
RAA 2019 Vol. 19 No. 2, 28(8pp) doi: 10.1088/1674–4527/19/2/28

c© 2019 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in

Astronomy and

Astrophysics

Cosmology using long gamma-ray bursts: statistical analysis of errors in

calibrated data

Meghendra Singh1, Shashikant Gupta2, Amit Sharma3 and Satendra Sharma4

1 Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India;

meghendrasingh db@yahoo.co.in
2 G.D. Goenka University, Gurgaon, Haryana 122103, India
3 Amity University Haryana, Gurgaon (Manesar), Haryana 122413, India
4 Yobe State University, Damaturu, Yobe State, Nigeria

Received 2018 March 18; accepted 2018 August 29

Abstract We investigate direction dependence and non-Gaussian features in high-z cosmological data

using ∆χ2 and ∆χ statistics and the Kolmogorov-Smirnov test. These techniques are applied on a set

of calibrated long gamma-ray bursts (GRBs) and its combination with recent Type Ia supernovae data

(Union2). Our statistical analysis shows a weak but consistent direction dependence in both the data sets.

The analysis also indicates a non-Gaussian nature of errors in both data sets.
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1 INTRODUCTION

Gamma-ray bursts (GRBs) are among the most energetic

explosions in the Universe. Their high energy photons in

the gamma-ray band are almost unaffected by dust extinc-

tion, and as a result they are detectable up to very high

redshifts (Salvaterra et al. 2009; Cucchiara et al. 2011).

Long GRBs (for which pulse duration is greater than 2 s)

can be used to investigate the Universe at high redshifts,

which is difficult to access by Type Ia supernovae (SNe

Ia); thus long GRBs have been proposed as a complemen-

tary probe to SNe Ia. However, due to an extensive vari-

ety of isotropic equivalent luminosities and energy outputs

(Ghirlanda et al. 2006), GRBs cannot be treated as standard

candles. Efforts have been made to calibrate long GRBs

using the following empirical relations:

• Isotropic equivalent radiated energy (Eiso) and peak

energy (Ep) correlation for GRBs (Amati et al. 2008).

• Peak energy (Ep) in vFv spectra and collimated

emission (Eγ) correlation for GRBs (Ghirlanda et al.

2004).

Unfortunately, physical interpretation of the above

correlations is not well understood. Thus, standardization

of these correlations is subject to availability of low red-

shift GRBs. Since not many low redshift GRBs are avail-

able (Kodama et al. 2008; Li et al. 2008), the calibra-

tion is obtained by assuming a specific cosmology (spe-

cific values of cosmological parameters). As a result, the

GRB data obtained from this calibration depend on cos-

mology, and hence cannot be further used for estimation

of cosmological parameters. This problem is known as

the “circularity problem” in GRB cosmology. It should be

noted that while deriving distances to SNe Ia, sometimes

the numerical value of the Hubble constant is inserted by

hand (Amanullah et al. 2010) which makes it cosmology-

dependent. However, one can easily overcome this prob-

lem by making use of nearby SNe Ia.

In order to use GRBs as cosmological probes, one

needs specific statistical techniques to avoid the circu-

larity problem. Many cosmology-independent methods

have been proposed to achieve this, e.g., the collimation-

corrected energy method (Ghirlanda et al. 2004), the lu-

minosity indicator method (Liang & Zhang 2005) de-

rived from 157 SNe Ia, the Bayesian method (Firmani

et al. 2005) and the Markov Chain Monte Carlo (MCMC)

method (Li et al. 2008). Recently Liu & Wei (2015) have

used the Padé approximation to calibrate high-redshift
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GRBs which can be used to constrain cosmological mod-

els.

The cosmological principle (hereafter CP) has a signif-

icant role in modern cosmology; it states that the Universe

is homogeneous and isotropic at large scales (Weinberg

2008). However, it is essential and important to check if the

CP is consistent with the latest observational data. As more

high-redshift GRB data are now available (Liang et al.

2008; Wei 2010), it becomes possible to search for any

possible anisotropy in the high redshift Universe. Earlier,

Gupta et al. (2008), Gupta & Saini (2010) and Gupta

& Singh (2014) (hereafter GS14) investigated the direc-

tion dependence using techniques based on extreme value

statistics through different sets of SNe Ia. As a biproduct

of the technique, they also obtained information about non-

Gaussian features in the data. In the present work, we in-

vestigate the direction dependence and non-Gaussianity in

the latest long GRB data.

The paper is structured in the following way. The

data analyzed for the current work are briefly discussed in

Section 2, while the methodology, i.e., the ∆χ2 statistic,

∆χ statistic and Kolmogorov-Smirnov (KS) test are ex-

plained in Section 3. Results and conclusions are presented

in Section 4 and Section 5 respectively.

2 DATA SET

In this paper we consider a sample of 79 calibrated long

GRBs from Liu & Wei (2015) at high-redshift (z > 1.4),

which is claimed to be free from the circularity problem

and thus can be used to test cosmological models. For

our analysis, we use Union2 data from Amanullah et al.

(2010), which contain 557 SNe Ia with redshift up to

(z = 1.4) and their combination (hereafter UNGRB) hav-

ing 636 data points.

3 METHODOLOGY

3.1 The ∆χ2 Statistic

For a given GRB, the difference between apparent magni-

tude (m(z)) and absolute magnitude (M ) is called distance

modulus (µ)

µ(z) = m(z) − M , (1)

where m(z) depends on the intrinsic luminosity of a GRB

and z is its redshift. We can also express distance modulus

(measured in Mpc) as

µ(z) = 5 log (DL(z)) + 25 . (2)

For a ΛCDM Universe, DL can be written as

DL(z) =
c(1 + z)

H0

∫ z

0

dx

h(x)
, (3)

where h(z; ΩM, ΩX) = H(z; ΩM, ΩX)/H0, and thus de-

pends only on the cosmological parameters matter den-

sity ΩM and dark energy density ΩX. For a flat ΛCDM

Universe, we calculate best fit values for a complete data

set by χ2 minimization, which we express as

χ2 = ΣN
i=1

[

(µi
obs

− µi
th

)/σi

]2

, (4)

where the total number of data points is given by N . µi
obs

is the measured distance modulus from the data and µi
th

is the calculated theoretical distance modulus. Observed

standard error in µi is denoted by σi. We obtain χi for

each GRB as

χi = [µi
obs

− µi
th

(zi; ΩM)]/σi , (5)

where µi
th

(zi; ΩM) is calculated by using the best fit values

of ΩM and H0. We divide the data into two hemispheres

labeled by the direction vector n̂, and take the difference

of the χ2 computed for the two hemispheres separately

(∆χ2

n̂). Now to calculate the maximum absolute differ-

ence, we rotate the direction vector n̂ and calculate the ∆χ2

several times (for further details see GS14)

∆χ2 = max{|∆χ2

n̂|} . (6)

We generate the distribution of ∆χ2 by shuffling the

data values zi, µi and σi over the SN positions and refer to

it as a bootstrap distribution. The distribution when plot-

ted looks skewed as expected from extreme value theory

(Haan & Ferreira 2006). A greater distance of the original

∆χ2 (without shuffling the data values) from the peak of

the bootstrap distribution would indicate that the SN po-

sitions in the data are important, i.e., it indicates direction

dependence in the data. Since the analytic expression for

distribution of ∆χ2 is not available, one can obtain the the-

oretical distribution numerically and compare it with the

bootstrap distribution. If the errors (σis) in the data follow

a normal distribution, then the χis in Equation (5) would

also obey a standard normal distribution. To obtain the the-

oretical distribution, one can generate χis using a standard

normal distribution instead of Equation (5). If the bootstrap

and theoretical distributions do not match, this would in-

dicate that χis in Equation (5) do not follow a standard

normal distribution and hence the errors (σis) have a non-

Gaussian nature.

3.2 The Delta-Chi (∆χ) Statistic

χi defined in Equation (5) could be positive or negative,

but this information is lost when we square it. Thus, the

∆χ2 statistic does not contain information about the SN

being above or below the fit. We consider another method
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without squaring the χis that does contain information re-

garding whether the SN at a given redshift is closer or far-

ther from us. An additional advantage of this method is that

the distribution of maxima can be calculated analytically as

discussed below.

We have two subsets of data represented by two hemi-

spheres and labeled by the direction vector n̂. We also have

Nnorth and Nsouth SNe, where N is the total number of

SNe such that N = Nnorth + Nsouth, and define the quan-

tity

∆χn̂ =
1√
N





Nnorth
∑

i=1

χi −
Nsouth
∑

j=1

χj



 . (7)

From Equation (7), it is clear that 〈∆χn̂〉 = 0 and

〈(∆χn̂)2〉 = 1. It follows from the central limit theorem

that if N ≫ 1, the quantity ∆χn̂ obeys a normal distribu-

tion with zero mean and unit standard deviation. To obtain

the maximum absolute difference, we maximize ∆χn̂ by

varying the direction n̂ across the sky

∆χ = max{|∆χn̂|} . (8)

Extreme value theory shows that the distribution of

∆χ follows a two parameter distribution known as a

Gumbel distribution and is given by (Haan & Ferreira

2006)

P (∆) =
1

s
exp

[

−∆ − m

s

]

× exp

[

− exp

(

−∆ − m

s

)]

,

(9)

where the position parameter m and the shape parameter

s can be determined analytically in the theoretical limit of

the ∆χ statistic. In the limit (Ndir ≫ 1, where Ndir is num-

ber of independent directions) the parameters are given by

m =
√

2 logNdir − log log Ndir − log 4π ,

s =
1

m
.

(10)

Here it is assumed that the total number of SNe is

large, i.e., N ≫ 1, since the distribution for ∆χn̂ becomes

Gaussian only in this limit.

3.3 Kolmogorov-Smirnov Test

Finally we apply the KS test which is described below.

Originally, this approach was presented in Singh et al.

(2016a) and in Singh et al. (2016b) to investigate non-

Gaussianity in the HST Key Project Data and in SNe data.

If µi
th

(z) is the theoretical value of the distance mod-

ulus for the ith GRB at redshift z, then the observed value

µi
obs

will be

µi
obs = µi

th(z) ± σi . (11)

As discussed earlier, χi should follow a standard

Gaussian distribution. To check this, we use the KS test

(Press et al. 2002). We define our null hypothesis as “The

errors in GRB data are drawn from a Gaussian distribu-

tion”. If the null hypothesis is true, the χis in Equation (5)

would follow a standard Gaussian distribution. To test this

we use Matlab function kstest[h,p,k,cv] where p is the

probability of the data errors being drawn from a Gaussian

distribution and k represents the maximum distance be-

tween the cumulative distribution function (CDF) of χis

with that of a standard Gaussian. cv is the critical value

which is decided by the significance level (α). Different

values of α indicate different tolerance levels for false re-

jection of the null hypothesis. cv is the critical value of the

probability to obtain the data set in question given the null

hypothesis and can be compared with p. A value h = 1 is

returned by the test if p < cv and the null hypothesis is

rejected. On the other hand if p > cv, h remains 0 and the

null hypothesis is not rejected.

4 RESULTS

First, we calculate the best fit values of matter density

(ΩM) and Hubble constant (H0) for both GRB and SN

data. It is clear from Table 1 that GRB data favor a smaller

value of ΩM and a larger value of H0 compared to Union2.

A smaller value of χ2 in the case of GRBs indicates that

the errors may have been overestimated. The best fit val-

ues of ΩM and H0 are the same for Union2 and UNGRB

data, reflecting the fact that SNe dominate in the combined

data set. The directions of maximum discrepancy and the

values of (∆χ2 ) and (∆χ) are shown in Tables 2 and 3 re-

spectively. The values of p, k and cv for various data sets

are presented in Table 4.

For reference, the results of simulations for each data

set are plotted in panel (a) of Figures 1, 2, 3, 4 and 5. A spe-

cific bias related to the bootstrap distribution was discussed

in GS14. The theoretical distribution is obtained by as-

suming that the χis follow a normal distribution with zero

mean and unit standard deviation, thus theoretical χis are

unbounded. On the other hand, the bootstrap distribution is

prepared by shuffling through a specific realization of χi,

which has a maximum value for some SNe/GRBs. Thus

the χis in the bootstrap distribution have an upper bound,

causing the bootstrap distribution to be shifted slightly to

the left of the theoretical distribution. This can also be

seen in the figures displaying the results of simulations in

Figures 1, 2, 3, 4 and 5.
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(a) (b)

Fig. 1 (a) Result of the simulation for 79 GRBs, which shows a comparison between bootstrap and theoretical probability distributions.

Positions of GRBs were generated randomly on the sky. (b) The bootstrap and theoretical probability distributions of 79 GRBs for the

∆χ2 statistic. The shape of the bootstrap distribution is different from that in Figure 1(a). A shift in the bootstrap on the left indicates

non-Gaussianity.

(a) (b)

Fig. 2 (a) Result of the simulation for UNGRB, which shows a comparison between bootstrap and theoretical probability distributions.

(b) The bootstrap and theoretical probability distributions of UNGRB for the ∆χ2 statistic. In comparison with Figure 2(a), the bootstrap

distribution that appears on the right side shows an indication of non-Gaussianity.

Table 1 Best fit values of cosmological parameters (ΛCDM) for
different data sets.

Set Data ΩM H0 χ2/dof

GRB 79 0.24 79.5 0.42

Union2 557 0.27 70.0 0.97

UNGRB 636 0.27 70.0 0.90

4.1 Results for ∆χ2 Statistic

• GRBs: The theoretical and bootstrap distributions for

the set of 79 GRBs are shown in panel (b) of Figure 1.

Table 2 Direction of maximum ∆χ2 for different data sets.
Long and Lat stand for longitude and latitude respectively in the
Galactic coordinate system.

Set Data ∆χ2 Long Lat

GRB 79 0.243 215.7 26.6

Union2 557 0.220 65.5 55.8

UNGRB 636 0.197 45.8 49.2

Comparison with Figure 1(a) demonstrates that the

shift in bootstrap is much larger than expected, sug-

gesting the non-Gaussian nature of the errors. The lo-
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(a) (b)

Fig. 3 (a) Result of the simulation for 79 GRBs, which shows a comparison between bootstrap and theoretical probability distributions.

(b) The bootstrap, theoretical and analytic probability distributions for the ∆χ statistic for GRBs. The analytic distribution obtained

from Equation (9) with parameters defined in Equation (10). The bootstrap distribution shows anisotropy at the 1σ level.

Table 3 Direction of maximum ∆χ for different data sets.
Long and Lat stand for longitude and latitude respectively in the
Galactic coordinate system.

Set Data ∆χ Long Lat

GRB 79 3.02 317.1 37.4

Union2 557 4.32 129.5 17.8

UNGRB 636 4.45 129.4 17.7

Table 4 Results of KS test for different data sets at 1% signifi-
cance level (α).

Set p value k Cv

GRB 0.5519 0.0875 0.1806

Union2 0.7328 0.0288 0.0572

UNGRB 0.4953 0.0327 0.0536

cation of ∆χ2 for GRBs is nearly 2σ away from the

maximum of the bootstrap distribution, which sug-

gests direction dependence in the data.

• Union2: The results of the ∆χ2 statistic for Union2

data have been discussed in GS14. The bootstrap and

theoretical distributions are shown in figure 5 of GS14.

• UNGRB: Figure 2(b) presents the two distributions

for UNGRB. Comparison with Figure 2(a) shows

that the leftward shift of the bootstrap distribution is

much smaller than expected, indicating slight non-

Gaussianity in the residuals. ∆χ2 for UNGRB is about

1σ away from the peak which indicates weak direc-

tion dependence in UNGRB data. It should be noted

that the direction dependence is small as compared to

GRB data.

4.2 Results for ∆χ Statistic

• GRB: The ∆χ statistic has an advantage since the dis-

tribution can be calculated analytically. The theoret-

ical, bootstrap and analytic distributions for the set

of 79 GRBs are plotted in Figure 3(b). The ∆χ for

GRBs is more than 1σ away from the mode of the

bootstrap distribution which shows a slight direction

dependence in GRBs. The analytic distribution is ob-

tained using Equation (9) with parameters defined in

Equation (10). The shape of the analytic distribution is

quite different. The mismatch could arise if all the di-

rections are not independent. In this case, the number

of actual independent directions would be less than Nd

and hence the actual value of m would be smaller than

what is calculated in Equation (10). This also makes

the spread larger in bootstrap and theoretical distribu-

tions compared to the analytic ones.

• Union2: Theoretical, bootstrap and analytic distribu-

tions for Union2 are plotted in Figure 4(b). Since

the theoretical χis are unbounded while the bootstrap
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(a) (b)

Fig. 4 (a) Result of the simulation for 557 SNe, which shows a comparison between bootstrap and theoretical probability distributions.

(b) The bootstrap, theoretical and analytic probability distributions for the ∆χ statistic for Union2 data. The bootstrap distribution

indicates anisotropy away from the 1σ level.

(a) (b)

Fig. 5 (a) Result of the simulation for 636 data points, which shows a comparison between bootstrap and theoretical probability

distributions. (b) The bootstrap, theoretical and analytic probability distributions for the ∆χ statistic for UNGRB data. The bootstrap

distribution indicates anisotropy at the 2σ level.
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Fig. 6 Histograms of χi for GRB and UNGRB data are compared with those of a standard normal distribution.
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Fig. 7 Comparison of the CDFs of χi for GRB and UNGRB data with their Gaussian CDFs. Solid curves

represent the Gaussian CDFs.

χis are bounded, the bootstrap distribution should lay

slightly on the left of the theoretical distribution. As

shown in Figure 4(a) in contrast to the above expecta-

tion, Figure 4(b) demonstrates that the bootstrap dis-

tribution matches quite well with the theoretical one,

indicating slight non-Gaussian features in the errors.

• UNGRB: The theoretical, bootstrap and analytic dis-

tributions for UNGRB data have been plotted in

Figure 5(b). Although the analytic and bootstrap dis-

tributions appear quite different in the figure, the boot-

strap and theoretical distributions match quite well.

Comparison with Figure 5(a) indicates a weak signa-

ture of non-Gaussianity. ∆χ is nearly 2σ away from

the mode of the bootstrap distribution.

4.3 Results for KS Test

We calculate χis as defined in Equation (5) for GRB data

using the best-fit values presented in Table 1. Further, we

generate a set of 79 random numbers following a Gaussian

distribution with zero mean and unit standard deviation
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which represent the theoretical χis. Figure 6(a) shows the

histogram of both the associated χis. It is clear from the

figure that the spread in χis from GRB data is smaller com-

pared to the theoretical χis. Figure 6(b) shows a similar

graph for the UNGRB data comprising 636 data points.

Figure 7 along with Table 4 presents the main result of

the KS test. Figure 7(a) shows the CDF of χis from GRB

and theoretical χis, while Figure 7(b) depicts the same in

the case of UNGRB. The second, third and fourth columns

in Table 4 list values of p, k and cv respectively. Since

p > cv in all cases gives h = 0, we cannot reject the

null hypothesis that the errors have been drawn from a

Gaussian distribution. However, Figure 7 shows that the

CDF of GRB χis has a large deviation from the standard

normal compared to the UNGRB counterpart.

5 CONCLUSIONS

In this paper we have presented our results for the

GRB/UNGRB data using the statistics discussed in

Section 3.1, Section 3.2 and Section 3.3. As discussed ear-

lier, ∆χ2 and ∆χ statistics are based on extreme value the-

ory. The latter has the advantage over the former since its

distribution can be calculated analytically. Both ∆χ2 and

∆χ quantify the direction dependence in the data. They

also qualitatively indicate the presence/absence of non-

Gaussian features in the data. The KS test (Sect. 3.3) on

the other hand quantitatively measures non-Gaussianity in

the data. Our main conclusions for this work are:

• A set of 79 GRBs shows evidence for non-Gaussian

behavior of errors, and UNGRB data also show non-

Gaussian nature of errors, but weaker compared to

GRBs.

• The set of 79 GRBs is different from the peak of the

bootstrap distribution by about 2σ, while UNGRB is

different from the peak by about 1σ. These results

signify a weak but consistent direction dependence in

both data sets. This consistency indicates a preferred

direction for both data sets.

• The maximum anisotropies from different measure-

ments are presented in Tables 2 and 3. The directions

for Union2 and UNGRB are similar for the ∆χ statis-

tic.

• In all cases, we see that results of UNGRB are very

similar to those of Union2. This could be due to the

fact that the SNe are greater in number and hence dom-

inate the UNGRB data.
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