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Abstract The Moscoviense basin is an atypical lunar impact basin with concentric rings of positive and neg-

ative gravity anomalies. This basin can provide insights into the inhomogeneous thermal activities across

the farside of the Moon. Based on an updated spherical harmonic thin elastic-shell loading model, we used

localized admittance analyses to estimate the elastic thickness as well as other associated selenophysical

parameters for the Moscoviense basin. The high precision gravity and topography data employed in our

estimation were collected by the Gravity Recovery and Interior Laboratory and the Lunar Orbiter Laser

Altimeter missions. Our results indicate that the crust-mantle interface is mainly compensated by the pre-

filling depth rather than the observed surface topography. The results constrained within two standard devi-

ations yielded a small load ratio (∼0.168), a best-fit crustal thickness of 36.2 km, and an optimized crustal

density of 3159.5 kg m−3. Such large density approaches the density of olivine-rich mantle materials, im-

plying that the excavation of the Mare Moscoviense occurred during a basin-forming impact. The inversed

elastic thickness at Mare Moscoviense was around 18 km, lower than the previous results (∼60 km) found

over Mare basins on the lunar nearside. These results indicate that extreme thermal activity existed during

the Moscoviense basin-forming period such as reheating mechanisms from a double-impact process and

mare volcanism.
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1 INTRODUCTION

The Moscoviense Basin is an about 420–640 km diame-

ter impact basin that is located in the lunar highland (cen-

tral coordinates of 26◦N, 147.6◦E). It was formed about

4.1 billion years ago (Morota et al. 2009), and is located

within the Feldspathic Highland Terrain (FHT) on the far-

side of the Moon (Konopliv et al. 2001). This basin is con-

sidered a mascon, as indicated by the Maria that occupies

the basin’s floor (Fig. 1(a)), where a corresponding posi-

tive gravity anomaly was first revealed by the Clementine

mission (Zuber et al. 1994). Then the satellite-to-satellite

Doppler tracking subsystem (RSAT) applied by the JAXA

SELENE mission (Japan Aerospace Exploration Agency

Selenological and Engineering Explorer) further revealed

the central positive anomaly surrounded with a negative

⋆ Corresponding author

anomaly (Fig. 1(b)). Such annular positive and negative

anomaly is inconsistent with the basins central low-lying

floor (∼3 km) (Fig. 1(a)). The anomaly is quite different

with those in the nearside mare basins (Namiki et al. 2009).

These anomalies were further confirmed in the unprece-

dentedly high resolution gravity field models from the

Gravity Recovery and Interior Laboratory (GRAIL) mis-

sion (Zuber et al. 2013; Neumann et al. 2015). The signifi-

cant difference of gravity anomaly between Moscoviense

and other nearside mare basins attracts hundreds of re-

searches, owing to its likely implication to the dichotomy

in the thermal activity in the two sides (Namiki et al. 2009;

Wieczorek et al. 2013). The Moscoviense Basin was se-

lected as one of the sites for future landings and exploration

(Calzada-Diaz & Mest 2013).

In the absence of in-situ measurements (Langseth et al.

1976), the heat flow on the lunar surface is estimated from
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Fig. 1 Mercator projection of topography (a) from LOLA and free air gravity anomaly (b) from GL1500E. Mare Moscoviense is circled

with an angular radius of 7◦.

the effective elastic thickness (Te) because it provides in-

formation on the time-scale during which the lithosphere

relaxes, reaching the isostatic equilibrium (Watts 1994;

McGovern et al. 2002). The elastic thickness is gener-

ally investigated through the admittance, which is esti-

mated from topography and gravity data. (Belleguic et al.

2005; Grott & Wieczorek 2012; Huang & Wieczorek 2012;

Zhong et al. 2014, 2018, 2019). This approach supposes

that the lithosphere of the Moon behaves elastically as

a spherical shell or an elastic plate. In terms of the in-

considerable support of lithospheric membrane stresses to

loads, the lunar lithosphere is best modeled as a thin elastic

spherical shell (Turcotte et al. 1981; Crosby & McKenzie

2005). The shell will deflect elastically according to sur-

face and/or subsurface loads acting on it, and then produc-

ing a resultant gravity anomaly to calculate a modeled ad-

mittance function. By minimizing the misfit between the

modeled admittance and observations, several parameters

designating the properties of the lithosphere can be esti-

mated. These include the crustal thickness (bc) and density

(ρc), load ratio (f ) and the effective elastic thickness (Te)

(McGovern et al. 2002; Zhong et al. 2018, 2019).

Much research has focused on the constraints of these

parameters. Crosby & McKenzie (2005) firstly measured

elastic thickness nearside of the Moon overall, using a low-

precision gravity of Lunar Prospector mission and topog-

raphy from Clementine. With the improvements in grav-

ity information accuracy from SELENE mission, Huang

& Wieczorek (2012) evaluate the possible elastic thick-

ness not only on the nearside but also on the farside of the

Moon. Subsequently, a multi-parameter inversion based on

Particle Swarm Optimization (PSO) algorithm was intro-

duced by Zhong et al. (2014, 2019) to increase computa-

tional efficiency. These inversions are successful on high-

land areas with strong correlation between gravity and to-

pography, but not mare basins or craters. The localized

admittance and correlation spectrum over lunar basins or

craters, especially mare basins, generally fluctuates be-

tween negative and positive values (Zhong et al. 2018). In

such a case, the modeled admittance is not easily fitted with

observations.

To deal with this problem, Zhong et al. (2018) re-

ferred the previous study of Huang & Wieczorek (2012),

and introduced a subsurface load arising at the crust-

mantle interface. In their study, the subsurface load was

actually regarded as super-isostatic uplift. Their algorithm

even employed the PSO to make multi-parameter inver-

sion and successfully estimated the optimized parameters

over Grimaldi basin. However, the challenge to the method

still exists and makes it difficult to be widely applied due

to complexity of selenophysical process. This is one of

the reasons ascribed to the difficult estimation of prefill-

ing basins’ depth, which was used to describe the depth

prior to mare filling. Zhong et al. (2018) took a relation-

ship of depth/diameter to correct the gravity anomaly from

ejected deposits. This method first tries to generate an el-

lipsoid according to the relation between the basins diam-

eter and its possible depth. Taking the difference between

the localized crustal density and its mean value of 2550

kg m−3, the gravity anomaly from ejected deposits can be

measured and corrected from the surface free air gravity

anomaly. However, this approach is insufficient when cor-

recting gravity anomalies produced by ejected deposits in

the Moscoviense Basin.

To estimate the deposits, we first take the bulk den-

sity of the highlands crust (∼2550 kg m−3, Wieczorek

et al. 2013) to remove gravitational contribution from sur-

face topography. The updated topography data from Lunar
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Orbiter Laser Altimeter (LOLA) instrument shows an un-

precedented resolution with spherical harmonic expansion

to degree 2050 (Smith et al. 2010), which is sufficient to

correct surficial gravity anomaly. Then, the resulted gravity

anomaly is Bouguer anomaly, which is mainly produced

at the relief along the crust-mantle interface and density

anomaly in the mantle. They can also be filtered by in-

versely using a minimum amplitude filter of Wieczorek

& Phillips (1998), which is equivalent of a high-pass fil-

ter. Then, the rest of the anomaly is mainly formed of

ejected deposits (Andrews-Hanna et al. 2013; Besserer

et al. 2014), and can be used to invert the prefilling depth.

This depth can be incorporated into the surface loading

model, based on an updated version of the spherical har-

monic thin elastic-shell. Combined with a subsurface load-

ing model of super-isostatic uplift at crust-mantle inter-

face, we can calculate modeled admittance and employ it

to estimate the elastic thickness, as well as other associ-

ated parameters. This process is introduced in Section 2

and Appendix A. The inversion, parameters, results, and

discussion are presented in Section 3. Finally, Section 4

summarizes our work and draws conclusions.

2 DATA AND METHODS

2.1 Data

The lunar gravity field models from the GRAIL mission

were used in this study. The Jet Propulsion Laboratory

(JPL) team recently provided the GL1500E model that is

expanded to degree and order of 1500 (Park et al. 2015).

The GL1500E gravity model has to a half-wavelength res-

olution of ∼ 3.6 km at the lunar surface. This was com-

bined with the lunar topography data to estimate elas-

tic thickness. The topography data was obtained from the

LOLA instrument. The best resolution LOLA data has a

spherical harmonic degree and order of 2050, which cor-

responds to a spatial resolution of 3 km. The GRAIL and

LOLA data are available on the Geosciences Node of the

NASA Planetary Data System (PDS).

2.2 Localized Admittance

Supposing h represents topography and g denotes the sur-

face gravity, they can be expanded in the form of spherical

harmonics. Supposing their spherical harmonic expansion

coefficients are glmand hlm, respectively, it can be written

as

g(Ω) =
∑

ilm

glmYlm(Ω), h(Ω) =
∑

ilm

hlmYlm(Ω) , (1)

in which Ylm represents the normalized spherical harmon-

ics of degree l and order m, Ω denotes space angle of lon-

gitude φ and colatitudeθ, and i varies between 1 and 2 for

the cos(mφ) and sin(mφ). According to the research of

Wieczorek & Simons (2005); Wieczorek & Simons (2007)

it is firstly needed to localize the global expanded gravity

and topography in order to estimate parameters in a local-

ized region. As to such region with an angular radius θ0,

the globally distrusted gravity and topography can be local-

ized with an axisymmetric windowing function ψ(θ0). It

can be expanded with a normalized Legendre’s polynomia

ψjpj0(cos θ0) up to a maximum degree lwin (Wieczorek &

Simons 2005; Wieczorek & Simons 2007).

ψ(θ0) =

lwin
∑

j=0

ψjpj0(cos θ0) . (2)

By multiplying the global data with a windowing func-

tion, we can get the localized gravity g(Ω)ψ(θ0) and lo-

calized topography h(Ω)ψ(θ0). Then we can estimate the

cross-power SΦΓ(l) between the localized gravity and to-

pography, which is given as (Wieczorek & Simons 2005;

Wieczorek & Simons 2007)

∞
∑

l=0

SΦΓ(l) =
1

4π

∫

Ω

[ψ(θ0)g(θ0)][ψ(θ0)h(θ0)] dΩ . (3)

Analogously, we can obtain the auto-power spectrum

SΦΦ(l) and SΓΓ(l) for g(Ω)ψ(θ0) h(Ω)ψ(θ0), respec-

tively. It is then likely to estimate the localized admittance

z(l) and correlation γ(l) (Wieczorek & Simons 2005;

Wieczorek & Simons 2007), which have the expression of

z(l) =
SΦΓ(l)

SΓΓ(l)
, γ(l) =

SΦΓ(l)
√

SΓΓ(l) · SΦΦ(l)
. (4)

According to the researches of Bendat & Piersol (1971),

the error of localized admittance is rewritten as

σ2
z(l) =

SΓΓ(l)

sΦΦ(l)

1 − γ2(l)

2l
. (5)

2.3 Misfit Function

We here modeled the lunar lithosphere as an elastic and

thin spherical shell. Given a serial of estimated param-

eters mentioned above, we can evaluate a corresponding

modeled gravity anomaly for the shell, which is described

in Appendix A. In light of equations (2)–(5) and equa-

tions (7)–(9) in the recent study of Zhong et al. (2019), we

can get the resulted gravity anomaly and its modeled ad-

mittance. By minimizing misfit between the modeled ad-

mittance and the observations, we can estimate the afore-

said parameters. According to the research of Belleguic

et al. (2005), we take chi-squared as the misfit function,

which is expressed as

σ2 =
1

N

lmax
∑

l=lwin

[
zobs(l) − zmod(l)

σz(l)
]2 , (6)
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in which the observed and modeled admittances are rep-

resented by zobs(l) and zmod(l), respectively, which have

a degree l, and σz(l) designates the observed admittance

error of Equation (5). lmax is the maximum degree of the

expanded gravity in Equation (1). Considering the four es-

timated parameters aforesaid, we have the relation N =

lmax − 2lwin − 4 for the number of degrees of freedom.

Due to the chi-squared function having a standard devi-

ation near to

√

2
N

, we can estimate the free parameters

within 2σSTD = 2
√

2
N

.

2.4 Prefilling Depth Inversion

The observed surface free-air gravity anomaly over

Moscoviense is mainly contributed by surface topogra-

phy, ejected deposits and/or intrusion, topography at the

Moho, and the mantle density anomaly (Thorey et al.

2015). The updated GRAIL gravity field model is ex-

panded up to degree 1500 (Park et al. 2015), and its root-

mean-square (RMS) spectrum is designated as GL1500e in

Figure 2(a). Considering a finite-amplitude relief correc-

tion (Wieczorek & Phillips 1998) of the topography with a

constant crustal density of 2550 kg m−3 (Wieczorek et al.

2013), we can estimate the gravitational contribution from

the surface topography and subtract it from the free air

gravity anomaly to obtain Bouguer anomaly. Then, we ap-

ply the low-pass filter of Wieczorek & Phillips (1998) to

filter the Bouguer anomaly and the rest signals is mainly

from deposits and/or intrusion. We parameterized the filter

with a half value at a spherical harmonic degree λ, which

is associated with the size of the studied basin. Different

places generally show different values of λ. After many

tests, we find that a best-fitting parameter can be found at

the degree of 40 (λ = 40), with a corresponding spatial

resolution (i.e., wavelength) of about 270 km.

More spherical harmonic coefficients of high degrees

considered in calculation can amplify short wavelength

noise in the gravitational field. Considering the Bouguer

gravity of the updated GRAIL model is accurate to about

degree 600 (Park et al. 2015), both the gravity field model

and topography are truncated at the degree and order of

449. We also consider a cosine filter to remove short wave-

length noise resulted from truncation between degree 400

and 449. The RMS spectrum of the filtered gravity model is

represented by Filtered Bouguer in Figure 2(a). According

to the study of Thorey et al. (2015), the Bouguer anomaly

is actually a result of band-passed filtering. Its shortest

and longest signals are mostly eliminated. Using Filtered

Bouguer, we can inverse the prefilling depth of the basin

using equation (18) of Wieczorek & Phillips (1998). The

estimated subsurface topography under Moscoviense is

shown in Figure 2(b), which shows the lowest depth at the

basin’s center.

3 RESULTS AND DISCUSSION

The research of Wieczorek et al. (2013) demonstrated that

the lunar lithosphere deforms little for the loads beyond

spherical harmonic degree and order 150. We thus trun-

cated the gravitational and topographic models up to de-

gree 150 (lmax=150). We took an angular radius of 7◦ to

constrain the mare Moscoviense, which can contain all the

gravitational features associated with its low-lying floor

(Neumann et al. 2015). Such radius corresponds to a spher-

ical harmonic bandwidth of 37. Considering removing

long-wavelength variations in crustal density Wieczorek

et al. (2013), the number of degrees of freedom analyzed

here is close to 70, with a corresponding 2σSTD of 0.338.

It means that the parameters can be best-estimated with an

RMS misfit σ lower than 1.338. The ranges of these pa-

rameters and other nominal ones are listed in Table 1. In

the localized admittance analysis, we merely considered a

single localization window, which is employed in the pre-

vious study of Huang & Wieczorek (2012). To avoid leak-

age of power, we take a window whose power up to 99%

concentrates within the targeted place.

To estimate best-fitted parameters, we first evaluate the

subsurface topography at the crust-mantle interface to pro-

duce a synthetic gravity anomaly (Turcotte et al. 1981).

The relief can be calculated according to observed surface

topography or the possible prefilling depth (McGovern

et al. 2002; Crosby & McKenzie 2005; Zhong et al. 2018,

2019). As the nonlinearity of the thin elastic spherical

shell, Zhong et al. (2018) introduced an updated version of

spherical harmonic thin elastic-shell loading model. Their

model is not only useful in highland area, but is also ap-

plicable for Mare basins. Based on their research and after

many tests, we find that it is possible to make a best-fitted

estimation when considering crust-mantle relief compen-

sated by the prefilling depth (h0) of Figure 2(b) rather than

observed surface topography (∼depth after filling, h).

Based on previous research (Zhong et al. 2018),

we consider four interfaces into our model to produce

synthetic gravity anomaly. Reliefs of these interfaces

are shown in Table 2 and their estimation can be pro-

cessed according to Equations (A.1)–(A.15). Given a se-

rial of parameters aforementioned, we can remove grav-

ity anomaly from prefilling depth and produce a mod-

eled admittance based on the left gravity anomaly in terms

of Equations (A.1)–(A.3). To make a multi-parameter es-

timation, the modeled admittance was fitted with ob-

servation through a nonlinear algorithm Particle Swarm

Optimization (PSO). After many tests, we take a trade-off

swarm size of 400 and iterations of 50 to make a global op-
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Table 1 Nominal Parameter Values

Parameter name Value or range

Load ratio f −0.8∼5

Mean crustal density ρc (kg m−3) 2000∼3200

Mean crustal thickness bc (km) 0.0∼60

Lithospheric elastic thickness Te (km) 0.0∼150

Surface gravity acceleration g (m s−2) 1.721

Referenced radius R (km) 1737.15

Mass of the Moon M (kg) 7.3458998185×1022

Poisson’s ratio of lithosphere υ 0.25

Young’s modulus of lithosphere E (Pa) 1.0×1011 (McGovern et al. 2002)

Density of filling deposit ρs (kg m−3) 3200 (Namiki et al. 2009)

Mantle density ρm (kg m−3) 3220 (Wieczorek et al. 2013)

Table 2 The Referenced Interfaces Utilized in the Calculation of Modeled Gravity Anomaly

No Interface Relief of interface Density contrast Referenced radius

1 Prefilling depth h0 ρc R

2 Crust-Mantle interface −(hb + wt) ρm − ρc R − bc
3 Subsurface load wb ρb R − zb

4 Referenced layer of subsurface load −(hb + wt) −ρb R − zb

timization. The result indicates that the best-fitted crustal

thickness is around 36.2 km, with a corresponding best

value of density about 3159.5 kg m−3. The best-evaluated

load ratio is found quite small, close to 0.168. The best-

inversed Te is about 18 km, smaller than those thicknesses

over the mare basins on the nearside of the Moon (Sugano

& Heki 2004).

The best-fitted crustal thickness and density are about

36.2 km and 3159.5 kg m−3, respectively. A small surface

to subsurface load ratio of 0.168 is found and the elastic

thickness is constrained around 18 km.

The best-fitted spectrum between the modeled admit-

tance and observation is shown in Figure 3. The spectra

of admittance and correlation present an intuitive fluctu-

ation between negative and positive values.The observed

admittance spectrum shows a decline steeply from the be-

ginning to the degree 51, where the admittance value even

gets close to –450 mGal km−1. It climbs until degree 58

where the admittance is near to the maximum value (∼150

mGal km−1) but shows another descent towards larger de-

grees. Then, it ascends at the degree 70 where the admit-

tance value approaches to −18 mGal km−1 and stops to

decline sharply until degree 102. Over the rest degrees, it

even rises steadily again. It is evident that the best-fitted ad-

mittance spectrum behaves similarly with the observation.

The corresponding misfit σ is close to 1.296 which is lower

than 2σSTD of 1.338. Therefore, the elastic thickness (Te)

associated with other parameters including crustal thick-

ness (bc) and density (ρc), and load ratio (f ) is well con-

strained within 2σSTD.

For the purpose of testing acceptable ranges, Figure 4

carried out a trade-off study. Figure 4(a) gives a trade-off
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variation between Te and f . It can be found that the best-

fitted elastic thickness Te ranges from 16.8 km to 18 km,

while f varies between 0.16 and 0.172. The elastic thick-

ness in Figure 4(b) varies between 17.5 km and 18 km,

where the crustal thickness changes from 35.8 km to 37.2

km. In the rest panel of Figure 4, the elastic thickness fluc-

tuates in a relatively wide range from 16.4 km to 18.1 km,

and the well constrained crustal density falls in the range

from 3155 kg m−3 to 3160 kg m−3.To further study the

ranges of parameters, Figure 5(a) and Figure 5(b) demon-

strate a load ratio (f ) of 0.618+0.0023
−0.0018 and a crustal thick-

ness (bc) of 36.2+0.3
−0.3 km, respectively. Such low value of

load ratio found here is a result of high density of crust.

As aforementioned, the subsurface is regarded as super-

isostatic uplift at the crust-mantle interface. It is noted that

the crustal density is around 3159 from Figure 4(c) and

Figure 5(c), closing to the value of lunar mantle. It is there-

fore difficult to distinguish the crust-mantle interface and

accordingly impossible to recognize the subsurface load.

As the crustal thickness found here, it is actually equiva-

lent to a regional mean value (Turcotte et al. 1981). Our re-

sult is quite close to the mean crustal thickness (∼40 km)

around Moscoviense in the research of Wieczorek et al.

(2013) and Miljković et al. (2015).

Figure 5(c) exhibits a best-fitted crustal density rang-

ing from 3158.7 kg m−3 to 3160 kg m−3. This result also

approaches to the studies of Wieczorek et al. (2013) and

Miljković et al. (2015). Analyses of lunar mare basalts

(Longhi 1992), as well as simulations of magma ocean

crystallization (Elkins-Tanton et al. 2011) imply olivine

as one of the minerals composing the lunar upper man-

tle. This conclusion has been supported by the inversions

of seismic travel-time data (Khan et al. 2007; Kronrod &

Kuskov 2011). It is also approved by the observations from

Kaguya mission (Yamamoto et al. 2010, 2012) and from

Chandrayaan-1 spacecraft (Bhatt et al. 2018). Recent nu-

merical simulations have confirmed the excavation of lunar

upper mantle over Moscoviense as well (Miljković et al.

2015). The best-fitted crustal density found here (∼3159.5

kg m−3) is close to the density of olivine, indicating the

possible excavation of mare Moscoviense during its basin-

forming impact.

The rest panel of Figure 5(d) displays an elastic thick-

ness varying between 17.7 km and 18.1 km. This value is
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Fig. 5 Minimized misfits σ for the analyzed Mare Moscoviense. Panels (a-d) are σ distributions concerning load ratio f , crustal

thickness bc, crustal density ρc, and elastic thickness Te. Here the dashed lines represent 2σSTD.

quite lower than previous results (∼60 km) over mare lo-

cations on the nearside of the Moon (Arkani-Hamed 1998;

Sugano & Heki 2004). Such abnormal small elastic thick-

ness means distinct selenophysical process between mare

Moscoviense and other mare basins on the nearside. Using

the first high-precision gravity from SELENE mission,

Ishihara et al. (2011) proposed an alternative hypothesis

of double impact scenario for the Moscoviense basin for-

mation. This hypothesis not only accounts for the anoma-

lously large mantle plug beneath the basin but it also an-

swers the asymmetric surface geomorphology and exca-

vation of olivine rich material. Contemporaneously, not

only Ishihara et al. (2011) but also Thaisen et al. (2011)

supported the possible formation of multiple impacts. If

Moscoviense did experience such scenario of double or

multiple impacts, the later impact would reheat the basin

and weaken the flexural rigidity built at the first impact.

Additionally, the mare volcanism could ascribe to the small

elastic thickness. The researches of Morota et al. (2009)

and Taguchi et al. (2017) indicated that most of the mare

basalts erupted for 200 Ma after the mare basins forma-

tion. The long-term volcanism could greatly heat the base

of the mare basins, even leading to magma intrusion into

the crust. The high crustal density of 3159.5 kg m−3 es-

timated here could possibly be the result of this process.

Considering the extraordinary heating process of multiple

impacts and mare volcanism, the ancient lithosphere over

mare Moscoviense could develop quite thin and the small

elastic thickness estimated here would be reasonable.

4 CONCLUSIONS

In this study, we utilize a localized admittance analysis to

inverse elastic thickness as well as associated parameters

over Mare Moscoviense. Based on an updated version of

spherical harmonic thin elastic-shell loading models, we

have successfully fitted the modeled admittance with ob-

servation. This result indicates that the crust-mantle inter-

face is mainly compensated by the prefilling depth (h0)

rather than the observed surface topographyh. Constrained

within 2σSTD, a small load ratio (∼ 0.168) is found here.

The mean value of best-fitted crustal thickness gets close

to 36.2 km, which is near to other results (∼ 40 km) from

GRAIL. The global optimal solution of crustal density

is around 3159.5 kg m−3, coinciding with other results

from GRAIL. Such relatively large density approaches to

the density of olivine which is observed as one of the

minerals from the lunar upper mantle. This result implies

the possible excavation of Mare Moscoviense during its

basin-forming impact. A best-inversed elastic thickness is

discovered to be surrounding 18 km. This small value is

quite lower than previous results (∼ 60 km) over the near-

side mare basins. It indicates an extreme thermal activ-

ity existed during the Moscoviense basin-forming period,

for example, the reheating mechanism during the possible

double-impact process and mare volcanism. This result can

be of great significances to understand the inhomogeneous

thermal evolution on the Moon.
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Appendix A: APPENDIX A. GOVERNING

EQUATION AND MODELED

GRAVITY

Due to the support of membrane stresses to loads, Turcotte

et al. (1981) and Zhong & Zuber (2000) demonstrated that

the lunar lithosphere is better modeled as a thin and elas-

tic spherical shell. Supposing the lunar lithosphere corre-

sponds to a load q (positive downward) with a defectionwL

(positive downward), Kraus & Kalnins (1968) and Turcotte

et al. (1981) derived the governing equation of the shell,

which is expressed as

D∇
6wL + 4D∇

4wL + ETeR
2
∇

2wL + 2ETeR
2wL

= R4[(∇2 + 2) − (1 + ν)]q
(A.1)

in which the reference radius of the shell is designated by

R, Yong’s modulus is denoted by E, Poisson’s ratio is rep-

resented by ν, and the flexural rigidity is designated by D

which has the relation D =
ET 3

e

12(1−ν)2 .

Not only does surface load cause the deflection of the

lithosphere, but also subsurface load (Forsyth 1985). We

here suppose hi represents the initial topography of the sur-

face load and wi denotes the initial relief of the subsurface

load. Also imaging ht and wb are their heights after load-

ing, their corresponding lithospheric deflection wt and hb

can be deduced as (Forsyth 1985)

hi = ht + wt (A.2)

wi = wb + hb (A.3)

We here assume that the lunar crust-mantle interface is

compensated before ejected deposits infilling the basins.

Then, we can obtain the prefilling depth h0 and subsurface

load interface w as follows:

h0 = ht − hb (A.4)

w = wb − wt (A.5)

The actual lithosphere deflection is likely produced by

the combination of the surface and subsurface loads. We

here introduced a model involving four interfaces, which is

shown in Table 2. The quantities of bc and zb represent the

crustal thickness and subsurface load depth, respectively.

Imagining subsurface load generates at the crust-mantle in-

terface, we can have the relationship bc = zb. Accordingly,

the total pressure generated is

q = g[ρch0−(ρm−ρc)(hb+wt)+ρb(wb−wt)+ρb(hb+wt)]

(A.6)

in which ρb is the density contrast between the subsurface

load and its surroundings. According to prefilling depth h0,

we can solve Equation (A.1) by the introduction of load-

ratio f , which is defined as (Forsyth 1985)

f =
ρbwi

ρchi
(A.7)

Taking Equations (A.1)–(A.7) into account, the lithosphere

will deflection with a value of wL. It can be written as

(Zhong et al. 2018)

wL = −k1 · h0 − k2 · w (A.8)

where

k1 =
fρc

fρc + ρm − ρc
(A.9)

k2 =
ρm − ρc

fρc + ρm − ρc
(A.10)

Equation (A.1) is a typical nonlinear equation and no exact

solutions exist. However, it can be solved as spherical har-

monic form when assuming the estimated parameters be-

ing isotropic (McGovern et al. 2002; Huang & Wieczorek

2012). Supposing the subsurface load interface w can be

expanded in spherical harmonics and imagining wlm is

its expanding coefficient, then we can have the relation

(Zhong et al. 2018)

Wlm = −
k3(l)

k4(l)
h0,lm (A.11)

where

k3(l) = σk1 ·λ1(l)+ τk1 ·λ2(l)+
ρc

ρm − ρc

λ3(l) (A.12)

k4(l) = σk2 · λ1(l) + τk2 · λ2(l) + λ3(l) (A.13)

σ =
D

gR4(ρm − ρc)
(A.14)

τ =
ETeR

2

gR4(ρm − ρc)
(A.15)

where h0,lm is the spherical harmonic coefficient with de-

gree l and order m of the prefilling depth h0. Other quan-

tities of λ1(l), λ2(l) and λ3(l) are referred as those in the
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recent study of Zhong et al. (2018). Given a serial of es-

timated parameters such as f , bc, ρc and Te, it can be es-

timated the resulted amplitudes of interfaces in Table 2 as

well as the corresponding surface gravity anomaly. These

anomalies can be estimated according section 2.3 in the

research of Zhong et al. (2019).
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