in Figure 9 with SNR12 given by (101). M is dominated by S2
n at reasonable values of SNR12, so that one can take

M(f) ≃ S1n(f)S2n(f) as a good approximation.

The SNR of the pair is defined as (Allen 1997; Allen & Romano 1999)

SNR12 =
µ

σ
=

3
√

T

10

∫∞
0 dfSh(f)γ(f)Q̃(f)

[

∫∞
0 df |Q̃(f)|2M(f)

]1/2
, (97)

which describes the detection capability of a pair. To maximize SNR12, one chooses the filter function (Allen 1997; Allen

& Romano 1999)

Q̃(f) =
Sh(f)γ(f)

M(f)
, (98)

for which the mean is

µ =
3T

10

∫ ∞

0

df
S2

h(f) γ2(f)

M(f)
, (99)

the covariance is

σ2 =
T

2

∫ ∞

0

df
S2

h(f) γ2(f)

M(f)
=

5

3
µ , (100)

and

SNR12 =
3
√

2T

10

[∫ ∞

0

df
γ2(f)S2

h(f)

M(f)

]1/2

. (101)

SNR12 ∝ r for large noise, and its dependences on β and αt are shown in Figure 10. When the noise is dominant,

Equation (99) becomes

µ =
3T

10

∫ ∞

0

df
S2

h(f) γ2(f)

S1n(f)S2n(f)
, (102)

and (101) becomes

SNR12 =
3
√

2T

10

[∫ ∞

0

df
γ2(f)S2

h(f)

S1n(f)S2n(f)

]1/2

. (103)

Formula (103) is similar to that of the ground-based LIGO (Allen 1997; Allen & Romano 1999; Flanagan 1993; Cornish

& Larson 2001). Clearly, the dependence of SNR12 on r, β and αt is implicitly contained in Sh(f) and SNR12 ∝ r for

large noise. There is a growing factor
√

T of SNR12 in (103), because the noise gets suppressed by cross-correlation and

only the RGW signals accumulate with time.
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To demonstrate the capability of a pair of space interferometers to detect RGWs, we compute the values of SNR12

using Equation (101). The result is in Table 1, with an observation time T = 1 yr and r = 0.1. For comparison, we

have also attached the result for the pair of ground-based LIGO S6 (The LIGO Scientific Collaboration & The Virgo

Collaboration 2012; https://losc.ligo.org/archive/S6/; https://losc.ligo.org/timeline/) and LIGO O1 and Advanced LIGO

as well (Abbott et al. 2016c,b, 2017b), for which we use the formulae of SNR12 and γ(f) in Allen (1997) and Allen &

Romano (1999). It is seen that SNR12 of LISA is higher than that of LIGO S6 by 7 orders of magnitude for the default

(αt = 0, β = −2), and by 8 orders of magnitude for the observed-inferred (αt = 0, β = −2.016). Therefore, LISA will

have a much stronger capability than LIGO to detect RGWs.

5.3 The Sensitivity of a Pair Compared with a Single

To describe the sensitivity of a pair, we can extend the expression of (103) and allow SNR12 to vary with frequency.

Consider the averaged SNR12 over a frequency band of width ∆f , centered at f as the following (Cornish 2001)

SNR12(f) ≃
√

T

[

∫ f+∆f/2

f−∆f/2

df
R2

12(f)S2
h(f)

(Sn(f))2

]1/2

≃
√

T
√

∆f Sh(f)

(

R2
12(f)

(Sn(f))2

) 1/2

. (104)

In analogy to (59), we define the effective sensitivity of the pair

h̃12(f) ≡
√

Sh(f)

SNR12(f)
=

1

(T∆f)1/4

(

R2
12(f)

(Sn(f))2

) −1/4

, (105)

which depends on T and frequency resolution ∆f , in contrast to that of a single in (59). A longer T increases the

sensitivity of (105). The sensitivities of a single and a pair are plotted in Figure 11, where ∆f = f/10 and T = 1 yr are

taken. Clearly, a pair has a better sensitivity than a single by ∼ 100 times around f ∼ 10−2 Hz.

5.4 Constraints on the RGW Parameters by a Pair

By (103), a constraint on SNR12 will transfer into a constraint on (r, β, αt). One such constraint on SNR12 is given by

(Allen 1997; Allen & Romano 1999)

SNR12 ≥
√

2
(

erfc−1(2α) − erfc−1(2γ)
)

, (106)

where erfc−1(α) is the inverse function of the complementary error function erfc(z) ≡ 2√
π

∫∞
z dx e−x2

, α is called the

false alarm rate and γ is called the detection rate. Taking α = 5% and γ = 95%, Equation (106) gives

SNR12 ≥ 3.29 . (107)

Thus, fixing two parameters out of (r, αt, β), we can convert (107) into a lower limit on the remaining parameter of RGW.

Table 2 shows the lower limits of αt with the other two being fixed for T = 1 yr.

6 ESTIMATION BY INTEGRATED SIGNALS FROM A PAIR

6.1 The Integrated Output Signals

We now try to determine the RGW spectrum by a pair. Let the sample vector of the cross-correlated signals

C = [C1, C2, ..., CN ] , (108)

where each Ci is the cross-correlated, integrated output signal of (88),

Ci =

∫ ∞

−∞
df

∫ ∞

−∞
df ′δTi

(f − f ′)s̃ ∗
1 (f)s̃2(f

′)Q̃(f ′) , i = 1, 2, · · · , N , (109)
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and N is the number of segments and is sufficiently large. When T ≫ the light travel time L/c ∼ 2 s between the two

detectors of LISA, non-overlapping Ci and Cj for j 6= i are statistically independent (Allen 1997; Allen & Romano 1999).

For each i, Ci has the mean µi = 〈Ci〉 given by (99) and the variance σ2
i = 〈C2

i 〉−µ2
i given by (100). In general, µi varies

for different i, as does σ2
i . We denote the mean of C by µ = [µ1, µ2, ..., µN ] and the covariance matrix by Σ = (Σij)

with

Σij = 〈(Ci − µi)(Cj − µj)〉 , i, j = 1, 2, · · · , N, (110)

which is diagonal, Σij = δijσ
2
j , by independence. (Here Σ for a pair should not be confused with that in Section 4 for a

single.) Explicitly,

µi = 〈Ci〉 =
3Ti

10
m , (111)

Σij = δij bµj , (112)

where b ≡ 5/3 and

m ≡
∫ ∞

0

df
S2

h(f) γ2(f)

M(f)
(113)

is a function of Sh(f). We assume that the PDF of C is a multivariate Gaussian

f(C) =
1

(2π)
N
2 det

1
2 [Σ]

× exp

{

−1

2
(C − µ) Σ

−1 (C − µ)T
}

, (114)

which, by (112), is

f(C) =
1

(2π)
N
2 (ΠN

i bµi)
1
2

× exp

{

− 1

2b

N
∑

i

(Ci − µi)
2

µi

}

. (115)

The likelihood function is, after dropping an irrelevant constant 1
2N ln 2π,

L ≡ − ln f =
1

2

N
∑

i

ln(bµi) +
1

2b

N
∑

i

(Ci − µi)
2

µi
, (116)

which is a function of the spectrum Sh through µi. Once the PDF is chosen, an estimator of the spectrum is a specification

to give the value Sh for the given data set C. For this, we shall adopt the ML method. In general, L can be expanded in a

neighborhood of some spectrum S̄h(f),

L = L̄ +

N
∑

k=1

∂L
∂Sh(fk)

(Sh(fk) − S̄h(fk)) +
1

2

N
∑

k, l=1

∂2L
∂Sh(fk)∂Sh(fl)

(

Sh(fk) − S̄h(fk)
) (

Sh(fl) − S̄h(fl)
)

.

(117)

We look for the most likely spectrum S̄h(f) at which L is minimized

δL
δSh

∣

∣

∣

∣

S̄h

= 0 . (118)

The first order derivative is (see Appendix A for details)

δL
δSh

=
1

2

N
∑

l

[

1

µl
− C2

i

bµ2
i

+
1

b

]

δµl

δSh
=

1

2

Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)

×
(

N

m
− 2

m2

N
∑

i

C2
i

Ti
+

1

2b2

N
∑

i

Ti

)

, (119)

where m is given by (113) and N(f) is given by (A.9). The analytical expression of the solution for (118) is not available,

and one needs to use a numerical method. The Newton-Raphson method (Oh et al. 1999; Hinshaw et al. 2003; Press

et al. 1992) is generally used to find the ML-estimate of the spectrum. In many applications, the Newton-Raphson method

is known to converge quadratically in the neighborhood of the root. For instance, in the spectral estimation of CMB

anisotropies (Oh et al. 1999; Hinshaw et al. 2003), typically 3–4 iterations will be sufficient. Let S
(0)
h (f) be a trial
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power spectrum, which can be tentatively chosen as the analytical spectrum (38) with some values of parameters. In the

neighborhood of S
(0)
h (f), the first order derivative of the likelihood is expanded as the following

δL
δSh(f)

∣

∣

∣

∣

Sh(f)

≃ δL
δSh(f)

∣

∣

∣

∣

S
(0)
h

(f)

+

∫

df ′ δ2L
δSh(f)δSh(f ′)

∣

∣

∣

∣

S
(0)
h

(f)

(

Sh(f ′) − S
(0)
h (f ′)

)

= 0. (120)

As an approximation, δ2L
δShδSh

is replaced by its expected value, i.e., the Fisher matrix,

F(f, f ′) =

[

Sh(f ′) γ2(f ′)

M(f ′)

(

1 −
N(f ′)

M(f ′)

)] [

Sh(f) γ2(f)

M(f)

(

1 −
N(f)

M(f)

)]

1

2

(

N

m2
+

9

25m

N
∑

l

Tl

)

, (121)

(see Appendix A for the derivation). However, this Fisher matrix is degenerate and has no inverse, and one will not be able

to invert Equation (120) to get an estimated spectrum. This is because the signal Ci constructed in (109) is an integration

over frequency, as is µi. On the other hand, for spectrum estimation, one needs to assign a value Sh(fj) at each frequency

fj . Thus, we conclude that Ci will not help to estimate the RGW spectrum by a pair, even though it is useful for detection

of an RGW signal.

6.2 Parameter Estimation in a Bayesian Approach

We shall be able to use Ci to estimate one parameter of RGW in a Bayesian approach. Consider the PDF as in

Equation (115),

f(C; θ) =
1

(2π)
N
2 (ΠN

i bµi(θ))
1
2

× exp

{

− 1

2b

N
∑

i

(Ci − µi(θ))
2

µi(θ)

}

, (122)

where µ(θ) and Σ(θ) as in (111) and (112) respectively now depend on the RGW parameters through the theoretical

spectrum Sh, and θ denotes the RGW parameters which are random variables since they are some functions of the data set

(Kay 1993a,b). We adopt the unbiased estimation, which assumes that the average value of an estimator of the parameters

θ is regarded as its true value. Using the ML method, the likelihood function L = − ln f(θ) can also be Taylor expanded

around certain values θ̄

L = L̄ +
∑

a

∂L
∂θa

∣

∣

∣

∣

θ̄

(θa − θ̄a) +
1

2

∑

a,b

∂2L
∂θa∂θb

∣

∣

∣

∣

θ̄

(θa − θ̄a)(θb − θ̄b) + · · · .

Now we require θ̄ to be the ML estimator, at which

∂L
∂θa

∣

∣

∣

∣

θ̄

= 0, a = 1, 2, 3. (123)

As is known (Kay 1993a,b), when N is large enough, the second order derivative at θ̄ is equal to its average value,

Fab ≡
〈

∂2L
∂θa∂θb

∣

∣

∣

∣

θ̄

〉

=
∂2L

∂θa∂θb

∣

∣

∣

∣

θ̄

, a, b = 1, 2, 3,

so that in the neighborhood of θ̄, the PDF of (122) becomes the following Bayesian PDF in the parameter space

f(θ) ∝ exp [−L] ∝ exp

[

−1

2
(θ − θ̄)F(θ − θ̄)T

]

, (124)

which is approximately Gaussian in a neighborhood of θ̄. For detailed derivation see appendix 7B of Kay (1993a,b).

The likelihood function follows (122) as

L(C; θ) ≡ − ln f(C; θ) =
1

2

N
∑

i

ln (bµi(θ)) +
1

2b

N
∑

i

(Ci − µi(θ))2

µi(θ)
. (125)

To estimate θ, one needs the first order derivative (see Appendix A),

∂L
∂θa

=

∫

df
Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)

× ∂Sh(f)

∂θa

(

N

m
− 2

m2

N
∑

i

C2
i

Ti
+

1

2b2

N
∑

i

Ti

)

, (126)
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and the 3 × 3 Fisher matrix

Fab =

(∫ ∞

0

df ′Sh(f ′) γ2(f ′)

M(f ′)

(

1 − N(f ′)

M(f ′)

)

∂Sh(f ′)

∂θa

)

×
(∫ ∞

0

df
Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)

∂Sh(f)

∂θb

)

× 2

(

N

m2
+

9

25m

N
∑

i

Ti

)

.

(127)

However, this Fisher matrix is degenerate and has no inverse, Thus, one cannot determine the whole set (r, β, αt) simul-

taneously. What one can do is to estimate only one of the RGW parameters, while the other two parameters are fixed at

certain values or marginalized. Note that this method cannot determine the correlation between two parameters, which

will be given by another method in Section 8.3 later. For the former case, one gets the conditional PDF, and for the latter,

one integrates the PDF of (122) over θb and θc, and gets the marginal PDF for θa

f(C; θa) ≡
∫ ∫

f(C; θ)dθbdθc (128)

and the marginal likelihood functionL(C; θa) ≡ − ln f(C; θa). With these specifications, one can estimate the parameter

θa. Let θ
(0)
a be a trial parameter. We expand the first order derivative of L, conditional or marginalizing, around θ

(0)
a

∂L
∂θa

∣

∣

∣

∣

θ

≃ ∂L
∂θa

∣

∣

∣

∣

θ(0)

+
∂2L

∂θa∂θa

∣

∣

∣

∣

θ(0)

(

θa − θ(0)
a

)

= 0 . (129)

Replacing ∂2L
∂θa∂θa

by the (aa) element of Fisher matrix Faa ≡
〈

∂2

∂θa∂θa
L
〉

, one gets

θa = θ(0)
a −F−1

aa

∂L
∂θa

∣

∣

∣

∣

θ(0)

. (130)

By iteration, one will obtain the estimate of θa. This is a general formula to estimate one parameter. The Fisher matrix

Fab also gives the standard error of the estimated spectrum. When the data sample is sufficiently large, one can take the

equality in the Cramer-Rao lower bound (Kay 1993a,b)

σ2
θa

= F−1
aa (f) , (131)

where F−1
aa is evaluated at the ML-estimate parameter θa that has been obtained.

In fact, when noise is dominant over the RGW signal, the estimate of r can be also obtained analytically. By the

property m ∝ r2 implied by (113), one can write m(r) = r2m(r = 1) with β and αt being fixed in m(r = 1). Setting

(119) to zero, and solving for m, one has the positive root

m̄ =
25

9

1
1
N

∑N
i Ti






−1 +

√

√

√

√

√1 +
36

25

1

N2





N
∑

j

Tj





(

N
∑

i

C2
i

Ti

)






, (132)

from which one obtains the analytical ML-estimate of r as the following

r =
1

√

m(r = 1)
×

√

√

√

√

√

√

25/9
1
N

∑N
i Ti






−1 +

√

√

√

√

√1 +
36

25N2





N
∑

j

Tj





N
∑

i

C2
i

Ti






. (133)

However, no analytical ML-estimates are available for β and αt. Still one can estimate β and αt in a manner simpler than

(130). Let θa be β and

M[θa] ≡
∫ ∞

0

df
S2

h(f) γ2(f)

M(f)
− m̄ = 0 , (134)

in which r and αt are fixed. We use the Newton-Raphson method by iterations as before. Write M[θa] as

M[θa] ≃ M[θ(0)
a ] +

∂M
∂θa

∣

∣

∣

∣

θ
(0)
a

(

θa − θ(0)
a

)

= 0 , (135)
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where θ
(0)
a is a trial value and

∂M
∂θa

=

∫ ∞

0

df
2Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)

∂Sh(f)

∂θa
. (136)

One solves (135) and gets the estimate

θa = θ(0)
a − ∂M

∂θa

∣

∣

∣

∣

−1

θ
(0)
a

M[θ(0)
a ] . (137)

Similarly, the estimation of αt can be also done. Note that since the filter function Q̂ in (98) contains the theoretical

spectrum Sh(f), this ML-estimation method is essentially a technique of matched filter (Gair et al. 2013).

We perform a numerical simulation to estimate r, using (130). For r = 0.1, αt = 0.016 and β = −2.016 with

SNR12=179, we use the PDF (115) to generate a cross-correlated data stream numerically. We take T ≃ 3 h ∼ 104 s

for one segment, with total observation duration ∼ 1 yr, and number of segments n ∼ 3 × 103. Then we estimate r

numerically by (130), and after five steps of iteration, r converges to rML = 0.1011.

According to (124) and (131), the standard deviation is σθa
≡ 1/

√
Faa. If the estimation is required to be at the 95%

confidence level (cl), 0.95 = 2√
π

∫ ∆θa/(
√

2σθa )

0
e−t2dt, the resolution of the estimated parameter θa will be

∆θa = 1.96σθa
at 95% cl . (138)

Table 3 lists the resolution of r, αt and β, separately, and the corresponding values of SNR12 (≥ 3.29).

7 SPECTRAL ESTIMATION BY ENSEMBLE AVERAGE OF A PAIR

To estimate the RGW spectrum, we turn to the method of ensemble averaging of data from a pair. Consider the output

signals s̃1(f), s̃2(f) in frequency space from (77) and (78) respectively. Since the noises are uncorrelated, the ensemble

average 〈s1(f)s̃2(f
′)〉 is given by (82). In practice, when there are n independent sets of observational data, each being

(s1(f)s̃2(f
′))i, they can form the sample mean,

〈s1(f)s̃2(f
′)〉t ≡

(s1(f)s̃2(f
′))1+, · · · , +(s1(f)s̃2(f

′))n

n
, (139)

which represents the ensemble average when the independent sets of data are large enough. Thus (82) becomes

〈s̃1(f)s̃2(f
′)〉t =

1

2
δ(f − f ′)Sh(f)R12(f) . (140)

In practical analysis, we can replace δ(f − f ′) by its discrete form in (64),

〈s̃1(fi)s̃2(fj)〉t =
δij

2∆f
Sh(fi)R12(fi) . (141)

Solving Equation (141), one obtains an estimate of the RGW spectrum by a pair

S̄h(fi) =
2∆f

R12(fi)
〈s̃1(fi)s̃2(fi)〉t . (142)

(142) is the main formula in our paper to estimate the spectrum from a pair. As an advantage, it does not require a priori

knowledge of the noise spectrum, in contrast to (76). In the ensemble averaging method, 〈s̃1(fi)s̃2(fj)〉t as the basic

quantity does not involve integration over frequency.

Using (142), we conduct a numerical simulation to examine its feasibility. First, we construct the vector of RGW

output response h̃o(fi) ≡ [h̃1(fi), h̃2(fi)] with i = 1, 2, · · · , N , where each of h̃1(fi) and h̃2(fi) is defined as in

Equation (41). The mean and variance are given in Equations (42) and (82), and the corresponding PDF is

f
(

h̃o(fi)
)

=
1

(2π)
N
2 det

1
2 [Σ(h)(fi)]

exp

{

−1

2
h̃o(fi)

[

Σ(h)(fi)
]−1[

h̃o(fi)
]T
}

, i = 1, 2, · · · , N , (143)

where the covariance matrix is

Σ(h)(fi) ≡
1

2∆f
Sh(fi)

(

R(fi)1 R12(fi)

R12(fi) R(fi)2

)

, i = 1, 2, · · · , N . (144)
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Here R(fi)1 and R(fi)2 are transfer functions of interferometers 1 and 2 respectively, and we can assume R1 ≃ R2, and

R12 is the transfer function for the pair defined in (83). The inverse matrix of (144) is

[Σ(h)(fi)]
−1 =

2∆f

Sh(fi)

1

R2(fi) −R2
12(fi)

(

R(fi) −R12(fi)

−R12(fi) R(fi)

)

. (145)

Similarly, for the noise in the pair, we write the noise vector ñ(fi) ≡ [ñ1(fi), ñ2(fi)]. The mean and covariance are in

(49) and (80), and the PDF is

f (ñ(fi)) =
1

(2π)
N
2 det

1
2 [Σ(n)(fi)]

× exp

{

−1

2
ñ(fi)

[

Σ(n)(fi)
]−1

[ñ(fi)]
T

}

, (146)

where the covariance matrix is

Σ(n)(fi) ≡
Sn(fi)

2∆f

(

1 0

0 1

)

, (147)

which is diagonal since the noise in the pair is uncorrelated. Based on the above construction, the joint PDF for the total

output signal is given by (67) with the covariance matrix Σ(fi) = Σ(h)(fi) + Σ(n)(fi).

We use PDFs (143) and (146) to numerically generate the output response and noise of a pair. We need the data set

of n segments (s̃(fi))1, (s̃(fi))n. One can take one typical segment of the data stream with a period of T ≃ 3 h∼ 104 s,

total observation duration ∼ 1 yr and number of segments n ∼ 3 × 103. According to the PDF of (143) and (146) with

the specific variance Σ by taking RGW with r = 0.1, αt = 0.016, β = −2.016 with SNR12 = 179, we numerically

generate 3×103 independent sets of random data streams s̃(fi) (i = 1, · · · , N ). Substituting these generated data streams

into Equation (142), we obtain the estimated RGW spectrum S̄h(fi) for n = 30 and n = 3000, as shown in Figure 12.

For illustration, the theoretical spectrum and the simulated noise are also shown. The estimation depends on the length

of simulated data. A longer length n of data gives a better estimate. In an ideal case of infinitely long data length, the

off-diagonal elements of (147) would be 0 and the RGW signal at all relevant frequencies could be detected. But with

a finite size of data, the estimation will be limited when the noise is large. As Figure 12 shows, the estimate (142) at

high frequencies is actually contributed by the nonzero off-diagonal elements of noise, i.e., S̄h(f) ∼ 2∆f〈ñ1(fi)ñ2(fi)〉
R12(fi)

at

f > 10−2 Hz, because of a finite length of data.

8 ESTIMATIONS BY CORRELATION OF UN-INTEGRATED SIGNALS FROM A PAIR

In this section, we adopt a method of correlation of un-integrated signals to estimate the spectrum and parameters of RGW

as suggested by Seto (2006). By dividing the whole frequency range of the data into many small segments, the mean value

of the correlation variable over each segment is taken as the representative point for the segment. As an approximation,

the method is able to give the estimate of the RGW spectrum, as well as the three parameters of RGW, improving that in

Section 6. We assume that the output data are sufficient for this purpose.

8.1 A Correlation Variable of Un-integrated Signals

In analogy with (3.4) in Seto (2006), we divide a positive frequency range into N segments, and the i-th segment Fi

(i = 1, 2, ..., N) of width δfi has a center frequency fi. For instance, the frequency range is taken as (10−4 ∼ 1) Hz for

LISA, N ∼ 104 and δf ∼ 10−4 Hz. A correlation variable is defined in each segment Fi as

Zi ≡
∑

f∈Fi

∆f s̃∗1(f)s̃2(f), i = 1, 2, ..., N (148)

where the frequency resolution ∆f = 1/T1 ≪ δfi with T1 being the observation period, say ∆f ∼ 10−6 Hz, so that

each segment contains a large number of Fourier modes. (Notice that (3.4) in Seto (2006) should have a factor of ∆f for

consistency of dimension.) The mean of Zi is

µi = 〈Zi〉 =
∑

f∈Fi

∆f
1

2
δ(f − f)Sh(f)R12(f) , (149)
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where (79) and (82) are used. Using the formula (64) to replace the Dirac delta function by its discrete form, (149) can be

written as the following

µi =
∑

f∈Fi

∆f
1

2∆f
Sh(f)R12(f) . (150)

The summation can be approximately replaced as

µi =
δfi

2∆f
Sh(fi)R12(fi) , i = 1, 2, ..., N (151)

where Sh(fi)R12(fi) is the mean value over the i-th segment, as suggested in Seto (2006). To keep the error small in this

approximation, δfi should be sufficiently small so that the mean value of the function represents the summation function

within δfi. (We note that the overlapping reduction function γ12(f) defined in Seto (2006) is related to our R12(f) by

γ12(f) = 5
2R12(f), which together with (38) leads to µi = δfi

∆f
3H2

0

20π2

Ωg(f)
f3 γ12(f), the same as (3.5) in Seto (2006).

The variance of Zi is

σ2
i =

〈

(

Zi − 〈Zi〉
)2
〉

= 〈Z2
i 〉 − 〈Zi〉2 . (152)

By noting that
∫ +∞
−∞ df ′δ(f − f ′) is equivalent to 2

∑

f ′∈Fj
∆fδ(f − f ′), (148) can be written as

Zi =
∑

f∈Fi

∆f



2
∑

f ′∈Fj

∆fδ(f − f ′)



 s̃∗1(f)s̃2(f
′) , (153)

and the variance is written as

σ2
i = 4

〈

∑

f∈Fi

∆f
∑

f ′∈Fj

∆fδ(f − f ′)s̃∗1(f)s̃2(f
′) ×

∑

k∈Fi

∆f
∑

k′∈Fj

∆fδ(k − k′)s̃∗1(k)s̃2(k
′)

〉

− µ2
i . (154)

By similar calculations leading to (94), we obtain the following result

σ2
i =

1

8

δfi

∆f
M(fi), i = 1, 2, ..., N (155)

where M(f) is defined in (95). For large noise, M(f) ≃ S1n(f)S2n(f),

σ2
i ≃ 1

8

δfi

∆f
S1n(fi)S2n(fi) , (156)

which is the same as (3.6) in Seto (2006).

SNR of each segment for this correlation is defined as in Seto (2006)

SNR2
i ≡ µ2

i

σ2
i

= 2
δfi

∆f

R2
12(fi)S

2
h(fi)

M(fi)
, (157)

and summing up all segments yields the total SNR

SNR2
C = 2

N
∑

i=1

δfi

∆f

R2
12(fi)S

2
h(fi)

M(fi)
. (158)

Replacing ∆f with 1/T1, the summation
∑N

i=1 δf with integration
∫∞
0 df , one has the SNR over an observation period

T1 as

SNRC =
√

2T1

[∫ ∞

0

df
R2

12(f)S2
h(f)

M(f)

]1/2

. (159)

When the whole observation duration T consists of many observation periods, we can use T to replace T1 in the above

formula. This result is consistent with (101) by noting that R12(f) = 3
10γ(f).
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8.2 Spectrum Estimation

Since δfi/∆f ≫ 1, according to the central limit theorem, Zi can be described by a Gaussian distribution, and the PDF

for Z ≡ [Z1, Z2, · · · , ZN ] is

f(Z) =
1

(2π)
N
2 (ΠN

i σ2
i )

1
2

exp

{

−1

2

N
∑

i

(Zi − µi)
2

σ2
i

}

. (160)

The likelihood function is, after dropping an irrelevant constant 1
2N ln 2π,

L ≡ − ln f(Z) =
1

2

N
∑

i

ln(σ2
i ) +

1

2

N
∑

i

(Zi − µi)
2

σ2
i

, (161)

which is a function of the spectrum Sh through µi. We look for the most likely power spectrum S̄h at which ∂L
∂Sh

∣

∣

S̄h
= 0.

The first order derivative is

∂L
∂Sh(fj)

=
1

2

N
∑

i

×
[

1

σ2
i

∂σ2
i

∂Sh(fj)
− (Zi − µi)

2

(σ2
i )2

∂σ2
i

∂Sh(fj)
− 2 (Zi − µi)

σ2
i

∂µi

∂Sh(fj)

]

. (162)

Plugging (151) and (155) into the above, by
∂Sh(fi)
∂Sh(fj)

= δij , one has

∂L
∂Sh(fi)

=
N(fi)

Sh(fi)M(fi)
−

8
(

Zi − ( δfi

2∆f Sh(fi)R12(fi))
)2

δfi

∆f Sh(fi) [M(fi)]
2 N(fi) −

4R12(fi)
(

Zi − ( δfi

2∆f Sh(fi)R12(fi))
)

M(fi)
,

(163)

where N(f) is defined in (A.9). In the neighborhood of a trial spectrum S
(0)
h (f), the first order derivative is expanded as

the following

∂L
∂Sh(fi)

∣

∣

∣

∣

Sh(fi)

≃ ∂L
∂Sh(fi)

∣

∣

∣

∣

S
(0)
h

(fi)

+

N
∑

k=1

∂2L
∂Sh(fi)∂Sh(fk)

∣

∣

∣

∣

S
(0)
h

(f)

(

Sh(fk) − S
(0)
h (fk)

)

= 0 . (164)

As an approximation, ∂2L
∂Sh∂Sh

is replaced by its expected value, i.e., the Fisher matrix which by a formula similar to (A.5)

is given by

Fij =

〈

∂2L
∂Sh(fi)∂Sh(fj)

〉

=

N
∑

k,l=1

∂µk

∂Sh(fi)

δkl

σ2
k

∂µl

∂Sh(fj)
+

1

2

N
∑

k,l,m,r=1

(

δkl

σ2
k

δlm
∂(σ2

l )

∂Sh(fi)

δmr

σ2
m

δrk
∂(σ2

r )

∂Sh(fj)

)

. (165)

Substituting (151) and (155) into the above yields

Fij =

[

δfi

∆f

2R2
12(fi)

M(fi)
+

2N2(fi)

S2
h(fi)M2(fi)

]

δij . (166)

It is remarked that the Fisher matrix is not degenerate, in contrast to (121) which is degenerate. In the approximation of

large noise, one has M(f) ≃ S1n(f)S2n(f), N(f) = 1
2Sh(f) ∂M(f)

∂Sh(f) ≃ 0 and (166) reduces to that used in Seto (2006)

Fij ≃
[

δfi

∆f

2R2
12(fi)

S1n(f)S2n(fi)

]

δij . (167)

We plot Fii(f) of (166) and of (167) in Figure 13. They differ significantly at high frequencies. Thus, we shall use the full

expression (166) in computations later.

Given Fij , one solves Equation(164) for the estimated spectrum

Sh(fi) = S
(0)
h (fi) −

N
∑

j=1

(F −1)ij
∂L

∂Sh(fj)

∣

∣

∣

∣

S
(0)
h

. (168)
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To avoid random outcomes from one set of data streams, similar to (139), we shall replace ∂L
∂Sh(fk) by its sample mean in

practical computation

Sh(fi) = S
(0)
h (fi) −

(

δfi

∆f

2R2
12(fi)

M(fi)
+

2N2(fi)

S2
h(fi)M2(fi)

)−1〈
∂L

∂Sh(fi)

〉

t

∣

∣

∣

∣

∣

S
(0)
h

, (169)

where the expression (166) has been used. This equation will be used to estimate the spectrum of RGW numerically by

Newton-Raphson iteration (Oh et al. 1999; Hinshaw et al. 2003; Press et al. 1992).

We perform a simulation to estimate Sh(f). We divide a one-year duration into 100 periods, which are regarded as n =

100 realizations of data output. Thus, one observation period T1 ≃ 1 yr /100 ≃ 3.2×105 s. The working frequency range

(10−4 ∼ 1) Hz is divided into N ≃ 10 637 segments and the width of each segment is δf ≃ 9.4×10−5 Hz. Thus, each seg-

ment contains δf/∆f ≃ 30 frequency points. For RGW we take r = 0.1, αt = 0.016 and β = −2.016, and the formula

(159) yields SNRC = 179. We numerically generate the output response [h̃1,1(fi), · · · , h̃1, n(fi); h̃2,1(fi), · · · , h̃2, n(fi)]

according to (143) and the noise [ñ1,1(fi), · · · , ñ1, n(fi); ñ2,1(fi), · · · , ñ2, n(fi)] according to (146) of a pair, for

i = 1, · · · , 10 637 and for n = 100 realizations. We use Equation (148) to calculate the correlated signal [Zi,1, · · · , Zi, n]

for n = 100 realizations. Using these generated data streams, we apply Newton-Raphson iterations to Equation (169) to

estimate the spectrum of RGW numerically.

Figure 14 shows the resulting estimator of spectrum S
(n)
h (f) after each iterative step. It is seen that after three iter-

ations, S
(n)
h (f) converges. The estimated RGW spectrum S̄h(fi) is shown in Figure 15. For illustration, the theoretical

spectrum is also shown. It is seen that the rapid oscillations in the estimated spectrum are smoother than the theoretical

one. This is because the estimated spectrum is actually a mean ∼ 1
δfi

∑

f∈Fi
∆f in each segment in this method.

We compare the correlation method in this section with the ensemble averaging method of Section 7. Firstly, the

correlation method uses the average value as the representative for each segment, and loses some fine information about

the RGW spectrum. Secondly, this method needs more computing time by the iteration for each frequency point. However,

this method can estimate the parameters directly as in the following subsection whereas the ensemble averaging method

cannot.

8.3 Parameter Estimation

Now we estimate parameters of RGW by using the correlated data stream Z i in a Bayesian approach. Consider the PDF

as in Equation (160),

f(Z; θ) =
1

(2π)
N
2 (ΠN

i σ2
i (θ))

1
2

exp

{

−1

2

N
∑

i

(Zi − µi(θ))
2

σ2
i (θ)

}

, (170)

where µi(θ) and σ2
i (θ), given by (151) and (155) respectively, are now regarded as functions of parameters θ through the

theoretical spectrum Sh(f). The likelihood function L = − ln f(θ) can also be Taylor expanded around certain values θ̄

L = L̄ +
∑

a

∂L
∂θa

∣

∣

∣

∣

θ̄

(θa − θ̄a) +
1

2

∑

a,b

∂2L
∂θa∂θb

∣

∣

∣

∣

θ̄

(θa − θ̄a)(θb − θ̄b)+, · · · .

Now we require θ̄ to be the ML estimator, at which

∂L
∂θa

∣

∣

∣

∣

θ̄

= 0, a = 1, 2, 3 . (171)

Based on (171), we use Newton-Raphson method (Oh et al. 1999; Hinshaw et al. 2003; Press et al. 1992) to estimate θ̄.

The first order derivative is expanded around the trial θ(0) as the following

∂L
∂θa

∣

∣

∣

∣

θ

≃ ∂L
∂θa

∣

∣

∣

∣

θ(0)

+

3
∑

b=1

∂2L
∂θa∂θb

∣

∣

∣

∣

θ(0)

(

θb − θ
(0)
b

)

= 0 , a = 1, 2, 3 . (172)

The second order derivative in the above is approximately replaced by the Fisher matrix, leading to

∂L
∂θa

∣

∣

∣

∣

θ(0)

+

3
∑

b=1

Fab

∣

∣

∣

∣

θ(0)

(

θb − θ
(0)
b

)

= 0, a = 1, 2, 3 , (173)
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from which we obtain

θa = θ(0)
a −

3
∑

b=1

F−1
ab

〈

∂L
∂θb

〉

t

∣

∣

∣

∣

θ(0)

, a = 1, 2, 3 . (174)

By iteration, one can obtain an estimate of the parameters {θa}. The explicit expressions of derivatives in the above are

given by the chain rule by using (163),

∂L
∂θa

=

N
∑

i=1

∂L
∂Sh(fi)

∂Sh(fi)

∂θa
=

N
∑

i=1

[

N(fi)

Sh(fi)M(fi)
−

8
(

Zi − ( δfi

2∆f Sh(fi)R12(fi))
)2

δfi

∆f Sh(fi) [M(fi)]
2 N(fi)

−
4R12(fi)

(

Zi − ( δfi

2∆f Sh(fi)R12(fi))
)

M(fi)

]

∂Sh(fi)

∂θa
, a = 1, 2, 3 .

(175)

The Fisher matrix is provided by the following

Fab =

〈

∂2L
∂θa∂θb

〉

=

N
∑

k,l=1

∂µk

∂θa

δkl

σ2
k

∂µl

∂θb
+

1

2

N
∑

k,l,m,r=1

(

δkl

σ2
k

δlm
∂(σ2

l )

∂θa

δmr

σ2
m

δrk
∂(σ2

r )

∂θb

)

, a = 1, 2, 3 .

(176)

Using (151), (155) and the chain rule, one has

Fab =

N
∑

k

δfk

∆f

2R2
12(fk)

M(fk)

∂Sh(fk)

∂θa

∂Sh(fk)

∂θb
+

N
∑

k=1

(

2N2(fk)

S2
h(fk)M2(fk)

∂Sh(fk)

∂θa

∂Sh(fk)

∂θb

)

, (177)

which is not degenerate, since µi and σ2
i , in (151) and (156) respectively, carry information on frequency fi. Thus,

(174) can be used to estimate the three parameters at the same time. In the limit of dominating noise, one has M(f) ≃
Sn1(f)Sn2(f) and N(f) ≃ 0, and (177) reduces to

Fab =

N
∑

k

δfk

∆f

2R2
12(fk)

Sn1(f)Sn2(fk)

∂Sh(fk)

∂θa

∂Sh(fk)

∂θb
. (178)

Replacing ∆f with 1/T1, and
∑N

i=1 δf with
∫∞
0

df , the above becomes

Fab = T1

∫ ∞

0

df
2R2

12(fk)

Sn1(f)Sn2(fk)

∂Sh(fk)

∂θa

∂Sh(fk)

∂θb
, (179)

which agrees with (3.11) in Seto (2006).

The element Fab can be viewed as an “inner” product

of two vectors ∂Sh

∂θa
and ∂Sh

∂θb
. When the vectors

∂Sh(f)
∂θa

with

a = 1, 2, 3 are orthogonal to each other, Fab will be diago-

nal, and the errors in estimates of different parameters will

be uncorrelated. On the other hand, when two ∂Sh

∂θa
and ∂Sh

∂θb

have similar shapes, θa and θb will be degenerate and their

effects are difficult to distinguish in estimation.

In Figure 16, the three curves
∂Sh(f)

∂θa
based on the the-

oretical spectrum are plotted, showing that the three pa-

rameters of RGW have strong degeneracy within a small

frequency range.

For r = 0.1, αt = 0.016 and β = −2.016

with SNRC=179, we use the data streams generated in

Section 8.2 and use (174) to numerically estimate r, and

find that r converges to rML = 0.1070 after nine iterations.

As discussed before, in the neighborhood of θ̄, one has

the following Bayesian PDF in the parameter space

f(θ) ∝ exp [−L] ∝ exp

[

−1

2
(θ − θ̄)F (θ − θ̄)T

]

.

(180)

The resolution of the parameters will be

∆θa = 1.96σθa
= 1.96

√

(F−1)aa at 95% cl , (181)
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Fig. 3 Left: the transfer functions R(f). Right: the noise spectrum Sn(f).

Fig. 4 The sensitivity curves h̃(f) of Michelson, Sagnac and

symmetrized Sagnac.
Fig. 5 Comparison of hc(f) for RGW with the sensitivity

h̃(f) of a single interferometer.

Fig. 6 A pair of interferometers in two triangles for config. 2.

Fig. 7 A comparison between the transfer function of a single

and a pair.
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Fig. 8 The overlap reduction function for a pair. Top: Config. 1; Bottom: Config. 2. Solid lines are plotted numerically and dotted lines

by the fitted formulae (86) and (87).

Fig. 9 M , S2
n,
(

R2 + R2
12

)

S2
h. Left: for SNR12 = 8.62; Right: for SNR12 = 395.

Table 1 SNR12 for a Pair Case for LISA and for a Pair Case for LIGO with r = 0.1

αt, β –0.005, –2.05 0, –2.016 0, –2 0.005, –1.95 0.01, –1.9

LIGO S6 1.6 × 10−13 5.0 × 10−10 2.2 × 10−9 3.1 × 10−5 4.2 × 10−1

LIGO O1 3.0 × 10−11 7.3 × 10−8 3.0 × 10−7 3.0 × 10−3 3.1 × 101

Advanced LIGO 3.3 × 10−10 7.3 × 10−7 2.9 × 10−6 2.7 × 10−2 2.5 × 102

A pair case for LISA 1.1 × 10−4 2.2 × 10−2 6.8 × 10−2 3.8 × 101 4.9 × 102
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Fig. 10 SNR12 changes with β (top) and αt (bottom).

Fig. 11 The sensitivity curves of a single and a pair.

Table 2 The Lower Limits of αt with the Other Two Being FixedPPPPPPPβr –1.94 –1.96 –1.98 –2 –2.02 –2.04 –2.06 –2.08

0.1 –0.00041 0.00190 0.00421 0.00653 0.00884 0.1115 0.01346 0.01577

0.05 0.00074 0.00306 0.00537 0.00768 0.00999 0.01230 0.01461 0.01692
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Fig. 12 The estimated spectrum by a pair. The cases with only the theoretical spectrum and simulated noise are also shown.

Fig. 13 The diagonal element Fii to estimate spectrum for both the full expression (166) and the noise dominant (167) cases.

Fig. 14 The estimator of spectrum S
(n)
h (f) in each iterative step for a pair.
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Fig. 15 The estimated spectrum by the correlation method for a pair. The theoretical spectrum is also shown.

Fig. 16 ∂Sh/∂θa for r = 0.1, β = −2.016 and αt = 0.016.

and the correlation coefficient between two parameters

will be

CRθaθb
≡

〈(

θa − 〈θa〉
)(

θb − 〈θb〉
)〉

σθa
σθa

=

(

F−1
)

ab
√

(F−1)aa (F−1)bb

.

(182)

Note that CRθaθb
= 0 indicates the independency of θa

and θb, and |CRθaθb
| = 1 indicates the complete corre-

lation of θa and θb. Comparing Tables 4 and 3, when r,

αt and β are estimated at the same time, where Table 4

lists the resolutions, correlations and the corresponding

values of SNR12 (≥ 3.29), we find that when estimating

the three parameters simultaneously, the resolution would

get worse. This is due to the degeneracy of the three pa-

rameters as shown in Figure 16, which can also be seen

with |CRθaθb
| ≃ 1 in Table 4. Since the amplitude of the

spectrum increases with r, β and αt, when simultaneously

estimating the three parameters, a larger estimated value of

β than its true value will lead to smaller estimated r and αt

than their true values, or vice versa. This is reflected in the

negative signs of CRrβ and CRαtβ in Table 4. Besides, we

find that if estimating only two parameters with the third

one fixed, the correlation coefficients between every two

parameters are all negative, which is also an expected fea-

ture.

9 CONCLUSIONS

We have presented a study of statistical signal process-

ing for RGW detection by space-borne interferometers, us-

ing LISA as an example, and have shown how to estimate

the RGW spectrum and parameters from the output sig-

nals in the future. We have given the relevant formulations

of estimations, which apply to LISA, as well as to other
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Table 3 Resolution of r, αt and β Separately at 95% cl for a Pair

r αt β ∆r/r ∆αt ∆β SNR12

0.05 0.01 –2.016 2.58 × 10−2 4.29 × 10−5 3.72 × 10−4 4.36

0.05 0.015 –2.016 1.46 × 10−2 2.42 × 10−5 2.10 × 10−4 72.8

0.1 0 –1.93 2.56 × 10−2 4.28 × 10−5 3.70 × 10−4 8.34

0.1 0.01 –2.016 2.55 × 10−2 4.26 × 10−5 3.69 × 10−4 8.62

0.1 0.01 –1.93 1.46 × 10−2 2.40 × 10−5 2.09 × 10−4 390

0.1 0.016 –2.016 9.72 × 10−3 1.61 × 10−5 1.40 × 10−4 179

Table 4 Resolution of r, αt and β at 95% cl for a Pair, and Correlations between Them

r αt β ∆r/r ∆αt ∆β CRrαt CRrβ CRαtβ SNRC

0.05 0.01 –2.016 1.54 × 104 26.3 450 0.999697 −0.999923 −0.999925 4.36

0.05 0.015 –2.016 997 1.70 29.1 0.999724 −0.999930 −0.999932 72.8

0.1 0 –1.93 6.40 × 103 11.0 188 0.999634 −0.999907 −0.999910 8.34

0.1 0.01 –2.016 7.71 × 103 13.2 226 0.999696 −0.999923 −0.999925 8.62

0.1 0.01 –1.93 67.5 0.117 1.99 0.999460 −0.999863 −0.999867 390

0.1 0.016 –2.016 329 0.561 9.60 0.999681 −0.999919 −0.999921 179

space-borne interferometers with some appropriate modi-

fications.

For a single interferometer, the Michelson is shown

to have a better sensitivity than Sagnac and symmetrized

Sagnac, due to its greater transfer function R, even though

its noise is larger. A pair has the advantage of suppressing

the noise level by cross-correlation, so that RGW signal in

the cross-correlated output will be accumulating with ob-

servation time, leading to a higher sensitivity than a single

case. We have given the expressions of SNR for both a sin-

gle and a pair, which are 4 ∼ 6 orders of magnitude higher

than those of ground-based ones for the default RGW pa-

rameters. We have shown that a single is not practical to es-

timate the RGW spectrum when noise is dominantly large,

because we do not know the precise noise that actually oc-

curs in the data.

For a pair of interferometers, we have used the cross-

correlated integrated signals C in (88) and calculated

SNR12 as in (101) which provides a statistical criterion

for detection of RGW. However, one cannot estimate the

spectrum by the integrated signals C, because it is an in-

tegration over frequency. Assuming Gaussian output sig-

nals, we have calculated the covariance of signals, and ob-

tained the Gaussian PDF, the likelihood function L and

the Fisher matrix. By the Bayesian approach, we estimate

one parameter and compute the resolution using C. In the

second method we have proposed applying the ensemble

averaging method to estimate the spectrum, using the un-

integrated output signals of a pair. (142) is the main for-

mula. We have demonstrated by simulation that the method

will be effective in estimating the spectrum. Besides, the

method is simple and does not depend on detailed knowl-

edge of the noise. For the third method, we have also

studied the correlation variable of un-integrated signals

from (148). We have obtained the formulations for estima-

tion of the spectrum and parameters of RGW by the ML-

estimation. Equations (169) and (174) are the main formu-

lae. We have shown by simulations that the method is fea-

sible when the data set is sufficiently large. This method

uses the mean value for each segment and thus loses some

fine information on the RGW spectrum, but it is capable of

estimating all three parameters.

There are other effects to be analyzed that are not pre-

sented in this paper. In particular, other types of GWs that

are different from RGW also exist in the Universe, and

should be separated in order to estimate the RGW spec-

trum. GWs from a resolved astrophysical source, either

periodic or short-lived, can be distinguished in principle.

The real concern is the stochastic foreground that may be

mixed with RGW. So far, the theoretical spectrum of this

foreground is less known and highly model-dependent. For

a definite model of the foreground spectrum, Adams &

Cornish (2014) discuss a discrimination method using the

spectral shapes and the time modulation of the signal. The

estimation of RGW in the presence of foreground will re-

quire substantial analysis and will be left for future work.
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Appendix A: THE FISHER MATRIX FOR A PAIR

Given the data of cross-correlated signals C in (109) for a pair, we assume that the PDF is multivariate Gaussian

f(C) =
1

(2π)
N
2 det

1
2 [Σ]

exp

{

−1

2
(C − µ) Σ

−1 (C − µ)T
}

, (A.1)

where the mean µi and covariance matrix Σij are given by (111) and (112) respectively, both being functions of the

spectrum Sh(f). The likelihood function is (dropping an irrelevant constant 1
2N ln 2π)

L ≡ − ln f =
1

2
ln det[Σ] +

1

2
(C − µ) Σ

−1 (C − µ)T . (A.2)

The first order derivative is (Kay 1993a,b)

δL
δSh(f)

=
1

2
tr

(

Σ
−1 δΣ

δSh(f)

)

− 1

2
y Σ

−1 δΣ

δSh(f)
Σ

−1 yT − δµ

δSh(f)
Σ

−1 yT (A.3)

where y ≡ C − µ, and the second order derivative is

δ2L
δSh(f)δSh(f ′)

= − 1

2
tr

(

Σ
−1 δΣ

δSh(f ′)
Σ

−1 δΣ

δSh(f)

)

+
1

2
tr

(

Σ
−1 δ2

Σ

δSh(f ′)δSh(f)

)

+ yΣ
−1 δΣ

δSh(f ′)
Σ

−1 δΣ

δSh(f)
Σ

−1 yT +
δµ

δSh(f ′)
Σ

−1 δΣ

δSh(f)
Σ

−1 yT

− 1

2
y Σ

−1 δ2
Σ

δSh(f ′)δSh(f)
Σ

−1 yT − δ2µ

δSh(f ′)δSh(f)
Σ

−1 yT

+
δµ

δSh(f)
Σ

−1 δµT

δSh(f ′)
+

δµ

δSh(f)
Σ

−1 δΣ

δSh(f ′)
Σ

−1 yT . (A.4)

Taking the expected value of the above yields the Fisher matrix

F(f, f ′) =

〈

δ2L
δSh(f)δSh(f ′)

〉

=
δµ

δSh(f)
Σ

−1 δµT

δSh(f ′)
+

1

2
tr

(

Σ
−1 δΣ

δSh(f ′)
Σ

−1 δΣ

δSh(f)

)

. (A.5)

where
〈

yT
〉

= 0 and
〈

yTy
〉

= Σ are used. Using Σij of (112), one has

δL
δSh(f)

=
N
∑

l

[

1

2µl
− C2

i

2bµ2
i

+
1

2b

]

δµl

δSh(f)
, (A.6)

F(f, f ′) =

N
∑

l

(

1

bµl
+

1

2µ2
l

)

δµl

δSh(f ′)

δµl

δSh(f)
, (A.7)

where b ≡ 5
3 . By (111), the derivative of µ is given by

δµi

δSh(f)
=

Ti

2b

δm

δSh(f)
=

Ti

2b

Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)

, i = 1, · · · , N, (A.8)

where M(f) is defined by (95) and

N(f) ≡ 1

2
Sh(f)

∂M(f)

∂Sh(f)
=

1

2

[

S1n(f) + S2n(f)
]

R(f)Sh(f) +
[

R2(f) + R2
12(f)

]

S2
h(f). (A.9)

Using (111) and (A.8), the first order derivative is

δL
δSh(f)

=
1

2

Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)

(

N

m
− 2

m2

N
∑

i

C2
i

Ti
+

1

2b2

N
∑

i

Ti

)

, (A.10)
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and the Fisher matrix is

F(f, f ′) =

[

Sh(f ′) γ2(f ′)

M(f ′)

(

1 − N(f ′)

M(f ′)

)][

Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)]

1

2

(

N

m2
+

9

25m

N
∑

l

Tl

)

. (A.11)

From the above formulae, we also derive the Fisher matrix Fab for parameter estimation. Consider the PDF in (A.1)

f(C; θ) =
1

(2π)
N
2 det

1
2 [Σ(θ)]

exp

{

−1

2
(C − µ(θ)) Σ

−1(θ) (C − µ(θ))
T

}

, (A.12)

where µ(θ) and Σ(θ) now depend on the RGW parameters θ = (r, β, αt) through the theoretical spectrum Sh(f) in (111)

and (112). Using the result (A.6) and (A.7), by the chain rule, one obtains the derivatives with respect to the parameters

∂L
∂θa

=
1

2

N
∑

i

[

1

µi
− C2

i

bµ2
i

+
1

b

]

∂µi

∂θa
, (A.13)

Fab =

〈

∂2L
∂θa∂θb

〉

=

N
∑

i

(

1

bµi
+

1

2µ2
i

)

∂µi

∂θa

∂µi

∂θb
. (A.14)

Taking derivative of µ in Equation (111) with respect to θa yields

∂µi

∂θa
=

Ti

A

∫ ∞

0

df
Sh(f) γ2(f)

M(f)

(

1 − N(f)

M(f)

)

∂Sh(f)

∂θa
, a = 1, 2, 3, i = 1, · · · , N. (A.15)

Substituting (A.15) into (A.13) and (A.14) leads to (126) and (127).
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