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Abstract We use the Richardson-Lucy deconvolution algorithm to extract one-dimensional (1D) spectra

from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectrum images. Compared

with other deconvolution algorithms, this algorithm is much faster. The application on a real LAMOST

image illustrates that the 1D spectrum resulting from this method has a higher signal-to-noise ratio and res-

olution than those extracted by the LAMOST pipeline. Furthermore, our algorithm can effectively suppress

the ringings that are often present in the 1D resulting spectra generated by other deconvolution methods.
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1 INTRODUCTION

The Guo Shou Jing Telescope (also called the Large

Sky Area Multi-Object Fiber Spectroscopic Telescope,

LAMOST) (Wang et al. 1996; Su & Cui 2004; Zhao et

al. 2012; Cui et al. 2012; Luo et al. 2012) can obtain 4000

spectra in one exposure, and has collected more than 10

million spectra (see http://dr7.lamost.org). So

far, about 400 peer reviewed papers based on LAMOST

data have been published, which help us understand our

Galaxy in more depth.

The spectrum extraction method is a technique to

convert a two-dimensional (2D) CCD image into one-

dimensional (1D) spectra, which can help astronomers ex-

plore the natures of celestial objects. The traditional ex-

traction methods, including Aperture Extraction Method

(AEM, hereafter), Optimal Extraction Method and Profile

Fitting Method, are the most frequently used methods at

present, and are discussed in detail in Li et al. (2019).

Compared to the traditional methods, the deconvolution

method is a completely different method, which tries to re-

cover the 1D spectra by eliminating instrumental profiles

(Point Spread Function, PSF) on a 2D image. The decon-

volution method was first presented by Bolton & Schlegel

(2010). In their work, a calibration matrix was constructed

from known instrumental profiles, and then inverted to

generate the resulting 1D spectra. As a result, this method

can only extract a small piece of a spectrum image, but

cannot be applied to extract a large spectrum image (for

example, a LAMOST 4k × 4k spectrum image) because

of the huge storage required for the calibration matrix, let

alone calculation. Furthermore, the noise in a real image

would destroy the resulting 1D spectra.

To overcome these shortcomings, Guangwei et al.

(2015) presented a deconvolution algorithm based on

the Tikhonov regularization method (TDM, hereafter) for

practical spectrum extraction. First, they gave a method to

obtain all PSFs which vary with positions on a CCD image.

Second, the big spectrum image is divided into many small

subimages, whose calibration matrices can be easily stored

and inverted during calculation. Third, Tikhonov regular-

ization can effectively suppress the noise. This algorithm

is the first practical deconvolution method to extract 1D

spectra from a multi-fiber spectrum image. The signal-to-

noise ratio (SNR) and resolution of the resulting 1D spectra

are both higher than those generated by traditional meth-

ods. However, they did not discuss how to choose the best

Tikhonov parameter. The choice of the parameter is a cru-
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cial problem, because a fixed Tikhonov parameter is not

always appropriate for all fibers in a multi-fiber spectrum

image.

In our last paper (Li et al. 2019), we developed a de-

convolution method based on adaptive Landweber itera-

tion (ALI, hereafter), which can extract 1D spectra with

the regularization parameter adaptively selected for every

fiber. The SNR and resolution of 1D resulting spectra are

both as high as those of the 1D resulting spectra extracted

by TDM with a deliberately selected Tikhonov regulariza-

tion parameter.

In this paper, the Richardson-Lucy Iteration decon-

volution method is presented. This method can not only

suppress the noise and improve both SNR and resolution

of the resulting 1D spectrum but can also reduce ring-

ings in the resulting 1D spectrum. Besides, the algorithm

can be easily programmed and runs fast. The Richardson-

Lucy Iteration formula is given in Section 2. Section 3

shows the extraction experiments on simulated 2D spec-

trum images. In Section 4, we apply our method on a real

LAMOST spectrum image. Finally, the conclusion is pro-

vided in Section 5.

2 SPECTRUM EXTRACTION METHOD BASED

ON RICHARDSON-LUCY ITERATION

Because the crosstalk on a LAMOST CCD is marginal, we

only discuss how to extract a 1D spectrum from an image

with only one fiber. The image model can be found in Li et

al. (2019), which is

f(x, y) =
N

∑

j=1

gjhj(x − j, y) + η(x, y) , (1)

where N is the number of rows, f(x, y) and η(x, y) are

the count and noise at the xth row and yth column on the

CCD, respectively, gj is the flux at the jth row, hj(x, y)

is the value of the PSF at the jth row on (x, y), and G =

(g1, g2, ..., gN ) is the 1D resulting spectrum. PSFs can be

obtained by the method outlined in Guangwei et al. (2015)

and Li et al. (2019).

The Richardson-Lucy Iteration algorithm (Richardson

1972; Lucy 1974) is a typical nonlinear iterative algorithm,

which is widely applied in astronomical and medical image

processing.

We can assume that the count of each pixel is indepen-

dent and obeys a Poisson distribution. We denote

a(x, y) =
N

∑

j=1

gjhj(x − j, y) ,

which is the real spectrum image without noise. Then the

likelihood function of the image is (Zou 2001)

P (f(x, y)|G) =
∏

x,y

a(x, y)f(x,y)e−a(x,y)

f(x, y)!
. (2)

Then,

lnP (f(x, y)|G) =
∑

x,y

[f(x, y) ln a(x, y)

− a(x, y) − ln(f(x, y)!)] .

(3)

Let ∂
∂gj

[lnP (f(x, y)|G)] = 0, j = 1, 2, 3, ..., N .

Then

∑

x,y

[
f(x, y)hj(x − j, y)

a(x, y)
− hj(x − j, y)] = 0 , (4)

or
∑

x,y

[
f(x, y)hj(x − j, y)

a(x, y)
] − 1 = 0 , (5)

where j = 1, 2, 3, ..., N .

To output the spectrum G, Meinel (1986) suggested

the iteration formula

g
(k+1)
j =g

(k)
j

{

∑

x,y

f(x, y)hj(x − j, y)

a(x, y)

}p

,

j = 1, 2, 3, ..., N

(6)

where k is the number of iterations.

If we set p = 1, the above formula describes the

Richardson-Lucy Iteration

g
(k+1)
j =g

(k)
j

{

∑

x,y

f(x, y)hj(x − j, y)

a(x, y)

}

.

j = 1, 2, 3, ..., N

(7)

3 EXPERIMENTS ON SIMULATION IMAGES

We use a similar construction method as Li et al. (2019)

to generate the simulation image. The simulation image is

generated by an input 1D spectrum with 4000 flux points

given by the LAMOST pipeline convolved with PSFs with

size of 13 × 15 pixels. These PSFs are the linear interpo-

lations on the basic PSFs from emission lines on an arc

image. Finally, Poisson noise is added. The resulting im-

age is 4000 × 15 pixels.

We extracted the 1D spectrum from the simulation im-

age by applying Equation (7) for 10 iterations. Besides,

we also performed TDM and ALI for comparison. The

Tikhonov regularization parameter for TDM was set to

0.02, which is the best value in this extraction. The block

sizes in TDM and ALI were both set to 20, while the com-

putational precisions were both 100.
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Fig. 1 The original noise and 2D residuals of different methods. (a) The original Poisson noise; (b), (c) and (d) are the 2D residuals of

TDM, ALI and Eq. (7) for 10 iterations, respectively.
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Fig. 2 From left to right, panels depict the 1D residuals of TDM, ALI and Eq. (7) for 10 iterations, respectively.

Fig. 3 From top to bottom, the spectra are extracted by AEM, TDM, ALI and Eq. (7) after five and 10 iterations, respectively. All these

spectra are also overplotted at the bottom in the same colors.

We ran these three algorithms on a DELL computer

with a 3.30 GHz CPU and the Windows 7 operating

system, using MATLAB R2014a software. The original

Poisson noise and the 2D residuals of different deconvolu-

tion methods are shown in Figure 1, while 1D residuals are

displayed in Figure 2. These two figures demonstrate that

their 2D residuals are Poisson noise, and their 1D residuals

are all at a similar level.
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Table 1 SNRs and Computational Times of Different Methods

Method SNR Time (s)

TDM 46.63 11.94

ALI 47.08 6.05

Eq. (7) for 10 iterations 50.03 1.64

The SNRs and computation times of different extrac-

tion methods are shown in Table 1, where the SNR is de-

fined by equation 11 in Li et al. (2019). From Table 1,

we can see that the Richardson-Lucy Iteration algorithm is

much faster than ALI and TDM, and the SNR of the result-

ing spectrum extracted by the Richardson-Lucy Iteration

algorithm is also higher than those extracted by ALI and

TDM. TDM is the slowest because it took too much time

to invert calibration matrices.

4 PERFORMANCE ON A REAL LAMOST

SPECTRUM IMAGE

We apply Equation (7) on a real LAMOST multi-fiber

spectral image. The resulting 1D spectrum after five and

10 iterations is depicted in blue and red, respectively in

Figure 3, while the spectra extracted by AEM, TMD and

ALI are signified in black, green and grey, respectively. All

spectra are overplotted together for direct comparison in

the bottom of the figure. The Gibbs artifact, which is also

called ringing artifact in signal processing, always occurs

in the results of deconvolution methods. The dashed lines

in Figure 3 indicate the positions of overshoots of ringings

in the spectra of TMD and ALI.

From the figure, we can see:

1) The spectra extracted by TMD, ALI and

Equation (7) all have higher SNRs and resolutions than that

extracted by AEM. Furthermore, their emission lines are

all more symmetric, which means that these three methods

can correct the distortions of PSFs on a CCD.

2) The blue spectrum, which is the result of

Equation (7) after five iterations, has no overshoots. Its

resolution is lower than those of the spectra extracted by

TMD and ALI, but is higher than the spectrum extracted

by AEM.

3) After 10 iterations of Equation (7), the resolution

of the resulting spectrum became similar to those of the

spectra extracted by TMD and ALI, but the amplitudes of

ringings are much lower.

5 CONCLUSIONS

This paper describes a deconvolution extraction algorithm

based on the Richardson-Lucy Iteration to extract 1D spec-

tra from LAMOST spectrum images. Compared with the

spectrum extracted by AEM, the resolution and SNR of

the spectrum extracted by the Richardson-Lucy Iteration

are both higher. Compared with spectra extracted by TDM

and ALI, the ringings of the spectrum extracted by the

Richardson-Lucy Iteration are much weaker. Furthermore,

the Richardson-Lucy Iteration is the fastest deconvolution

method to extract 1D spectra from a LAMOST image.
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