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Abstract The derivation of element abundances of stars is a key step in detailed spectroscopic analysis. A

spectroscopic method may suffer from errors associated with model simplifications. We have developed a

new method of deriving the various element abundances of stars based on the calibration established from

a group of standard stars. We perform principal component analysis (PCA) on a homogeneous library of

stellar spectra, and then use machine learning to calibrate the relationship between principal components

and element abundances. By testing with spectral libraries S4N and MILES, we find that our procedure

provides good consistency when spectra from a homogeneous set of observations are used, and it could be

expanded to stars with quite a wide range of stellar parameters, with both dwarfs and giants. Moreover, we

discuss the four key factors that have a significant impact on the results of derived element abundances,

including the resolution of the spectra, wavelength range, the signal-to-noise ratio (S/N) of spectra and the

number of principal components adopted.
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1 INTRODUCTION

The spectra we sample from a star provide information on

the atmosphere of the star. Stellar spectra are described

with three basic atmospheric parameters including effec-

tive temperature, surface gravity and overall metallicity.

The most notable information inferred from the spectrum

of a star is the chemical composition, from the strength

of the absorption lines associated with different elements.

By measuring the element abundances of stars, we seek to

account for the production of chemical elements that we

identify in the universe, its time dependence and for many

of the features of galaxies that we observe. Understanding

stellar evolution, the birth and death of stars and how they

interact with their environments is critical to comprehend-

ing the evolution of galaxies.

There are several ways to determine the element abun-

dances of a star. The two most common approaches are

the direct comparison of observed and synthetic spectra,

and the equivalent width technique based on excitation

equilibrium and ionization balance (Blanco-Cuaresma et

al. 2014). The synthetic spectral fitting technique tries to

minimize the difference between observed and synthetic

spectra by directly comparing the whole observation or

some delimited regions. The equivalent width method does

not use all the information contained in the shape of the

absorption-line profiles, but only their area, to deduce the

element abundances from different lines. Also, to deter-

mine element abundances, the stellar atmospheric parame-

ters – effective temperature, surface gravity, overall metal-

licity, microturbulent and macroturbulent velocities, and

rotation – must be known. Moreover, the model atmo-

spheres and line list selection will all contribute to the error

of measured element abundances.

Ongoing new surveys have resolutions that allow more

precise determination of not only the stellar parameters

of stars, but also of the chemical abundances of several

individual elements. Examples of such projects are the

Gaia-ESO Survey (Gilmore et al. 2012; Randich et al.

2013), RAVE (Steinmetz et al. 2006), APOGEE (Allende

Prieto et al. 2008), GALAH (da Silva et al. 2012), and

the future with millions of stars from the Radial Velocity

Spectrograph (RVS) provided by Gaia. A sufficient quan-

tity of accurate stellar abundances will reveal the com-

plete chemical evolution of the Milky Way, and most au-

tomated pipelines have evolved from traditional manual
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methods. However, there has been relatively little work

done to analyze the spectra using unconventional methods.

The Cannon is a data-driven model that is effective for in-

ferring physical attributes of stars from spectra (Ness et al.

2015; Casey et al. 2016). The basic assumption by which

Cannon operates is that the spectrum of a star is a function

of its stellar parameters and the element abundance is a

smooth function of the independent variable, while our hy-

pothesis is that principal component analysis (PCA) could

help to retain important information in the spectrum, and

the nonlinear function between the principal components

and the element abundances can be reversed by machine

learning. Our procedure is inspired by the work of Bermejo

et al. (2013), who derived stellar effective temperatures us-

ing PCA and Bayesian calibration.

In this paper, we introduce a new method of inferring

stellar abundances. We firstly condense the information

contained in stellar spectra using PCA. Then we map the

principal components onto stellar abundances based on a

set of calibration stars. Once the calibration for some stan-

dard stars is performed by deep learning, we can derive

stellar abundances for other stars based on the calibration.

By applying PCA, it is optimized to make use of the most

information inherent in a spectrum.

We describe the spectral library and methods of cali-

brating the relationship between spectra and element abun-

dances in Section 2. The test results and analysis of factors

influencing the derivation of element abundances are pre-

sented in Section 3. Finally, the conclusions can be found

in Section 4.

2 DATA PREPARATION

2.1 S4N Library

The S4N library comes from a high-resolution spectro-

scopic survey of all the stars more luminous than MV =

6.5 within 14.5 pc from the Sun (Allende Prieto et al.

2014). A preliminary abundance and kinematic analysis

of FGK stars in the sample was performed. Also, abun-

dances of 16 chemical elements were discussed based on

transitions of majority species. These spectra have a signal-

to-noise ratio (S/N) of 150−600 and a resolving power of

R∼50 000. They cover the range of −0.9 to 0.5 in metal-

licity. The final spectra were velocity corrected using hun-

dreds of solar atomic lines as reference, and this helps to

produce a highly homogeneous archive. We are left with

104 stars as we only include stars with the element abun-

dances well calibrated in the library. Formerly, the deter-

mination of abundances, and micro- and macroturbulence,

was accomplished by minimizing the chi-square value be-

tween synthetic and observed line profiles. A line-by-line

approach was used to identify outliers and estimate inter-

nal uncertainties. Moreover, this approach to calculating

the element abundances is strictly differential as it incor-

porates every single abundance estimate from a line to the

solar abundance from the same line.

2.2 MILES Library

The MILES database contains flux calibrated optical spec-

tra with high S/N for 985 stars covering λ ∼3525−7000Å

with a homogeneous resolution full width at half max-

imum (FWHM) = 2.3 Å. The parametric coverage of

sample stars is quite wide: 2800 ≤ Teff ≤ 50 400 K,

0.0 ≤ log(g) ≤ +5.0 and −2.7 ≤ [Fe/H] ≤ +1.0 dex.

Milone et al. (2011) have obtained [Mg/Fe] measure-

ments for 76.3% of stars in the MILES spectral library.

These abundance ratios were procured through a com-

pilation of values from the literature on high-resolution

spectroscopic studies and analysis using MILES mid-

resolution spectra. The calibrated [Mg/Fe] values have

small average uncertainties, which are 0.09 with high-

resolution spectra and 0.12 with mid-resolution spectra.

Though spectra in the MILES database had been flux cal-

ibrated, a homogeneous 1-D normalization was applied

through the continuum task of the onedspec Package

of the NOAO Optical Astronomy Packages of Image

Reduction and Analysis Facility (IRAF).

2.3 Method

2.3.1 PCA approach

PCA is an algebraic and statistical tool which aims to find

directions of the largest variance in the data. To use prin-

cipal components, we adopt a new basis set formed by

eigenvectors of the correlation matrix and order them by

decreasing eigenvalues. With projection of the data onto

the first tens of elements of the basis, we can acquire the

principal components of the projected spectra and repro-

duce optical low-resolution spectra with minimal error.

Moreover, it implies that the PCA method leaves us with

enough information about the data. So with minimal effort,

PCA provides a roadmap for how to reduce a complex data

set to a lower dimension to reveal the hidden and simpli-

fied structures. We processed the data using PCA with the

following steps:

1. Calculate the mean spectrum and subtract it from

each spectrum.
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2. Organize data matrix D which has dimensions

M×N, where M is the number of spectra and N is the num-

ber of data points from each spectrum.

3. Apply singular-value decomposition (SVD) to the

data matrix, D = UWV T , where W is a diagonal matrix

with positive elements, and V is a matrix of eigenvectors

(each column is an eigenvector, the eigen-spectra in this

work). The eigenvectors are called principal axes or the

principal directions of the data. Projections of the data on

the principal axes are called principal components.

By using PCA, we condense the calibration set of

spectra into numbers of eigen-spectra. Then by projecting

the test set of spectra onto the eigen-spectra, the principal

components of each test spectrum would be derived. These

principal components of each test spectrum should contain

information on how different elements affect the shape of

the spectra. Finally, we seek a calibration between the prin-

cipal components of the spectra and their elemental abun-

dances using machine learning.

2.3.2 Machine learning

Machine learning implements statistical techniques to en-

able computer systems to “learn” data. Machine learning

tasks are usually divided into two categories, unsupervised

learning and supervised learning, depending on whether

there is a final goal of learning.

Unsupervised learning should find its own structure in

the input. However, a supervised learning algorithm ana-

lyzes training data and produces an inferred function. With

this function, we can predict the output variables from the

new input data. To infer the mapping function, we used

a class of feedforward artificial neural networks called a

multilayer perceptron (MLP). An MLP consists of at least

three layers of nodes. Between the input and output layer,

there can be one or more non-linear layers, called hidden

layers.

The input layer contains a set of neurons representing

the input features, here referring to the principal compo-

nents of the spectra. The output layer will be the element

abundances. Each neuron in the hidden layer transforms

values from the previous layer with a weighted linear sum-

mation, followed by a non-linear activation function; here

we use the rectified linear unit function.

For regression, the MLP uses the Square Error loss

function, written as

Loss(ŷ, y, W ) =
1

2
||ŷ − y||22 +

α

2
||W ||22 . (1)

The learning problem in neural networks is formulated

with respect to minimization of the loss function. This

function is, in general, composed of an error term and a

regularization term. The error term evaluates how well the

neural network fit the data set. On the other hand, by con-

trolling the actual complexity of the neural network, the

regularization term is used to prevent overfitting. Starting

with initial random weights, the MLP minimizes the loss

function by repeatedly updating these weights (Rumelhart

et al. 1986). After the loss is calculated, it is passed back

to propagate it from the output layer to the previous layers,

providing an updated value for each weighting parameter

that is intended to reduce the loss.

The necessary condition states that if the neural net-

work is at a minimum of the loss function, then the gradi-

ent is the zero vector. Newton’s method is a second or-

der algorithm because it makes use of the Hessian ma-

trix. The purpose of this method is to find a better train-

ing direction by using the second derivatives of the loss

function. The application of Newton’s method is computa-

tionally expensive because it requires many operations to

evaluate the Hessian matrix and calculate its inverse. The

algorithm we adopted here is Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS), an optimization al-

gorithm in the quasi-Newton method family that uses

a finite amount of computer memory to approximate

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

(Liu & Nocedal 1989). It is a simplified algorithm for

parameter estimation in machine learning. L-BFGS uti-

lizes an estimate of the inverse Hessian matrix to guide

its search through variable space. Whereas BFGS stores a

dense n × n approximation to the inverse Hessian (with

n being the number of variables in the problem), L-BFGS

stores only a few vectors that represent the approximation

implicitly. Due to its resulting linear memory requirement,

the L-BFGS method is particularly well suited for opti-

mization problems with a large number of variables. The

algorithm stops when the preset maximum number of iter-

ations is reached, or when the improvement in loss is below

a certain fractional number.

Before we apply the machine learning method, we

need to preprocess the data. MLP is sensitive to feature

scaling, so we need to scale our data before modeling. For

instance, we scale each attribute in the input vector X , the

principal components of each spectrum to [−1, +1], and

the element abundances to [0, 1]. Of course, the same scal-

ing must be applied to the calibration set and the test set

at the same time to obtain meaningful results. Our cal-
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culation is implemented in libraries from the scikit-learn

Python package (Pedregosa et al. 2011).

3 RESULTS AND DISCUSSION

We now present the results of applying the previous for-

malism to the calibration of various element abundances.

The inferred functions are computed by deep learning us-

ing the calibration set. Then we apply the model to the test

set in the same library. To evaluate the performance of fit-

ting the element abundances, we will focus on the recovery

of [X /Fe].

With the S4N library, we randomly selected 80 stars as

the calibration set and the remaining 24 stars as the test set.

In Figure 1, we show the recovery performance of differ-

ent kinds of element abundances including alpha elements,

iron-peak elements and heavy elements. The calculation is

based on spectra with downgraded resolution of 10 000.

The recovery errors of most samples are less than 0.1 dex.

Also, we find that the ratio of two elements from differ-

ent categories is easier to recover than that of two elements

from the same category, since two elements from the same

category tend to be correlated and quite similar, especially

[Ti/Sc], [Ni/Fe], [Nd/Ce], etc.

As with the S4N library, we randomly selected 532

stars in the MILES library as the calibration set and 155

stars as the test set. In Figure 2, we show both the recov-

ery results from our procedure and error bars from (Milone

et al. 2011). The root mean square (RMS) of our recov-

ery error is ∼0.15 dex, which is close to the mean error of

[Mg/Fe] ∼0.12 from mid-resolution spectra in MILES.

We will discuss the four key factors that have a signif-

icant impact on the recovery results, including the resolu-

tion of the spectra, wavelength range, S/N of the spectra

and the number of principal components adopted.

3.1 Resolution

For the stellar element abundances we calculated, we

tested with both R = 10 000 and 1000. Though degrad-

ing the spectra means destroying information, it does help

to reduce the impact of high-frequency instrumental distor-

tions in the data. When we smoothed the spectra from R =

10 000 to 1000, the recovery results of element abundances

for the test set of stars became worse at R = 1000, which

means that lower resolution would cause the loss of some

critical information about the element abundances.

For example, we compare the recovery performance of

[Ca/Si] under different resolutions of R = 1000 and 10 000

in Figure 3. The error range of the testing set naturally be-

comes expanded with lower resolution. Other than [Ca/Si],

we also tested the influence of resolution on [Y/Si], though

the RMS error seems to be close. Apparently the error it-

self shows some tendency against the actual value of el-

ement abundances. For each element, the recovery accu-

racy depends on how much information could be extracted

by principal components from the spectra, and the suitably

higher resolution means that the spectra have kept more

information about the shape of the elements’ curve on the

spectra.

3.2 Wavelength Range

The wavelength range plays an essential role in the calcula-

tion of element abundances since different elements would

affect the shape of the spectra to different extents at var-

ious ranges, though Bermejo et al. (2013) found that the

spectral range was not critical for obtaining reliable results

for effective temperature. However, for different elements,

their absorption lines are concentrated in different ranges

of the whole spectrum.

For simplicity, we split the spectra into the red part

(5800 Å−6800 Å) and the blue part (4800 Å−5800 Å) to

compare the fitting results under different wavelength

ranges. For most of the elements we study here, the red part

is more conducive to the recovery of the abundances. Also,

the three alpha elements: Mg, Si and Ca are most sensitive

to the wavelength range. Notably, we compare the recov-

ered [Mg/Si] under the two different parts of the spectrum

in Figure 4. It demonstrates that the red part of the spec-

trum can distinguish the relative abundances of Mg and Si,

but the blue part cannot lead to the correct results since

it overestimates the lower values and underestimates the

higher values.

Moreover, the iron-peak elements are almost unaf-

fected by this factor. Also, among the heavy elements, Ba,

Ce, Nd and Eu are recovered more precisely under the red

part of the spectrum, although Y is good with both parts

of the spectrum. Apparently, for FGK stars, the red part of

the spectrum contains more information about the element

abundances of a star, and such related information could

be extracted by the PCA method.

3.3 Truncation of Principal Components

In fact, the number of principal components has a great

impact on the calibration accuracy of the element abun-

dances. Bermejo et al. (2013) stated that an accurate cal-

ibration of the effective temperature with the principal

components from spectra could be obtained independently
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Fig. 1 Recovery results of the test set from the S4N library with [Mg/Fe], [Sc/Fe], [Co/Fe], [Zn/Fe], [Ba/Fe] and [Ce/Fe]. The three

solid lines with slope = 1 have intervals of 0.1 dex.

Fig. 2 The recovery results of the test set from the MILES library with [Mg/Fe]. The error bars come from Milone et al. (2011).

The three solid lines have the same meanings as in Fig. 1.

from the number of principal components. However, it is

evident that the element abundances have a more compli-

cated relationship with the shape of the spectra than the

effective temperature, so we have to decide the proper trun-

cation of the principal components.

After our tests, for the R = 10 000 spectra, increasing

the number of principal components would be helpful for
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Fig. 3 Comparison of the recovery performance of [Ca/Si] under resolutions of R = 1000 and 10 000.

Fig. 4 Comparison of the recovered [Mg/Si] under the two different parts of the spectrum.

deriving more accurate element abundances. In Figure 5,

we compare the fitting error of [Mg/Si] for the test stars set

with the number of principal components ranging from 3

to 80. It is apparent that the truncation of principal compo-

nents severely affects the fitting results. The PCA method

determines that the most critical information be focused on

principal components with the most eigenvalues, and keep-

ing most of the extracted features would help to deduce the

element abundances more precisely. However, for the R =

1000 spectra, the resolution itself limits the useful infor-

mation, and even with all the principal components kept,

the fitting accuracy cannot reach an acceptable level.

3.4 S/N of the Spectra

The value of S/N can limit the calibration of element abun-

dances. Initially, a spectrum in the S4N spectral library has

a sufficiently high S/N. Also, convolving these spectra to

a lower resolution would result in extremely high S/N per

pixel. Therefore, as a test, we directly superimposed ran-

dom numbers with a normal distribution onto the degraded

spectra. Recalculating these spectra with given errors can

manifest the impact of spectral S/N on our method.

There are two ways in which S/N affects the mea-

surement of element abundances. On one hand, the S/N of

the calibration set determines whether the relationship be-
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Fig. 5 Comparison of the fitting error of [Mg/Si] for the test stars set with the number of PCs ranging from 3 to 80. The left panels

display the results under a spectral resolution of 10 000, while the right panels are those under a resolution of 1000.

tween element abundance and principal component can be

accurately determined. On the other hand, the S/N of the

test set will affect the accuracy of the calculated element

abundances.

After our tests, the low S/N can lead to overfitting. In

the case of a resolution of 10 000, the S/N per pixel of the

calibration set needs to exceed 300 to ensure fairly correct

fitting of element abundance and principal component rela-

tionships, whereas, for the spectra with resolution of 1000,

the S/N per pixel of the calibration set needs to be more

than 500.

It is not surprising that we require the S/N of the cal-

ibration set of spectra to be quite high to ensure that the

element abundances can be inferred correctly. However,

the S/N of the test set does not need not to be that high

to achieve acceptable results. With a spectral resolution of

10 000, unless the S/N of the test star is less than 30, the

measurements of most element abundances would not have

uncertainties larger than 0.15 dex. However, for the spec-

tral resolution of 1000, the S/N of the test set needs to be

at least 100 to ensure accuracy.

4 CONCLUSIONS

We have developed a method of deriving element abun-

dances from spectroscopic data by projecting observed

spectra onto the eigenvectors and applying the calibration

derived by machine learning based on a set of stars with re-

liably measured element abundances. Our method converts

the spectra into a fairly small number of principal compo-

nents, and it mainly studies the relationship between over-

all morphology of the spectra and element abundances. It

also helps to calculate elemental abundance for medium

and low resolution spectra.

Unlike traditional methods of determining element

abundances, our procedure does not suffer from problems

of atmospheric models, line selection or line profile fitting.

We checked the method internally for S4N spectra with ex-

cellent results for alpha elements, iron-peak elements and

heavy elements, and we also show that this method could

be expanded to stars with a wide range of stellar parame-

ters (0.0 ≤ log(g) ≤ +5.0 and −2.7 ≤ [Fe/H] ≤ +1.0 dex)

by testing with [Mg/Fe] from the MILES library.

Moreover, we tested the parameters which could af-

fect the calibration accuracy. We discovered that suitably

high resolution helps to extract useful information from

the spectra. Different elements suffer different impacts if

we change the range of spectra being analyzed. Also, the

S/N of the calibration set needs to be high enough to derive

the relationship between element abundances and principal

components. The Cannon method mainly employs spectra
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with precise stellar parameters and elemental abundance

as reference samples for machine learning, and then calcu-

lates the elemental abundance of spectra with lower S/N.

At this point in line with our approach, previous discussion

in this paper also shows that we have higher S/N require-

ments for the reference group’s spectra, while the calcu-

lated spectrum requires lower S/N.

In further research, we expect to include more samples

of high quality stellar spectra with precisely measured ele-

ment abundances to cover a wider range of stellar param-

eters. As this method has demonstrated great potential in

extracting chemical information from mid-resolution spec-

tra, we plan to apply this method to the LAMOST spectral

survey (Zhao et al. 2006, 2012) in our second paper in this

series to study the structure and chemical evolution of the

Milky Way.
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