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Abstract In this article, we suggest a Sitter model in favor of compact stars in low-mass X-ray binaries.

Here, we have considered the presence of a cosmological constant (on a small scale) to investigate the stellar

structure. We conclude that this approach is very suitable for the familiar physical model of compact stars in

low-mass X-ray binaries. We calculate the probable radius, compactness (u) and surface redshift (Zs) of six

compact stars in low-mass X-ray binaries, namely Cyg X-2, V395 Carinae/2S 0921–630, XTE J2123–058,

X1822–371 (V691 CrA), 4U 1820–30 and GR Mus (XB 1254–690). We also offer a possible equation of

state (EOS) for the stellar objects.
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1 INTRODUCTION

As compact stars (neutron stars/strange stars) play a crucial

role in relating astrophysics, nuclear physics and particle

physics, they have motivated many scientists to research

the behaviur of highly dense stars. Common neutron stars

are built almost entirely of neutrons whereas strange stars

are supposed to be composed entirely of strange quark mat-

ter (SQM), or the associated conversion (up-down quarks

to strange quarks) may be confined to the core of a neu-

tron star (Haensel et al. 1986; Drago et al. 2014). It is

well known that neutron stars are bound by gravitational at-

traction and strange stars are bound by strong interactions

as well as gravitational attraction. Therefore, for lower

mass neutron stars, the gravitational bound becomes much

weaker than for strange stars. Hence, neutron stars become

larger in size in comparison to strange stars with the same

mass. All the present equations of state (EOSs) of neu-

tron stars have zero surface matter density, whereas the

available EOSs of strange stars produce a sharp change in

surface density (Farhi & Jaffe 1984; Haensel et al. 1986;

Alcock et al. 1986; Dey et al. 1998). A few seconds after

the birth of a neutron star, its temperature decreases to less

than the Fermi energy, hence for a given EOS the mass and

radius of the star depend solely on central density and also

it is very hard to find the mass and radius of a neutron star

simultaneously. For a detailed study, we suggest the re-

view work of Lattimer & Prakash (2007). Theoretical pre-

dictions of masses and radii of spherically-symmetric non-

rotating compact stars are based on analytical or numer-

ical solutions of the Tolman-Oppenheimer-Volkov equa-

tion, i.e., the TOV equation. From an observational point

of view, some promising areas for measuring the mass and

radius of compact stars (neutron stars/strange stars) are

thermal emission from cooling stars, pulsar timing, surface

explosions and gravitational emissions. Experimental sci-

entists face the recent challenges using giant dipole reso-

nances, heavy-ion collisions and parity-violating electron

scattering techniques to dependably measure the density

of nuclear matter. Actually, the most challenging task is

to determine the proper EOS which describes the inter-

nal structure of neutron stars (Özel 2006; Özel et al. 2009;

Özel & Psaltis 2009; Özel et al. 2010; Güver et al. (2010a),

Güver et al. (2010b)). Though masses of a few dozen com-

pact stars have been determined very exactly (to some ex-

tent) in binaries (Heap & Corcoran 1992; van Kerkwijk

et al. 1995; Stickland et al. 1997; Orosz & Kuulkers 1999;

Lattimer & Prakash 2005, 2007), no information on ra-

dius is available for these systems. Therefore, the the-

oretical study of stellar structure is essential to support

the correct direction for newly observed masses and radii.

Here, some specialized work on compact stars (Lobo 2006;
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Bronnikov & Fabris 2006; Hossein et al. 2012; Rahaman

et al. 2012a,b; Maharaj et al. 2014; Pant et al. 2014;

Ngubelanga et al. 2015; Paul et al. 2015; Kalam et al.

2012, 2013a,b, 2014a,b, 2016, 2017; Maurya et al. 2016;

Dayanandan et al. 2016; Kayum Jafry et al. 2017; Bhar

et al. 2017) is presented.

Casares et al. (2010) estimated the mass of the com-

pact star in Cyg X-2 by using new high-resolution spec-

troscopy and it was found to be 1.71±0.21 M⊙. In another

work, Steeghs & Jonker (2007) measured the mass of the

compact star in V395 Carinae/2S 0921-630 with the help

of the MIKE echelle spectrograph on the Magellan-Clay

telescope by using high-resolution optical spectroscopy

and it is 1.47 ± 0.10 M⊙. On the other hand, Gelino et al.

(2002) measured the mass of the compact star in XTE

J2123-058 as 1.53+0.30
−0.42 M⊙. Muñoz-Muñoz-Darias et al.

(2005) measured the mass of the neutron star in the low-

mass X-ray binary (LMXB) X1822–371 (V691 CrA) by

studying the K-correction for the case of emission lines

formed in the X-ray illuminated atmosphere of a Roche

lobe filling star and that was found to be 1.61 M⊙ ≤
MNS ≤ 2.32 M⊙. The team of Güver et al. (2010b) mea-

sured the mass of the compact star in 4U 1820-30 by us-

ing time resolved X-ray spectroscopy of the thermonuclear

burst of 4U 1820-30 which was 1.58 ± 0.06 M⊙. Barnes

et al. (2007) determined the mass of the compact object

in GR Mus (XB 1254-690) to be 1.20 M⊙ ≤ MNS ≤
2.64 M⊙.

Wilkinson Microwave Anisotropy Probe (WMAP)

measurements indicate that nearly 73% of the total mass-

energy of the Universe is dark energy (Perlmutter et al.

1998; Riess et al. 2004) and this dark energy is based

on the cosmological constant. To obtain a stable cosmo-

logical model, Einstein in 1917 introduced the idea of

a cosmological constant. Later Zel’dovich (Zel’Dovich

(1967), Zel’dovich (1968)) described this repulsion pres-

sure as a vacuum energy arising from quantum fluctuation.

However, for the viability of the present-day accelerating

Universe, the earlier cosmological constant Λ is commonly

assumed to be time-dependent in the cosmological domain

(Perlmutter et al. 1998; Riess et al. 2004). At the same

time, space-dependent Λ has a desired outcome from an

astrophysical point of view as argued by many researchers

(Chen & Wu 1990; Narlikar et al. 1991; Ray & Ray 1993)

with respect to the behavior of local massive object such as

galaxies. In the present model of compact stars, however,

we take the cosmological constant Λ as an absolutely con-

stant quantity. This constancy of Λ is unable to be ruled

out for a system with very small dimensions like com-

pact star systems or elsewhere with various physical con-

ditions (Mak et al. 2000; Dymnikova 2002, 2003; Böhmer

& Harko 2005a). To estimate mass and radius of a neutron

star, Egeland (2007) incorporated the presence of a cos-

mological constant proportionality based on the density of

a vacuum by applying the Fermi EOS along with the TOV

equation.

Based on the above knowledge, we examine the pres-

ence of a cosmological constant on a small scale to study

the structure of compact stars in LMXBs, namely Cyg X-2,

V395 Carinae/2S 0921–630, XTE J2123–058, X1822–371

(V691 CrA), 4U 1820–30 and GR Mus (XB 1254–690)

and conclude that incorporation of Λ describes the com-

pact stars well.

2 INTERIOR SPACETIME

We consider stars as static and spherically symmetric bod-

ies whose interior spacetime is

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2) . (1)

According to Heintzmann (1969),

eν = A2
(

1 + ar2
)3

and

e−λ =



1 − 3ar2

2





1 + C
(

1 + 4ar2
)−

1

2

1 + ar2







 ,

where A, C and a are metric constants. We assume that the

energy-momentum tensor for the interior of the compact

object has the standard form of

Tij = diag(−ρ, p, p, p) ,

where ρ and p are energy density and isotropic pressure

respectively.

Einstein’s field equations for metric Equation (1) in

the presence of Λ are then obtained as (taking G = 1 and

c = 1)

8πρ + Λ = e−λ

(

λ′

r
− 1

r2

)

+
1

r2
, (2)

8πp − Λ = e−λ

(

ν′

r
+

1

r2

)

− 1

r2
. (3)

Now, from metric Equation (1) and Einstein’s field

Equations (2) and (3), we obtain the energy density (ρ) and

pressure (p) as

ρ =
3a

(√
1 + 4ar2

(

3 + 13ar2 + 4a2r4
)

+ C
(

3 + 9ar2
))

16π (1 + ar2)
2
(1 + 4ar2)

3

2

− Λ

8π
,

(4)
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Fig. 1 Variation of matter density (ρ) – radius (r) (top) and

pressure (p) – radius (r) (bottom) in the stellar interior (taking

a = 0.0016 km−2, C = 1.133).

p =
−3a

(

3
√

1 + 4ar2
(

−1 + ar2
)

+ C + 7aCr2
)

16π (1 + ar2)2 (1 + 4ar2)
1

2

+
Λ

8π
.

(5)

From Equation (4) and Equation (5) we get the central

density (ρ0) and central pressure (p0) of the star respec-

tively

ρ0 = ρ(r = 0) =
3a (3 + 3C)

16π
− Λ

8π
,

p0 = p(r = 0) =
3a (3 − C)

16π
+

Λ

8π
.

It is known that Λ > 0 suggests space is open. In or-

der to explain the accelerating state of the Universe, it is

supposed that energy in a vacuum is responsible for this ex-

pansion. As a consequence, vacuum energy has some grav-

itational influence on stellar structure. It is recommended

that the cosmological constant is responsible for that en-

ergy of the vacuum. The value of the cosmological con-

stant Λ has not been consistent with various scenarios.

Though from a cosmological point of view, its order of

magnitude is 10−52 m−2, on a local scale (for example

near black holes, neutron stars and various massive ob-

jects) it is not essential to follow the large scale fine tuning

values of Λ (Bordbar et al. 2016).

In this section we have studied the following features

of our model presuming the value of Λ = 0.00111 km−2

(nearer to the value of Böhmer & Harko 2005b; Bordbar

et al. 2016). We have considered this value for mathemat-

ical consistency and stability of the compact star. As “a”

and “C” specify the central density of the configurations,

we calculate it and use it in our model as we know that

core properties of the compact star depend on the central

density.

Also, we observe (Fig. 1) that both matter density and

pressure are maximum at the center and decrease mono-

tonically to the boundary. Interestingly, pressure falls to

zero at the boundary, though density does not. Therefore,

it may be justified to regard these compact stars as strange

stars where the surface density remains finite rather than

neutron stars for which the surface density vanishes at the

boundary (Farhi & Jaffe 1984; Haensel et al. 1986; Alcock

et al. 1986; Dey et al. 1998). It should be mentioned here

that we fix the values of constants a = 0.0016 km−2 and

C = 1.133, so that pressure falls from its maximum value

(at the center) to zero at the boundary.

3 EXPLORATION OF PHYSICAL PROPERTIES

In this section we study the following properties of the

compact star in an LMXB.

3.1 Energy Conditions

In our model we observe that all the energy conditions,

namely null energy condition (NEC), weak energy condi-

tion (WEC), strong energy condition (SEC) and dominant

energy condition (DEC), are satisfied at the center (r = 0)

of the star. From Figure 1, we observe that all the energy

conditions obey:

(i) NEC: p0 + ρ0 ≥ 0 ,

(ii) WEC: p0 + ρ0 ≥ 0 , ρ0 ≥ 0 ,

(iii) SEC: p0 + ρ0 ≥ 0 , 3p0 + ρ0 ≥ 0 ,

(iv) DEC: ρ0 > |p0|.
See Table 1 for numerical justification of energy con-

ditions satisfied in our model.

Table 1 Evaluated Parameters for Energy Conditions in Our
Model with a = 0.0016 km−2, C = 1.133

ρ0 (km−2) p0 (km−2) ρ0+p0 (km−2) 3p0+ρ0 (km−2)

0.000566894 0.000222451 0.000789345 0.00123425
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Fig. 2 Behaviors of the gravitational (Fg) and hydrostatic

(Fh) forces in the stellar interior.

3.2 TOV Equation

In our stellar model we observe that static equilibrium con-

figurations are present due to the availability of gravita-

tional (Fg) and hydrostatic (Fh) forces.

Fh + Fg = 0 ,

where,

Fg =
1

2
ν′ (ρ + p) ,

Fh =
d

dr

(

p − Λ

8π

)

.

Figure 2 shows the equilibrium state of the compact

object under gravitational and hydrostatic forces in our

stellar model.

3.3 Stability

Now, we examine the stability of the model. For a sta-

ble stellar model it is always required that the speed of

sound should be less than the speed of light (c = 1) ev-

erywhere within the stellar object, i.e. 0 ≤ v2 = (dp
dρ) ≤ 1

(Herrera 1992; Abreu et al. 2007). For this purpose we plot

the sound speed in Figure 3 (top) and observe that it satis-

fies the inequalities 0 ≤ v2 ≤ 1 well. Therefore our stellar

model is stable.

Our stellar model is also dynamically stable in the

presence of thermal radiation. The dynamical stability can

be examined by adiabatic index (γ). The adiabatic index

(γ) is expressed as

γ =
ρ + p

p

dp

dρ
.

If the value of adiabatic index γ > 4
3 throughout the

interior of the stellar body then the stellar model will
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Fig. 3 Sound speed (v2) – radius (r) and adiabatic

index (γ) – radius (r) relation in the stellar interior

(taking a = 0.0016 km−2, C = 1.133).

be stable. From Figure 3 (bottom) we observe that our

stellar model is stable in the presence of thermal radia-

tion. This type of stability has been investigated by sev-

eral authors, namely Chandrasekhar (1964), Bardeen et al.

(1966), Knutsen (1988), Mak & Harko (2013).

3.4 Matching Conditions

Here, we match the interior metric of the star with the exte-

rior Schwarzschild-de Sitter metric at the boundary (r = b)

ds2 = −
(

1 − 2M

r
− Λr2

3

)

dt2

+

(

1 − 2M

r
− Λr2

3

)−1

dr2

+ r2(dθ2 + sin2 θdφ2) .

(6)

From continuity of the metric function across the bound-

ary, we get the compactification factor as

M

b
=

1

2





3ab2
(

1 + C(1 + 4ab2)−
1

2

)

2 (1 + ab2)
− Λb2

3



 . (7)
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Fig. 4 Variation of the mass function M(r) of our star

model (taking a = 0.0016 km−2, C = 1.133).

3.5 Mass-Radius Relation and Surface Redshift

For a static spherically symmetric perfect fluid sphere, the

maximum allowable mass-radius ratio should be Mass
Radius <

4
9 (Buchdahl 1959). In our stellar model, we have calcu-

lated the gravitational mass (M ) in the presence of a cos-

mological constant as

M = 4π

∫ b

0

ρ r2dr

=
3ab3

(

1 + C(1 + 4ab2)−
1

2

)

4 (1 + ab2)
− Λb3

6
,

(8)

where the radius of the star is taken as b. Hence, the com-

pactness (u) of the star can be written as

u =
M

b
=

1

2





3ab2
(

1 + C(1 + 4ab2)−
1

2

)

2 (1 + ab2)
− Λb2

3



 .

(9)

The behaviors of the mass function and compactness of the

star in our model are shown in Figure 4 and Figure 5 (top)

respectively.

The surface redshift (Zs) analogous to the above com-

pactness (u) will be

Zs = [1 − 2u]
−

1

2 − 1 . (10)

Therefore the maximum surface redshift, from Figure 5

(bottom), for the different compact stars can be easily

found. The radii, compactness and surface redshift of

the different compact stars are obtained from Figure 6,

Equation (9) and Equation (10) respectively, and a com-

parative analysis is presented in Table 2.

4 DISCUSSION AND CONCLUDING REMARKS

It should be noted here that the model described by Heint

IIa in Heintzmann (1969) is useful to study both neutron
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Fig. 5 Variation of the compactness (u) and surface red-

shift (Zs) of our star model (taking a = 0.0016 km−2,

C = 1.133).

and strange stars depending upon the choice of metric pa-

rameters a and C (Kalam et al. 2016, 2017). In this arti-

cle, we have investigated whether the same Heint IIa met-

ric is capable of explaining compact stars in LMXBs or

not. To this end, we have explored the physical behav-

ior of six compact stars within LMXBs, namely Cyg X-

2, V395 Carinae/2S 0921–630, XTE J2123–058, X1822–

371 (V691 CrA), 4U 1820–30 and GR Mus (XB 1254–

690) by considering the nature of isotropic pressure. Here

we have also merged the previous cosmological constant Λ

in Einstein’s field equation in favor of studying the stellar

structure. Effectively, we obtained an analytical solution

for a fluid sphere which is really interesting with respect

to many physical properties, which are summarized as fol-

lows:

(i) In our model, in the interior of the compact stars, den-

sity and pressure are well defined functions (positive

definite at the center) (Fig. 1). It can be noted here

that pressure and density are both maximum at the

origin and interestingly pressure falls to zero (mono-

tonically decreasing) towards the boundary while den-

sity does not. Here, we assume the values of constants
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Fig. 6 Probable radii of Cyg X-2, 2S 0921–630, XTE J2123–058, X1822–371 (V691 CrA), 4U 1820–30 and GR Mus (XB 1254–690).

Table 2 Evaluated Parameters for Compact Stars

Star Observed Mass (M⊙) Radius from Model (in km) Redshift from Model Compactness from Model

Cyg X-2 1.71 ± 0.21 11.55 ± 0.65 0.331 ± 0.0393 0.2169 ± 0.017

2S 0921–630 1.44 ± 0.10 10.75 ± 0.35 0.2834 ± 0.0194 0.1962 ± 0.0092

XTE J2123–058 1.53+0.30
−0.42 10.8 ± 1.1 0.2897 ± 0.0614 0.1973 ± 0.0287

X1822–371 (V691 CrA) 1.61≤ M ≤ 2.32 11.2≤ R ≤ 13.2 0.3740 ± 0.0655 0.2334 ± 0.0254

4U 1820–30 1.58 ± 0.06 11.2 ± 0.2 0.3087 ± 0.0117 0.208 ± 0.0052

GR Mus (XB 1254–690) 1.92 ± 0.72 12 ± 2.1 0.3734 ± 0.1352 0.2285 ± 0.0547

(a, C) in the metric and Λ so that pressure reduces

to zero at the boundary. By assuming constant val-

ues a, C and Λ, we calculate the central density ρ0 as

567 × 10−6 km−2 (7.651 × 1014 gm cm−3) and cen-

tral pressure p0 as 2224.51 × 10−7 km−2 (5.557 ×
1035 dyn cm2) (Table 1). These values satisfy energy

conditions, TOV equation and Herrera’s stability con-

dition. They are also stable with regard to infinitesimal

radial perturbations. From the mass function (Eq. (8)),

all desired interior properties of a compact star are able

to be evaluated and satisfy the Buchdahl mass-radius

relation ( 2M
R < 8

9 ) (Figs. 4 and 5 (top)). The surface
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redshift with respect to compact stars is found under

the standard measure (Zs ≤ 0.85), which is optimal

(Fig. 5 (bottom)) (Haensel et al. 2000). We estimate

the EOS, which would be p = αe(−ρ/β)+ηe(−ρ/δ)+ξ

whereinto α, β, η, δ, ξ are constants and their units

are km−2.

Figure 7 indicates that a stiff EOS (Özel 2006; Lai

& Xu 2009 and Guo et al. 2014) is appropriate rather

than a soft EOS.

0.0002 0.0003 0.0004 0.0005 0.0006 0.0007
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

 

 

p(
km

-2
)

(km-2)

p=  exp(- / ) + exp(- / ) + 

Fig. 7 Possible pressure (p)-density (ρ) relation (EOS) in the

stellar interior taking a = 0.0016 km−2, C = 1.133, where

α, β, η, δ, ξ are constants and all are in units of km−2.

(ii) From our mass function graph in Figure 6, and

Equations (9) and (10), we obtain the radii, compact-

nesses and surface redshift for six compact stars within

LMXBs of Cyg X-2, V395 Carinae/2S 0921–630,

XTE J2123–058, X1822–371 (V691 CrA), 4U 1820–

30 and GR Mus (XB 1254–690). A detailed compari-

son is shown in Table 2.

It should be mentioned here that we are actually con-

sidering the Heint IIa metric with de Sitter spacetime to

describe the compact stars within LMXBs where included

metric parameters a and C are assessed by computing all

related modes. When metric parameters values for the EOS

are known, additionally the central density is set. In gen-

eral, the mass-radius curve is considered under a conferred

EOS for different values of central density; with a definite

value of the central density, the mass and radius of a com-

pact star are defined. However, our model is diverse and

theoretically attractive. According to our model, six com-

pact stars within the LMXBs Cyg X-2, V395 Carinae/2S

0921–630, XTE J2123–058, X1822–371 (V691 CrA), 4U

1820–30 and GR Mus (XB 1254–690) have identical val-

ues of a and C, and therefore have an identical central den-

sity and identical EOS. A further interesting part of our

stellar model is that if we begin out of the center by a par-

ticular central density, the structure of a compact star can

be determined by restricting any radius wherein the pres-

sure goes to zero.

Therefore, our conclusion is that we may find a use-

ful relativistic model in the case of compact stars within

LMXBs by a suitable choice of values of the metric param-

eters a and C in the metric given by Heint IIa (Heintzmann

1969).
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