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Abstract The kinetic Monte Carlo simulation is a rigorous numerical approach to study the chemistry on

dust grains in cold dense interstellar clouds. By tracking every single reaction in chemical networks step

by step, this approach produces more precise results than other approaches but takes too much computing

time. Here we present a method of a new data structure, which is applicable to any physical conditions and

chemical networks, to save computing time for the Monte Carlo algorithm. Using the improved structure,

the calculating time is reduced by 80 percent compared with the linear structure when applied to the osu-

2008 chemical network at 10 K. We investigate the effect of the encounter desorption in cold cores using

the kinetic Monte Carlo model with an accelerating data structure. We found that the encounter desorption

remarkably decreases the abundance of grain-surface H2 but slightly influences the abundances of other

species on the grain.
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abundances

1 INTRODUCTION

Good models can play a central role in astrochem-

istry while creating, judging, or predicting observations.

Generally, simple models take less computing time and

give less accuracy, while advanced models might signif-

icantly improve the modeling level but take a consider-

able amount of time. Modelers spare no effort to im-

prove the modeling accuracy within reasonable comput-

ing time. For the case of gas-grain chemistry, there exist

at least five kinds of models, which are the rate-equation

(RE) model, the modified rate-equation (mRE) model,

the master-equation (MaE) model, the moment-equation

(MoE) model and the Monte Carlo model. Details of these

models are beyond the scope of this article and interested

readers please refer to Du & Parise (2011). Relatively, the

RE approach (Hasegawa et al. 1992), which is based on

chemical kinetics, is rapid in calculating the abundances

of chemical species (both in the gas phase and on the

grain surface). However, the simulative results of this ap-

proach differ considerably from those given by the more

rigorous stochastic approaches while modeling the chem-

istry of the grain species with low abundances (much less

than one atom/molecule per grain). This discrepancy is

known as the finite-size (FS) problem (Hasegawa & Herbst

1993; Taquet et al. 2012). The mRE approach, which partly

solved the FS problem, is the most efficient and applica-

ble to large chemical networks (Chang & Herbst 2012).

However, the mRE approach is the least rigorous. The

MaE is more rigorous than the mRE approach. This ap-

proach calculates the temporal evolution of the probabil-

ity of states in the phase space. However, it has not been

used in a large gas-grain network because as the number

of species in the reaction network increases, the number of

states increases exponentially (Stantcheva & Herbst 2004).

The MoE approach, which combines the advantages of the

Monte Carlo approach and the mRE approach to some ex-

tent, is more rigorous and rather efficient at low order (Du

& Parise 2011). The kinetic Monte Carlo approach is more

rigorous than the MoE approach (Chang & Herbst 2012;

Lipshtat & Biham 2003). They can be utilized to calculate

the precise evolution of any species and yield more accu-

rate results for low-abundance species on the grain (Tielens

& Charnley 1997; Herbst & Shematovich 2003; Stantcheva

& Herbst 2004). However, it takes a lot of computing time

when the simulative time is long, or the number of reac-

tions is large, or the temperature is high (Hincelin et al.

2013; Viti et al. 2004; Garrod & Herbst 2006; Gao et al.

2017). Hence, solutions for reducing computing time in the

Monte Carlo models are necessary. New mechanisms have
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been applied to specific physical and chemical conditions

to save time (Chang et al. 2017). Methods from other areas

such as computer science are also needed to improve the

efficiency of the algorithm.

The encounter desorption mechanism describes how

a grain-surface H2 molecule (hereafter gH2) desorbs from

the grain-surface gH2 monolayer rather than from the ice:

gH2 + gH2 → H2 + gH2 (Hincelin et al. 2015). This

encounter desorption has a rather high reaction rate and

would influence the abundance of gH2 and other grain-

surface species in our prediction. The physical condition

of the encounter desorption mechanism is at a rather low

temperature and the abundances of most species on the

grain are below one unit, which encounters the FS prob-

lem in rate-equation simulation. The kinetic Monte Carlo

model, which yields better results for this condition, is go-

ing to be utilized to investigate the effect of the mechanism.

When taking account of the encounter desorption, we have

to consider the problem that the high rates of accretion of

H2 and desorption of gH2 are too time-consuming to ap-

ply to the kinetic Monte Carlo model in a full gas-grain

network such as osu-2008 (Hassel et al. 2008). Therefore,

the kinetic Monte Carlo model has not been utilized to in-

vestigate the effect of the encounter desorption, making

in depth understanding difficult. Chang et al. (2017) pro-

posed to apply the quasi-steady-state approximation to the

kinetic Monte Carlo model to solve the computationally

time-consuming problem caused by the high rates of ac-

cretion of H2 and the desorption of gH2. However, the

model with the quasi-steady-state approximation is still

time-consuming. Therefore, we use a new data structure

to further save computing time to fulfil the aim of investi-

gating the effect of the encounter desorption in the kinetic

Monte Carlo model.

This paper is organized as follows. The encounter

desorption and quasi-steady-state approximation are pre-

sented in Section 2. Section 3 describes the kinetic Monte

Carlo model and Section 4 describes a new pyramid-

searching data structure for accelerating the kinetic Monte

Carlo approach. The results are included in Section 5 and

Section 6 closes with conclusions.

2 ENCOUNTER DESORPTION AND THE

QUASI-STEADY-STATE APPROXIMATION

We usually think that the desorption of gH2 is on the wa-

ter ice substrate and utilizes the desorption energy of H2

due to its value on water ice, 440 K (Cazaux & Tielens

2004). However, the abundance of gH2 is also high on the

grain mantle at low temperatures (Hasegawa et al. 1992;

Watson & Salpeter 1972; Pickles & Williams 1977; Tielens

& Allamandola 1987), and Morata & Hasegawa (2013)

suggested that the amount of gH2 on the grain is about one

monolayer at 10 K. The possibility that one gH2 molecule

comes across another gH2 molecule is high, and one of

them subsequently desorbs from the gH2 molecules. This

process is called encounter desorption. The desorption en-

ergy of gH2 on the gH2 substrate is 23 K (Cuppen & Herbst

2007; Garrod & Pauly 2011). The encounter desorption is

much more efficient than the desorption directly from the

water ice, since the desorption energy of gH2 on the gH2

substrate is about 20 times smaller than that on the water

substrate (Hincelin et al. 2015).

In this paper, we will study how encounter desorption

influences the species on the grain. Hincelin et al. (2015)

already tested the encounter desorption in a rate-equation

model with a large gas-grain chemical network using the

Nautilus code. However, when most of the abundances of

grain-surface species are below one unit, the Monte Carlo

model is more precise. Since the microscopic Monte Carlo

is too time-consuming (Chang et al. 2005), we employ the

kinetic Monte Carlo model. There are still two remaining

problems: first, the high rates of accretion of H2 and des-

orption of gH2 will make the simulation take too much

computing time. Therefore, an alternative solution is nec-

essary. Second, a highly efficient method to improve the

kinetic Monte Carlo model in a full gas-grain network is

needed to further decrease the computing time.

The first problem is solved by Chang et al. (2017) us-

ing the quasi-steady-state approximation (Gillespie 1976).

The quasi-steady-state approximation is an assumption

that the abundance of gH2 is a constant. Because the accre-

tion rate of H2 is large due to the large abundance of H2,

the computing time required to simulate a kinetic Monte

Carlo model that includes gas-phase H2 accretion is over-

whelmingly large. In Section 3, the relation of the reac-

tion rates with the computing time will be given in detail.

Therefore, the accretion of H2 is normally absent in most

kinetic Monte Carlo models. In the quasi-steady-state ap-

proximation, species whose accretion and desorption rates

are much more than the loss rates of these species via re-

actions on grain surfaces are treated as transient species.

The abundances of transient species on grain surfaces are

purely determined by the accretion and desorption of these

species themselves. The gH2 can be taken as a transient

species because H2 is overwhelmingly much more abun-

dant than other species, causing a rather high accretion rate

of H2 and desorption rate of gH2. Moreover, because the

abundance of H2 can hardly change if the physical condi-

tions are kept constant, the abundance of gH2 can also be

assumed to be constant. Therefore, the calculation of the

changing molecular number of gH2 is neglected to save

computing time.

The second problem can be solved by introducing a

new data structure to improve the algorithm. We will dis-

cuss the highly efficient pyramid-searching data structure

in Section 4. The method is widely applied to decrease the

computing time despite the types of reactions and physical

conditions in the simulation.
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3 KINETIC MONTE CARLO MODEL

The kinetic Monte Carlo model is implemented to simulate

the reactions, one at a time, both in the gas and on the grain.

In the process, we use two random numbers to decide how

long the reaction will take and which reaction will occur.

We have two steps:

1. Find the reaction time interval

We use the following formula to calculate the reaction

time for the occurring reaction

t =
− log(r2)∑max

i=1 Ri

. (1)

r2 is a random number, which is equally distributed

between 0 and 1. Ri represents the reaction rate of re-

action i.

2. Find which reaction will occur

We generate a random number r1, which is equally

distributed between 0 and 1, and use it to compare the

fraction of the sum of selected reaction rates over the

total rates (
∑

k

i=1
Ri∑

max

i=1
Ri

). As expressed in the following

equation, when
∑k

i=1 Ri is just above r1 ×

∑max
i=1 Ri

while the previous
∑

k−1
i=1 Ri is below r1 ×

∑max
i=1 Ri,

we assume that the reaction k will occur.

k−1∑

i=1

Ri < r1 ×

max∑

i=1

Ri <

k∑

i=1

Ri . (2)

The kinetic Monte Carlo model is a loop of step 1 and

2, as shown above. Each loop describes how a reaction will

occur and how long it will occur. The reactions occur one

by one. As the two steps accumulate for a long simulative

time, the results follow a normal distribution. For the case

of a large reaction rate like the accretion of H2, making a

large
∑max

i=1 Ri and a small time interval t, it takes more

loops to accumulate to a specific simulative time than the

case that
∑max

i=1 Ri is small. More loops need more com-

puting time, which is the reason for taking into account the

accretion of gH2 and the desorption of H2 needs an exces-

sive amount of time.

In detail, when a reaction occurs, the number of re-

actants will decrease, and the number of products will in-

crease. During this process, the rates of the reactions re-

lated to the changed species will also be changed. When

the reaction is completed and the program goes on to

search for the next reaction to occur in the next loop, the

updated rates should be used to calculate the sum of the

new reaction rates. The part of updating the corresponding

changed reaction rates is called the updating part.

The algorithm consists of the searching part, which

finds the reaction that occurs and the time this reaction

lasts, and the updating part, in which the related reaction

rates are updated.

In the searching part, the normal method to compute

the
∑

k−1
i=1 Ri,

∑
k

i=1 Ri and
∑max

i=1 Ri is to add the rates

from the first to the last. But when the number of reactions

is very large, the required computing time is long. For ex-

ample, if the number of reactions in a large network is over

five thousand, it takes much more time for the program

to compute the sum of the reaction rates than the time in a

small network with only nine reactions. Therefore, we look

into the algorithm to find new time-saving methods. We

find that each time when the updated
∑k−1

i=1 Ri,
∑k

i=1 Ri

and
∑max

i=1 Ri are computed, most of the reaction rates stay

the same and only some reaction rates are changed. In this

situation, we introduce a pyramid-index-searching struc-

ture to the kinetic Monte Carlo model to skip the reactions

with unchanged rates to calculate the
∑

k

i=1 Ri and to lead

the
∑

k

i=1 Ri to assist in searching for the occurring reac-

tion in searching part in Section 4.

4 THE PYRAMID-INDEX-SEARCHING METHOD

4.1 Data Structure

Data structure is a concept of how the data are processed

and stored. A logical data structure is based on how the

data are processed and a physical data structure is based on

how the data are stored according to the logical structure.

When the data are read, the specific algorithm employs

the logical data structure. An appropriate data structure

can improve efficiency of the algorithm (Baloukas et al.

2009; Tarjan 1983, 1984). The logical data structure is de-

termined by the relationship between the data. There are

two types of logical data structures: a linear structure and

a nonlinear one.

The physical data structure that is used to store the

reactions in the old model is an array, which is rapid to

read. But when one reaction rate is changed, all the reac-

tion rates have to be read from the first to the kth to calcu-

late
∑

k

i=1 Ri. To skip the unchanged rates, we adopt a new

pyramid-searching data structure to store all the reactions.

The new data structure is made of data structs (a concept

in data structure, which are employed to store several items

associated with each other in a unit) that are organized like

a pyramid. Each data struct includes the following infor-

mation: reaction number, reaction rate,
∑k

i=1 Ri (sum of

the rates up to the reaction, 3rd lower captain means the

third captain that is led by this captain), upper level struct,

three lower level structs,
∑k

i=1(Rinew − Riold) (the sum

of the rate differences), in the formula Rinew represents

the newly updated reaction rate, the Riold represents the

old reaction rate in the last loop,
∑

k

i=1 Ri0 (a constant, the

sum of the reaction rates in the first loop), etc. By adding∑k

i=1 Ri0 to
∑k

i=1(Rinew−Riold), which means the initial∑
k

i=1 Ri increased by the changes (sum of the rate differ-
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Table 1 Elements of the Struct

No Elements Notes New Old

1 reaction no. for explaining the reaction
√ √

2 reactants for explaining the reaction
√ √

3 products for explaining the reaction
√ √

4 parameters for explaining the reaction
√ √

5 reaction type for explaining the reaction
√ √

6 reaction checked times for explaining the reaction
√ √

7 reaction rate coefficient for explaining the reaction
√ √

8 reaction rate for explaining the reaction
√ √

9 upper captain’s no. for building the structure
√

×
10 1st lower captain’s no. for building the structure

√
×

11 2nd lower captain’s no. for building the structure
√

×
12 3rd lower captain’s no. for building the structure

√
×

13 1st lower captain’s
∑

k

i=1
Ri for building the structure

√
×

14 2nd lower captain’s
∑

k

i=1
Ri for building the structure

√
×

15 3rd lower captain’s
∑

k

i=1
Ri for building the structure

√ √

16
∑

k

i=1
Ri0 for building the structure

√
×

17
∑

k

i=1
(Rinew − Riold) for building the structure

√
×

ences) during the loops, we can get the correct
∑

k

i=1 Ri at

any loop. Table 1 lists all the elements of the data struct.

In the pyramid structure (as displayed in Fig. 1(a) and

Fig. 2(a)), at the bottom all of the reactions are consid-

ered as reaction “soldiers”. Since these soldiers do not have

lower structs, the corresponding values are all defined to

be zeros. The reaction soldiers are grouped by a certain

number of soldiers and the number is defined according to

the size of the reaction network. We use a relatively big

number, e.g. 25 (meaning that there are 25 members in

a group), for big reaction networks, for example the osu-

2008, and a small number, e.g. 1 for very small networks.

As described in the previous part, when a reaction occurs,

it may affect the reaction rates of other reactions. We ap-

ply a value, which is the difference of the newly updated

rate minus the old rate in the last loop (Rinew − Riold), to

record the change in the rate, and we use the sum of the rate

differences (
∑

k

i=1(Rinew − Riold)) to record the changes

from the first loop to this loop. Therefore, for each reac-

tion soldier, one element is reserved for recording the sum

of the rate differences as the reaction rates are progressed.

This element is represented by
∑k

i=1(Rinew − Riold). For

the last soldier in a group, its
∑k

i=1(Rinew−Riold) records

the sum of the rate differences of the soldiers from the first

reaction soldier in the group to itself while other soldiers

only record their own
∑k

i=1(Rinew−Riold). This is due to

the last soldier in the group leading the
∑

k

i=1 Ri (
∑

k

i=1 Ri

=
∑

k

i=1 Ri0 +
∑

k

i=1(Rinew − Riold)) of the group. The∑k

i=1 Ri assists the searching by reading
∑k

i=1 Ri directly

rather than by calculating Ri to get the sum.

In the level that is just above the bottom, “captains”

(named sol-captains, i.e. soldiers’ captains) are assigned

to lead the reaction soldiers so that each sol-captain leads

three groups of soldiers. The captains are virtual reactions

that do not have real reaction rates. The virtual reaction

includes null reactants and products, which are defined

as zeros in the program. The rates are also zeros but the

sum of the rates stores the corresponding values (
∑

k

i=1 Ri)

from the three last soldiers in the three lower groups under

this captain. According to the definition of
∑k

i=1 Ri, the

last soldier’s
∑

k

i=1 Ri is the maximum within its group.

Also, the last soldier from the third group under this cap-

tain has the maximum
∑k

i=1 Ri. The
∑k

i=1(Rinew−Riold)
of this captain is defined as the sum of the rate differences

from the first reaction soldier to the last reaction soldier

in its third lower group. Meanwhile, each captain has the∑k

i=1(Rinew − Riold) of all reactions up to its last sol-

dier like
∑

k

i=1 Ri. The three lower level structs of the sol-

captains are pointed to the structs of the last soldiers in the

three groups.

Above the sol-captains’ level, there are captains of

captains (named cap-captains, i.e. captains’ captains),

which follow a similar structure but they only lead three

lower captains (not groups of reaction soldiers). All el-

ements follow the same rules as those for sol-captains

except the
∑

k

i=1(Rinew − Riold), which is read directly

from the value of the 3rd captain under it. In this way,

each captain stores
∑k

i=1 Ri of all reactions up to its last

leading reaction in the bottom and this is also true for∑
k

i=1(Rinew − Riold). This is repeated until there is only

one captain needed. Thus this captain is named “chief cap-

tain” and is on the top of the pyramid structure. Virtual sol-

diers with null reactants, products and
∑

k

i=1 Ri are added

to the bottom as needed to complete a full pyramid.

4.2 Searching for the Reaction that Occurs

To illustrate how we skip the unchanged reaction rates

to calculate
∑k

i=1 Ri, we use a small network containing

nine reactions. The data structure from the old model as

well as the accelerated model is shown in Figure 1(b) and

Figure 1(a), respectively.

In the linear structure, we add the reaction rates from

the first to the specific reaction to get the
∑

k

i=1 Ri satis-

fying Equation (1) and the fifth reaction is the occurring
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Fig. 1 (a) Data structure from the accelerated model using the pyramid-index-searching structure. The chief captain leads three 2nd

captains, and the 2nd captains lead nine reaction soldiers. (b) Data structure from the old model. In the example here, r1 is 0.5, and the

arrows with long tails represent
∑

k

i=1
Ri.

∑
5

i=1
Ri satisfies Eq. (1).

Fig. 2 (a) Pyramid data structure for 5942 reactions. The number of reaction soldiers on the bottom (the 6th level) is 6075, in which

there are 5942 real reactions and 133 virtual reactions to make a complete pyramid. They are divided into groups of 25 members. The

number of captains in the 5th level is 81, ranging from 6076 to 6156. The number of captains in the 4th level is 27, ranging from 6157

to 6183. The number of captains in the 3
rd level is 9, ranging from 6184 to 6192. The number of captains in the 2

nd level is 3, ranging

from 6193 to 6195. The number of the chief captain is 6196. (b) The array to store the pyramid data structure. The blue rectangle

represents the soldiers, and the yellow rectangles signify the captains. The structs are built according to the sequence shown by the

arrow on the right of the array.

reaction in this example. In computer science, the aver-

age searching length (the time complexity of the searching

part, and the time complexity is a concept to evaluate the

computing time in the program) is a measure of the con-

sumed time for a searching method. It is usually assumed

that each operation which takes a unit of time is defined as

1. Here the searching length of the old model in the gen-

eral cases is 1
9×(1+2+...+9)×2=10. Here, the probability

of choosing one reaction in the network of nine reactions.

1, 2,..., 9 represent the comparing times of specific reac-

tions in different positions in the network. Multiplying by 2

denotes the time taken by two operations, adding and com-

paring, for each round. Consequently, the searching length

in the old model is 10.

Using the pyramid-index-searching structure, the data

struct (a captain or a soldier) that satisfies r1×
∑max

i=1 Ri <∑
k

i=1 Ri will be found for each level, and the interval in

which the reaction that occurs lies is zoomed out by each

level of searching. This means finding the first
∑

k

i=1 Ri

larger than r1 ×
∑max

i=1 Ri through the captains in the level.
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The searching process begins from the first level, chief

captain, whose three
∑

k

i=1 Ri are
∑3

i=1 Ri,
∑6

i=1 Ri and∑9
i=1 Ri. Then the 2nd lower

∑k

i=1 Ri, which is
∑6

1 Rate
for this case, is compared with r1 (assuming that

∑max
i=1 Ri

is 1). Following the same example as we discussed in the

old model, the
∑6

i=1 Ri is bigger than the r1. Then the 1st

lower
∑k

i=1 Ri, which is
∑3

i=1 Ri, is compared with r1

to find out if
∑6

i=1 Ri is the first one larger than r1. Here∑3
i=1 Ri is smaller than r1. Therefore

∑6
i=1 Ri is the first∑

k

i=1 Ri that is larger than r1 in this level. So,
∑

k

i=1 Ri

of the occurring reaction is among
∑4

i=1 Ri,
∑5

i=1 Ri and∑6
i=1 Ri .

We then move forward to the next lower level. Using

the same example, only the 2nd captain in this level needs

to be checked, because the occurring reaction must be

under this captain. As defined in the previous parts, this

lower level captain also stores three
∑

k

i=1 Ri, which are∑4
i=1 Ri,

∑5
i=1 Ri and

∑6
i=1 Ri. The one in the middle,∑5

i=1 Ri, is first compared with r1. In this example, it is

larger than r1. Following the same method as we had in

the upper level, next the
∑k

i=1 Ri on the left is compared

with r1. Here
∑4

i=1 Ri is smaller than r1. Consequently,

we conclude that reaction 5 is the reaction that occurs. The

average searching length for using the improved method

in general cases is 1
9×(4+4+3+4+4+3+3+3+2) = 10

3 . Here,

the 1
9 represents the probability of choosing one reaction

among nine reactions. 4, 3, 2 represent the comparing

times of specific reactions in different positions in the net-

work. In each level, there are at most two comparing op-

erations: on one hand, if the 2nd lower
∑

k

i=1 Ri is larger

than r1, the 1st lower
∑k

i=1 Ri needs to be compared with

r1; On the other hand, if the 2nd lower
∑k

i=1 Ri is smaller

than r1, the 3rd lower
∑

k

i=1 Ri is already the first value

that is larger than r1. Therefore, only one comparison is

necessary. The number of operations to identify the occur-

ring reaction is then calculated. For example, if reaction (1)

is the real case, then four operations are needed; if reaction

(2), then four operations are needed, etc. Comparing the

average searching length using the two structures, it can be

seen that the pyramid-index-searching method saves 2
3 of

the searching time in this case.

4.3 Application to a Large Chemical Reaction

Network

In this study, we use the osu-2008 reaction network for in-

terstellar clouds. The network includes various types of re-

actions: bimolecular gas phase reactions, cosmic ray (CR)

ionization and dissociation, far ultraviolet (FUV) photodis-

sociation and ionization, thermal desorption and CR des-

orption, and bimolecular grain surface reactions (Semenov

et al. 2010). The total number of reactions is 5942. In

the following part, we analyze how the pyramid struc-

ture will improve the model efficiently using the large net-

work. The reaction soldiers are grouped by 25 members in

this case. The structure for 5942 reactions is illustrated in

Figure 2(a). As seen from Figure 2(a), we know the pyra-

mid structure consists of five levels.

For this network, the average searching

length of the model with pyramid structure is
1

243×(10+10+9+10+10+9+9+9+8+10+10+9+...+7+7+6+7

+7+6+6+6+5)+ 1
25×(1+2+...+25)×2= 103

3 . Here, 1
81 rep-

resents the probability of choosing one group of reaction

soldiers led by the sol-captain in the pyramid structure.

10, 9, 8, 7, 6, 5 signify the comparing times to find the

specific group of reaction soldiers led by the sol-captain

in different positions. 1
25 corresponds to the probability of

choosing one reaction once a time in the reaction group

with 25 group members in the last level. 1, 2...25 indicate

the comparing times of specific soldiers in different

positions in the group. Moreover, using the old model it

is 1
5942×(1+2+...+5942)×2=5943. Here, 1

5942 represents

the probability of choosing one reaction among 5942

reactions. 1, 2,..., 5942 signify the comparing times of

specific soldiers in different positions in the network. The

pyramid structure method is efficient when simulating a

large network using the kinetic Monte Carlo model. In the

next section, we will discuss how it is implemented into

the kinetic Monte Carlo model using C language.

4.4 Physical Data Structure for Pyramid Structure

and Implementation in the Kinetic Monte Carlo

Algorithm

The common physical structure for a nonlinear logical

structure like a pyramid structure is a pointer (or pin),

which is a special data type to point to another data type

in C language to create the relationships between structs in

the pyramid structure. For the pyramid data structure we

defined in Section 4.1, the pointer of the current data struct

points to its upper captain and to three lower captains or

groups of soldiers. However, there are too many pointers

in the program when applied to a big network, making it

extremely difficult to find the correct physical address of

the data. Then we look into the data and operations again,

finding that they have two important characteristics:

1) The data themselves are stable without changing the

sequence during the whole simulation.

2) The data have stable relationships. They have a

fixed upper captain and three lower captains or groups of

soldiers.

Accordingly, we use an array of structs as the physical

data structure. The array is stable and easy for the computer

to find the physical address. Structs of captains are built

after the structs of reaction soldiers as part of the array of

structs, which is shown in Figure 2(b).
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Fig. 3 Main process for searching for captains.

Fig. 4 The main updating process.

The specific process of the code is divided into three

parts.

1) Building

The struct array is used to store the structs of captains

and soldiers. When programming, we use cycles to define

all data structs from the bottom to the top of the pyramid,

i.e., from the soldiers to the chief captain.

2) Searching

To find the reaction that occurs, the pyramid data struc-

ture is searched from the chief captain to the soldiers. This

process is already discussed in Section 4.2. The main pro-

cess for captains is depicted in Figure 3. The searching

stops at the level of sol-captains.

As a result, the captain which satisfies Equation (1) is

found. The reaction that occurs must be one of the reaction

soldiers under it. Then,
∑

k

i=1 Ri for each reaction soldier

under the captain is compared with r1×
∑max

i=1 Ri to find

which reaction occurs.

3) Updating

In the old model, the data struct only contains informa-

tion on the reaction and
∑k

i=1 Ri. Updating simply needs

to replace the reaction rates whenever they are changed.

In the accelerated method, the updating process is similar

except that other related captains’ elements (reaction rate

and Rinew−Riold) should also be updated. As illustrated in

Table 1, there is an element,
∑

k

i=1(Rinew − Riold), which

stores the sum of the rate difference. The last reaction sol-

dier in the group has a special
∑k

i=1(Rinew−Riold), which

is the sum of all rate differences from the first reaction to

this reaction. The main process for updating is depicted

in Figure 4. In Figure 4,
∑t

i=1(Rinew − Riold)n+1 rep-

resents reaction t’s
∑

k

i=1(Rinew − Riold) in the (n + 1)
loop. Rt(n+1) and Rt(n) signify the t reaction’s rate in the
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Fig. 5 Comparison of the results from the old model and the improved model. Red lines represent results from using the linear structure,

and green lines signify results from implementing the pyramid structure.

Fig. 6 Comparison of the computing time for the two models that use the pyramid structure and the linear structure, respectively.

(n+1) loop and (n) loop, respectively. 25th group member

corresponds to the last member in one reaction group.

It takes more time for the new structure to update be-

cause the change of one reaction rate will influence the

whole structure. So when changing the corresponding re-

action rates, we have to change all the relevant captains

to make them obtain the right value of
∑k

i=1 Ri from the

three lower captains (or the last soldiers in three groups of

reaction soldiers).

Here we compare the time of the old model with

the time of the accelerated model with pyramid struc-

ture. The whole time complexity using the old linear

structure is 1
5942 ×(1+2+...+5942)×2+2n=5943+2n,

in which 5943 is the time for searching and n is the

average number of reactions that need to be updated.

Since each updating is one operation (changing the

reaction rate), it takes time n to find n reactions to be

updated and another n’s time to update n reactions. The

whole time complexity using the pyramid structure is
1

243×(10+10+9+10+10+9+9+9+8+10+10+9+...+7+7+6+7+

7+6+6+6+5)+ 1
25×(1+2+...+25)×2+5n+605= 103

3 +5n+605,

in which 103
3 is the time for searching, 605 is the time
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Fig. 7 Comparison of the results with the encounter desorption and without the encounter desorption using the improved model with

the quasi-steady-state approximation. The red lines represent the results without encounter desorption, and the green lines signify the

results with the encounter desorption.

to update the structure only about captains, 5n is the

time taken for updating the reaction’s and the last group

soldier’s rate and
∑k

i=1(Rinew − Riold), since there are

five operations: (1) find the reaction to update; (2) change

the reaction rate; (3) calculate the difference (to get

Rinew − Riold); (4) add to its
∑k

i=1(Rinew − Riold); (5)

add the value to the 25th soldier’s (the last soldier in one

group)
∑

k

i=1(Rinew −Riold). From these calculations, we

conclude that when n is smaller than 1768, implementing

the pyramid structure method is much more efficient than

the method that relies on the old linear structure. This

is usually the case because in most chemical reaction

networks the number of reactions related to a specific

reaction is generally much smaller than 1768.

5 RESULTS AND DISCUSSION

5.1 A comparison between the old model and the

improved kinetic Monte Carlo model

To test the accuracy of the new structure, we use the osu-

2008 network without the reaction of encounter desorp-

tion. The network consists of 5942 reactions. The tem-

perature is 10 K, and the initial density of H atoms is

2.0×104 cm−3.

As displayed in Figure 5, results from both models

have very good agreement with each other. Due to ran-

dom fluctuations, the abundance of N2H+ exhibits small

differences at the beginning. In comparison, 96% of the

abundances of the species agree with each other better than

90%, and all the gas-phase species’ abundances are the

same as those in the model with the linear structure. The

computing time varies due to the calculated performance

of different computers but the improved model is always

much more efficient. When using a computer with a CPU

main frequency of 3501 Mhz, it took about 8 h 58 min to

finish the simulation with the improved model, while it

took 45 h 1 min with the old model. We also tested a large

gaseous network containing isotope D with 64 818 reac-

tions for further comparison (Sipilä et al. 2013, 2015). The

total time that we simulated in the two models is 4.17 ×

105 yr using the networks with 5942 and 64 818 reactions,

respectively. The physical parameters were kept fixed in

all simulations. The differences in the computing time are

compared in Figure 6. In Figure 6, the computing time of

the simulation using the pyramid and the linear structure

in the network with 5942 reactions is 5.19 h and 25.27 h,

respectively. The computing time of the simulation using

the pyramid and the linear structure in the network with

64 818 reactions is 18.77 h and 136.91 h, respectively. This

demonstrates that for a larger network consuming a large

amount of calculation time, the pyramid structure remark-

ably improves the efficiency.

5.2 A Comparison between the Results with and

without Encounter Desorption using the Kinetic

Monte Carlo Model

The aim is to investigate the effect of the encounter des-

orption (gH2 + gH2 → H2 + gH2). The physical conditions

were the same as those in Section 5.1.

We utilized the quasi-steady-state approximation both

in the data structure accelerated model with the encounter

desorption and that without the encounter desorption.
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From Figure 7, it can be seen that the abundance of gH2

is more without the encounter desorption in the simula-

tion. The straight lines are due to the influence of the

quasi-steady-state approximation, which assumes that the

abundance of gH2 is constant in the whole process. The

encounter desorption affects 4.1% of the grain-surface

species by a factor of more than two. The largest difference

lies in gC2H4O, gC7H2 and gC10, with the ratios (the frac-

tion of the abundances of species in the pyramidal structure

over the abundances of species in the linear structure) of

0.33, 0.3 and 4.0, respectively. The reason for the change

of abundances for other species is due to the change of the

abundance of gH2.

6 CONCLUSIONS

We introduce a new data structure for searching the spe-

cific reaction to improve the efficiency of the kinetic Monte

Carlo model, which saves a lot of computing time and

is also applicable to other kinds of networks. We use the

model with the data structure to investigate the effect of the

encounter desorption. In the future, we plan to apply the

method to a very large gas-grain reaction network consist-

ing of tens of thousands of reactions including deuterium.

The pyramid structure also has other forms. It may

have more levels and more branches, i.e., one captain can

lead more lower captains or groups of soldiers. The new

data structure makes it possible to apply the kinetic Monte

Carlo model to larger chemical networks or more complex

physical environments. The new model with the data struc-

ture offers great advantages over the old model which takes

a lot of computing time. The data structure extends the

number of specific applications where the kinetic Monte

Carlo model can be utilized.
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