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Abstract The astrometry method has great advantages in searching for exoplanets in the habitable zone

around solar-like stars. However, the presence of multiple planets may cause a problem with degeneracy

when trying to compute accurate planet parameters from observation data and reduce detectability. The

degeneracy problem is extremely critical, especially in a space mission which has limited observation time

and cadence. In this series of papers, we study the detectability of habitable Earth-mass planets in different

types of multi-planet systems, aiming to find the most favorable targets for the potential space mission–

Habitable ExoPlanet Survey (HEPS). In the first paper, we present an algorithm to find planets in the

habitable zone around solar-like stars using astrometry. We find the detectability can be well described by

planets’ signal-to-noise ratio (SNR) and a defined parameter S = M2/(T1−T2)
2, where M2 and T2 are the

mass and period of the second planet, respectively. T1 is the period of the planet in the habitable zone. The

parameter S represents the influence of planetary architectures. We fit the detectability as a function of both

the SNR of the planet in the habitable zone and the parameter S. An Earth-like planet in a habitable zone

is harder to detect (with detectability PHP < 80%) in a system with a hot Jupiter or warm Jupiter (within

2 AU), in which the parameter S is large. These results can be used in target selections and to determine

the priority of target stars for HEPS, especially when we select and rank nearby planet hosts with a single

planet.
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1 INTRODUCTION

Finding habitable planets has become one of the most

fascinating topics for exoplanet hunters. To date, 16 exo-

planets have already been found in conservative habitable

zones (HZs)1. Most planets are detected by the transiting or

radial velocity methods, as shown in Table 1. Both methods

prefer to detect planets close to host stars, because these

planets cause a larger radial velocity in their host stars or

have larger chances to transit the host stars. Planets with a

long period, e.g. planets in the HZ around solar-like stars,

⋆ 51 Pegasi b Fellow
1 based on the NASA Exoplanet archive.

are not easy to detect via transiting or radial velocity meth-

ods. However, planets in HZs may be common. Burke et al.

(2015) estimate the terrestrial planet occurrence rate ac-

cording to the Kepler GK dwarf sample, and obtain that

each FGK star has 0.1 planet with a period between 300

and 700 d, and a radius between 0.75 and 2 Earth radius.

As with other indirect methods, astrometry measures

the stellar motion projected on the celestial plane and has

some advantages compared with current popular methods.

Planets with larger semi-major axes cause larger motions

in their host stars, which is contrary to the radial veloc-

ity method. Compared with the transiting method, there

is no limitation on the inclination of the planets via as-
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Table 1 Sixteen exoplanets in HZs (from https://exoplanetarchive.ipac.caltech.edu/index.html). The columns include the planet name,

period, equilibrium temperature, radius, total number of planets around the host star and detection method, from left to right respectively.

Planet Name P (d) Teq (K) Rp(R⊕) PN D (pc) Spectral Method

Kepler-62e 122.39 270 1.61 5 368 K2 V Transit

Kepler-61b 59.88 273 2.15 1 314 K7 V Transit

PH2 b 282.53 281 10.12 1 346 – Transit

K2-3 d 44.56 282 1.51 3 – M0 V Transit

Kepler-1653b 140.25 284 2.17 1 755 – Transit

TRAPPIST-1d 4.05 288 0.772 7 12.1 – Transit

Kepler-69c 242.46 299 1.71 2 584 G4 V Transit

Ross 128 b 9.87 301 – 1 3.38 M4 Radial Velocity

K2-9 b 18.45 314 2.25 1 – M2.5 V Transit

HD 42618 b 149.61 337 – 1 23.5 G4 V Radial Velocity

TRAPPIST-1c 2.42 342 1.056 7 12.1 – Transit

K2-3 c 24.64 344 1.85 3 – M0 V Transit

GJ 3021 b 133.71 350 – 1 17.62 G6 V Radial Velocity

HD 192310 b 74.72 355 – 2 8.82 K3 V Radial Velocity

K2-18 c 8.96 363 – 2 34 M2.5 V Radial Velocity

CFBDSIR J145829+101343 b 10037.50 370 – 1 23.1 – Imaging

trometry. Thus astrometry is a proper method to detect

planets in the HZ around nearby solar-like stars, although

there have been no exoplanets discovered by astrometry to

date. Another important advantage for astrometry is that

the planet’s mass and all the six orbital elements can be

obtained simultaneously, e.g., astrometry has already been

used to determine the masses of celestial bodies and as-

sociated orbits in binary systems, such as the mass of the

black hole at the center of the Milky Way (Schödel et al.

2002). Although transit timing variations (TTV) can be

used to calculate the planet mass, it usually takes a long

time (Miralda-Escudé 2002; Xie 2013; Yang et al. 2013).

In most situations, we need to combine radial velocity with

transiting to calculate the planet mass, e.g. like the case

HAT-P-1 b (Bakos et al. 2007).

However, the detection of planets’ astrometric signals

requires very high precision. For example, assuming there

is another solar system 10 pc away, the astrometric sig-

nal of a star induced by Earth is around 0.3 µas. Such a

precision has not been achieved, even by the most recent

satellite, Gaia. The highest astrometric precision of Gaia is

10.6 µas, for a star which has G magnitude < 12 (Perryman

et al. 2014). Under such a precision, they estimated that

21 000 high-mass (1 − 16 MJ) (Jupiter mass) planets out

to ∼ 500 pc should be detected during the Gaia mission

in 5 yr. However, detecting Earth-like planets in the HZ

requires a sub-microarcsecond precision. Some space as-

trometry telescopes have been proposed, e.g., SIM (Unwin

et al. 2008) and NEAT (Malbet et al. 2012). The plan for

both satellites is to achieve a sub-microarcsecond astro-

metric precision and detect Earth-like planets in their HZs,

which is the ongoing major scientific goal. However, these

projects have either been postponed or canceled.

Habitable ExoPlanet Survey (HEPS) is a potential

space mission proposed by Chinese scientists, which used

to be called the Searching for Terrestrial Exo-Planet

(STEP) satellite (Chen et al. 2013). It is comprised of a

1.5 meter aperture space telescope at the Sun-Earth 2nd

Lagrange point L2. With a plan to search for ∼ 100 targets

within 10 pc during its 5-yr lifetime, it aims to do a survey

of Earth-like planets in the HZ around these stars, includ-

ing 70 FGK stars (Henry et al. 2018). Some interesting M

stars like Proxima (Anglada-Escudé et al. 2016; Liu et al.

2018) and planet hosts further than 10 pc are also selected

for HEPS. The designed astrometric precision of HEPS is

1 µas for stars with V magnitude = 8, which is comparable

to the precision mentioned by projects NEAT and SIM. The

preliminary observational strategy of HEPS is to measure

each target 50 times in 5 yr.

Due to the limitation of the space mission’s lifetime,

we need to rank the observation priority of target stars to

maximize the scientific fruits of the HEPS mission. The

priority of target stars depends on lots of aspects, e.g. the

scientific motivation, the signal-to-noise ratio (SNR), the

distance, etc. The most important one is the detection prob-

ability of an Earth-like planet in an HZ. Previous works

have investigated the probability of detecting planets with

1-µas precision (Perryman et al. 2014; Malbet et al. 2012).

Their works mainly focus on single-planet systems, and

find the major factor which influences the detection proba-

bility is the SNR.

However, Udry et al. (2017) show that multi-planetary

systems are common and they found 20 exoplanets in eight
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systems. Some multi-planet systems, like TRAPPIST-1

(Gillon et al. 2017), have many planets in their systems.

The identification of planet orbits in a multi-planet system

is more complex than that in a single-planet system, be-

cause of the larger fitting parameter space, i.e. there are five

astrometric parameters for the host star, and seven parame-

ters for each planet. Even for a two-planet system, there are

19 parameters that need to be fitted. It is similar with radial

velocity fitting in multi-planet systems. Different models

of single or multiple planets may produce different local

minima in the searching algorithm, which thus results in

different fitted orbit parameters (Wittenmyer et al. 2013;

Wright & Howard 2009). This is the degeneracy problem

in the orbit fitting procedure. The problem is more severe

for the detection of Earth-like planets in the HZ, because

the fitting residual of the other planets, which depends on

SNR, may contaminate the small signal of an Earth-like

planet in the HZ. The influence from other planets in the

same system was not investigated in detail, although it is

very important for detecting an Earth-like planet.

In this paper, considering the proper motions and par-

allaxes of host stars, we use a linear model to simulate

their astrometric motions. We also assume an Earth-like

planet in the HZ, with a companion planet having differ-

ent masses and locations. By using the commonly adopted

Levenberg–Marquardt (LM) algorithm of planet-searching

(Wright & Howard 2009), we investigate the detection

probability of an HZ planet. We find the fitting accuracy

of orbital elements, especially the eccentricity and inclina-

tion, vary in different systems, even when the planets have

the same SNR. We find the SNR of the planet is not good

enough to describe the astrometric detectability in multi-

planet systems, and we propose a new parameter to give a

more precise description of detectability for habitable plan-

ets in these systems.

The paper is arranged as follows: In Section 2, we

present the method we adopted in simulating the astrome-

try data. In Section 3, we estimate the probability of detect-

ing Earth-like planets in the HZ in some typical systems.

The influences of SNR and orbital configurations are in-

vestigated in detail. Conclusions and discussions are made

in Section 4.

2 ASTROMETRY MODEL AND FITTING

PROCESSES

2.1 The Simulation of Stellar Astrometric Motion

The astrometry method is able to measure stellar motions

projected on the celestial plane. Due to the gravity of ex-

oplanets, the host star orbits the barycenter of the star and

planets. Besides, the star also has proper motion, perspec-

tive acceleration and parallax. Stellar motions in the right

ascension α and declination δ directions can be expressed

as

αt = α0 + µ∗

αt + (µ∗

αµδ tan δ − µ∗

απVr) t2

+π (−y cosα + x sin α) sec δ

−
1

c
(ẋ cosα sin δ − ẏ cosα sec δ) , (1)

δt = δ0 + µδt −

(

1

2
µ∗

α
2 sin δ cos δ + µδπVr

)

t2

+π (x cos α sin δ + y sinα cos δ − z cos δ)

−
1

c
(ẋ cosα sin δ + ẏ sin α sin δ − ż cos δ) ,(2)

where αt and δt are the stellar position at time t in the right

ascension and declination respectively. α0 and δ0 are the

stellar position at t = 0. µ∗
α = µα cos(δ) and µδ are the

proper motions in the right ascension and declination di-

rections, respectively. π is the parallax of the star and Vr is

the radial velocity of the star. (x, y, z) and (ẋ, ẏ, ż) are the

satellite’s position and velocity relative to the barycenter

of the solar system respectively. The third term containing

t2 is the acceleration of the stellar proper motion. The last

two terms are annual parallax and aberration, respectively.

The value of annual aberration, which depends on the po-

sitions and velocities of stars, is sometimes comparable to

the parallax. However, if we know the priori position and

velocity of the star and the satellite, we are able to calcu-

late the value of the last two terms. Under a precision of

10–100µas in the Gaia era, the last three terms can be cor-

rected with a precision much less than 1 µas.

Therefore, we choose a simple model of stellar mo-

tion, and add the influence of planets during data fitting.

We assume we know the exact value of the position and

velocity of the satellite at any given time and ignore the

acceleration term and annual aberration term. We use X

and Y to represent the stellar motion in the right ascension

and declination directions respectively. The stellar motions

projected to the celestial plane can be simply expressed as

X = X0 + Vx(t − t0) + Px/d + δx + σx , (3)

Y = Y0 + Vy(t − t0) + Py/d + δy + σy , (4)

where X0 and Y0 are offsets, and Vx and Vy are the proper

motions of the star in X and Y directions, respectively. Px

and Py are parallax factors. t is the observation time and

the zero point t0 represents the time of the first measure-

ment. d is the distance between the star and the barycenter

of the solar system. δx and δy are the stellar motions rel-

ative to the system barycenter due to the planets. σx and
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σy are the noise we add in the X and Y directions, re-

spectively. In this paper, a Gaussian distribution is adopted

to generate the noise in an individual direction randomly.

The standard deviations in both directions are the same,

with the same mean value of 0. A similar form was also

used in other simulations (Perryman et al. 2014; Casertano

et al. 2008). We take a linear proper motion model, i.e., the

stellar proper motion is unchanged during five years. In our

work, the parallax parameters, Px and Py , are assumed to

be known. Only X0, Y0, Vx, Vy , 1/d and planets’ orbital

elements are the parameters which we are going to fit in

this work.

An example simulation is shown in Figure 1. The left

panel is HD 192310’s astrometric motion in the X and Y

directions using Equations (3) and (4), respectively. There

are 50 positions in five years with constant intervals of

0.1 yr. The stellar distance is 8.91 pc and its proper motion

is Vx = 1241.85 mas yr−1 and Vy = −180.96 mas yr−1,

according to Hipparcos data (van Leeuwen 2007). The

proper motion and parallax are much larger than the mo-

tion caused by planets.

To estimate astrometric signals of exoplanets, we use

A to denote the maximum amplitude of stellar motion

caused by a specific planet. The value of A is related to

the planet mass Mp, the planet orbital elements, the host

star mass Ms and the distance d from us. If we only con-

sider Mp, Ms, d and the semi-major axis of the planet ap,

A can be expressed as follows

A ≈ 3

(

Mp

1 M⊕

)

( ap

1 AU

)

×

(

Ms

1 M⊙

)−1 (

d

1 pc

)−1

µas .

(5)

Then we can define the SNR as the signal-to-noise ratio for

the detection of each exoplanet. It can be expressed as

SNR =
A

σ
, (6)

where σ is the standard deviation of the Gaussian distri-

bution we added in the X and Y directions, and we set

σ = σx = σy in Equation (3).

2.2 Fitting Program

To find a planet in the simulated data based on

Equations (3) and (4), we will introduce the fitting pro-

cess in this section. To fit the planet parameters, we follow

fitting processes step by step, i.e.,

Step 1: Estimate the initial values of the offset point X0, Y0,

the proper motion Vx, Vy and 1/d, by linear fitting.

Step 2: Use Generalized Lomb-Scargle (GLS)

(Zechmeister & Kürster 2009) in PyAstronomy2

to find the periodic signals in residuals after the

linear fitting in Step 1. The residuals in the X and Y

axes should be analyzed separately. Comparing the

strongest peaks in both periodograms, the period with

the smaller false alarm probability (FAP) is adopted.

Step 3: Using the method of fitting single planet orbital

elements, we fit the Thiele-Innes elements (Wright

& Howard 2009) directly, via the LM algorithm

(Marquardt 1963). All the parameters are fitted simul-

taneously, including parameters of previously detected

planets and parameters of the host star. In order to

avoid local minima, we scan the initial eccentricity and

mean anomaly, which are the nonlinear fitting parame-

ters using Thiele-Innes elements, to find the best fitted

parameters.

Step 4: Subtracting the signal of the fitted planet in Step 3,

we repeat Steps 1–3, until the FAPs in both X and Y

directions are greater than a threshold of 1%, i.e., there

are no significant periodic signals in the residuals and

the fitting processes are completed.

Note that, in Step 2, periods in the X and Y directions

are nearly the same in all our simulations. However, if the

periods are different, the period with smaller FAP< 0.01 is

adopted as the initial value. While iterating Step 4, all the

parameters of both the planets and the stars are refitted to

obtain a more accurate result with smaller residuals.

To test the efficiency of our program, we use the fit-

ting program to fit the planets in HD 192310, as men-

tioned in the previous section. We choose this planetary

system because the host star mass is close to the Sun and

its distance is within 10 pc. The host star has a mass of

0.8 M⊙ (van Leeuwen 2007) and its distance is 8.91 pc

(van Leeuwen 2007), which is suitable for HEPS detection.

Two planets, HD 192310 b and c, have already been found

(Howard et al. 2011; Pepe et al. 2011). However, these two

planets are not in the HZ of the system. To test our pro-

gram for finding planets in the HZ, we add a test planet,

HD 192310 d, into the system. The masses, periods and ec-

centricities of HD 192310 b and c are based on the values

in Pepe et al. (2011). The inclination was not determined.

We assume they have a mean value of 45 degrees. We de-

fine the inclination as the angle between the line of sight

and the perpendicular line of the planet’s orbital plane.

Other orbital elements are generated randomly in our test.

The test planet, HD 192310 d, has a mass of 10 Earth

masses and is located at 0.8 AU in the HZ of the system.

2 https://github.com/sczesla/PyAstronomy
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Fig. 1 The simulation of HD 192310’s astrometric motion based on Eqs. (3) and (4). The left panel includes total proper motion and

parallax. The right panel shows the motion excluding the proper motion and parallax. The cyan line is the total motion of the host

star including a white noise of 0.4 µas. The blue, green and red lines represent stellar motion due to planets HD 192310 b, c and d,

respectively. The planet HD 192310 d is a virtual planet we put into the system to test our program for finding an HZ planet.

The HZ of the system is calculated based on Kopparapu

et al. (2013). The detailed parameters of the planets are

listed in the upper part of Table 2. δx and δy are generated

via RKF78 integrator, a Fortran subroutine developed by

us according to Fehlberg (1968) and Montenbruck & Gill

(2012). The astrometry noise we adopt here is based on a

simple Poisson noise model, i.e., a star with a V -band mag-

nitude of 8 has a typical uncertainty of 1 µas. Brighter stars

have larger photon flux, leading to a smaller uncertainty,

which is 100.4∗(V −8)
µas. V is the magnitude of the target

star in the V -band. In the case of HD 192310, both σx and

σy follow a Gaussian distribution, with the same deviation,

∼ 0.40 µas. The noise is smaller than the typical noise of

∼1 µas for planets in an HZ, because for bright stars, more

measurements can be made to improve astrometric preci-

sion. The right panel of Figure 1 shows the stellar astro-

metric motion caused by the planets. The blue, green and

red circles represent the stellar motion caused by planets c

and b, and test planet d respectively. The cyan line shows

the combination of all three motions caused by planets and

the noises.

After finishing our fitting program, three planets are

detected. Brief results of every fitting iteration are shown in

Figure 2. The left panels show the folded phase of astrome-

try signals after removing the fitted proper motion and par-

allax. Different colors represent different directions. The

period is based on the periodic signals found in the pe-

riodogram at each iteration, which in the right panels of

Figure 2. The bottom panels of Figure 2 display the resid-

uals of the fitting and the associated period analysis. The

fitting procedure ends when the largest periodic signal’s

FAP> 1%. The fitting results are listed in the bottom

part of Table 2. As we can see, in the triple-planet sys-

tem, all the masses, semi-major axes and inclinations are

fitted well. For the most distant planet c with the largest

SNR> 20, both Ω and ω + M0 are fitted well. However,

for the inner planet b and the test planet d with a small sig-

nal of about 3 µas, ω + M0 differs from the real value by

over 50 degrees. This demonstrates that the fitting program

is efficient for fitting a planet’s mass, period, eccentricity

and inclination in multi-planet systems.

3 DETECTION PROBABILITY OF AN

EARTH-LIKE PLANET IN THE HZ

By using our astrometry signal simulation and fitting pro-

gram, we investigate the detection probabilities of Earth-

like planets in an HZ in different types of two-planet sys-

tems in this section. According to the case of HD 192310

d, though SNR is high enough to detect the planet, the or-

bital elements obviously differ from the real ones. Well-

fitted parameters are significant in finding habitable plan-

ets. A planet’s habitability depends on its mass and orbital

elements (Kopparapu et al. 2013). Beyond the criterion

of SNR, we use the detection probability of an Earth-like

planet in an HZ (hereafter PHP) to evaluate astrometry de-

tection in multi-planet systems. It can be expressed as

PHP =
Ncri

Nsim
, (7)

where Nsim is the total number of cases we simulated and

fitted, while Ncri is the number of cases with planet pa-
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Table 2 Real and Fitted Parameters of Planets in HD 192310

Name Mp(M⊕) Period (yr) a (AU) ecc inc (deg) Ω (deg) ω+ M0 (deg)

c 32.60 1.43 1.18 0.32 45.86 183.23 322.50

b 23.62 0.20 0.32 0.13 45.63 224.53 151.56

d 10.00 0.80 0.80 0.00 45.90 204.85 291.03

Fitted results

c 33.11±0.23 1.44±0.001 1.18±0.04 0.34±0.01 46.77±0.48 183.68±0.10 324.38±1.59

b 23.16±0.60 0.20±0.0001 0.32±0.001 0.01±0.05 44.12±2.29 212.89±4.13 232.08±44.71

d 9.64±0.28 0.80±0.002 0.80±0.001 0.04±0.04 45.65±2.37 208.56±3.26 278.03± 51.42

Fig. 2 Fitting processes of planets in HD 192310 via simulated signals with errors of 0.4 µas. The left panel is the folded motions of

the host star in the X (blue dots) and Y (green dots) directions, according to the planet period found in the periodogram. In the right

panel, only a periodogram in the X or Y direction with smaller FAP is adopted. The periods of the highest peaks are 1.44 yr, 0.21 yr

and 0.80 yr, from top to bottom, respectively. The left bottom panel displays the residuals after three planets are fitted, where we do

not fold it into any period. In the periodogram of the final residuals, as shown in the right bottom panel, the FAP of the highest peak is

9.7%, greater than the threshold value 0.01, thus we stop the fitting process.
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rameters satisfying the specified criterion. Normally in this

paper, Nsim = 50 which describes the detectability more

accurately. The criteria we use here to rank the detection

efficiency are

(1) Detect the locations of a planet in the HZ (FAP< 1%).

This is the most basic criterion for detecting a habit-

able planet;

(2) Satisfying Criterion 1, the planet is still an Earth-like

planet (fitted mass is 1–17 Earth masses), i.e., the de-

tected planet has a rocky surface;

(3) Satisfying Criterion 2, the planet has a moderate ec-

centricity (fitted eccentricity <0.1), i.e., the well–fitted

eccentricities can guarantee that the planet stays in the

HZ all the time;

(4) Satisfying Criterion 3, the inclination is well deter-

mined (fitted error of inclination < 5◦), i.e., the most

strict criterion to identify planets in an HZ.

These four criteria are sorted by their difficulty in pa-

rameter fitting. Criterion 1 is the easiest to achieve while

Criterion 4 is hardest. Unwin et al. (2008) found that if

a planet is detectable, the SNR of the planet needs to be

> 5.4. In the simulation of NEAT, Malbet et al. (2012)

found that when SNR = 6, the FAP is smaller than 1%.

However, their results were based on Criteria 1 and 2. They

simply assumed PHP = 1 for the planets satisfying the re-

quirement of SNR. Considering the eccentricity and incli-

nation, it is more strict to identify planets in HZs because

the stellar flux on a planet varies due to the eccentricity,

while the inclination between the two planets may increase

the eccentricity via the Kozai-Lidov cycle. The angle be-

tween the planetary orbit plane and the spin plane is impor-

tant for the climate of a planet. Similar to Earth, assuming

the spin orientation is fixed, the inclination determines the

angle between the orbital axis and the spin axis, and leads

to a different climate on the planet. Thus, in Criterion 4,

if we determine the inclination well, the climate will be

constrained better if we assume a fixed spin orientation.

Before showing our results, we test the distribution of

the fitting parameters. We fixed the planets in an HZ as 1

Earth mass, period = 1.15 yr, eccentricity = 0.0 and incli-

nation = 45◦. The SNR of the HZ planets is fixed as 5.

Another planet is added with random mass from 1 to 100

Earth mass and semi-major axis from 1.5 to 10 AU. The

inclination is fixed at 45◦. Totally, 200 two-planet systems

are adopted and the fitting results of the Earth-like planet

in the HZ are shown in Figure 3. The fitting distributions

of period, mass, eccentricity and inclination of the planets

in the HZ are around the real values we set, demonstrating

that our fitting program based on the LM algorithm is able

to extract a planet’s parameters.

In Section 3.1, we find the requirement for SNR to get

a specific PHP. We obtain the value of PHP as a function

of SNRs. In Section 3.2, we fix the orbital elements of the

planets in the HZ to get the same SNR and set the com-

panion planet with different masses and semi-major axes.

We calculate the PHP in these systems to investigate which

kind of planetary system is more suitable for detecting an

Earth-like planet in the HZ. Note in this section, the host

stars in all the simulations are solar-mass stars fixed at

10 pc.

3.1 Influence of SNR

To study the dependency of PHP on the SNRs, we set

two typical cases: (i) a Jupiter mass planet in a 5 d orbit

(Hot-Jupiter case) and (ii) a 100 Earth mass planet at 3 AU

(Cold-planet case). The initial eccentricity is set as 0 and

the inclination is 45◦. The longitude of ascending node,

argument of pericenter and mean anomaly are chosen ran-

domly. In both cases, the habitable planet we are going to

detect is 10 Earth masses located at 1.1 AU with an eccen-

tricity = 0.05 and inclination = 45◦. We define inclination =

0 as the face-on case while inclination = 90◦ as the edge-on

case. The choice of the location of 1.1 AU is to avoid the

influence of annual parallax motion. Due to uncertainty in

the distance between the observer and stars, annual paral-

lax will decrease the detection probability of a planet near

1 AU. The longitude of the ascending node, argument of

pericenter and mean anomaly of a planet in the HZ are cho-

sen randomly. To investigate the influence of SNR, we set

the range of SNR from 0.1 to 30, with the corresponding

noise range from 33 to 0.11 µas at a distance of 10 pc. We

simulate 50 astrometry measurements in 5 yr, with uniform

intervals of 0.1 yr, based on the assumed observation mode

of HEPS. For each SNR value, we simulate 50 cases in

each system and PHP is calculated as the fraction of cases

satisfying different criteria.

Figure 4 shows the influence on the PHP of Earth-like

planets in the HZ with different SNRs (in the left panel). It

shows that the SNR is a crucial factor for detecting planets

in the HZ, and suggests that when the SNR is larger than

1, we can detect planets in the HZ with high probability

of satisfying Criterion 1, but the parameters of these plan-

ets are less reliable. Therefore, it is difficult to determine

whether an Earth-like planet in the HZ is habitable or not,

due to large uncertainties in planet mass and orbital pa-

rameters. When the SNR is improved to > 2, the masses of

most planets are determined well. As we enhance the SNR



4–8 Z.-Y. Yu et al.: Astrometry Detect Planets in Habitable Zone

Fig. 3 The sample contains the planetary systems where the HZ planet has an SNR of 5. The blue bins demonstrate how the the different

parameters of the fitted HZ planets are distributed. The red dashed lines indicate the real values of the parameters. These show that the

HZ planet is fixed at 10 MEarth, period = 1.15, eccentricity = 0.0 and inclination = 45
◦.

Fig. 4 The SNR of an Earth-like planet in the HZ affects the detection probability PHP. The planet is a 10 M⊕ planet located at 1.1 AU.

The astrometric precision varies to obtain different SNRs. The left panel presents the Hot-Jupiter and Cold-planet cases, i.e., a Jupiter

mass planet and a 100 Earth mass planet located in 5 d orbits and 3 AU. In both cases, the SNR dominates the detection probability. The

blue, green, red and cyan lines represent the detection probability using Criteria 1, 2, 3 and 4, respectively. The right panel is the fitting

results of PHP based on Criterion 4. The cyan dots are PHP based on Criterion 4 with different SNR. The red line is the best-fitted

curve. Even if SNR > 15.8, PHP assumes a value around 0.928 rather than 1.

to > 10, the eccentricities and inclinations are constrained

well, as described in Criteria 3 and 4. The requirement of

SNR for Criteria 1 and 2 is much like in single planet sys-

tems, but for Criteria 3 and 4, a higher SNR is needed.

Using the results based on the strictest case of Criterion 4,

the relationship between SNR and PHP can be fitted as

PHP = 0.928 exp

(

−
(K − 1.20)2

0.325

)

, (8)

K = log10SNR. For SNR > 15.8, PHP reaches the max-

imum value of –0.928. The fitting line is presented in the

right panel of Figure 4.
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The requirement of PHP > 80% based on Criterion

4 is that the SNR of the planets in the HZ should be

larger than 10. It is stricter than the requirement based on

Criterion 1, which is SNR > 1. However, in the fitting re-

sults, even for SNR> 20, the PHP in multi-planet systems

cannot exceed 95% in Criterion 3 or 4. This is because of

influences from the companion planet. So, the next subsec-

tion will study the influences on PHP, due to details related

to different architectures of planetary.

3.2 Influence of Orbital Architectures

In this section, the parameters of Earth-like planets in the

HZ are the same as those set in Section 3.1, i.e. 10 Earth

masses at 1.1 AU with eccentricity = 0.05 and inclination

= 45◦. The SNR of an HZ planet is fixed at 10, i.e. the

astrometry uncertainty is fixed at 0.33 µas, to exclude the

sensitive influences from the SNR as shown in Section 3.1.

We put the companion planet outside the HZ with different

masses from 1 to 1000 Earth masses, and different loca-

tions, i.e., 1 − 80 d for inside cases and 1.5 – 100 AU for

outside cases, with random eccentricities < 0.05 and incli-

nation 45± 1◦. Thus, as the SNR of the other planet varies

a great deal, we investigate the fitting precision of planets

in the HZ due to different residuals from the other planet.

Considering our period finding program mentioned in

Section 2 and Figure 2, the residuals of the companion

planet pollute the period peak of the planet in the HZ.

Assuming that the planet signal in the periodogram has a

Gaussian profile, and the influence on the planet in the HZ

with a period of T1 is proportional to e−
(T−T1)2

2σ2 , T is the

period of the companion planet. It is also proportional to

the mass of the companion planet. For simplicity, we take

a quadratic form of the period into account, and the total

effect of the companion planet can be expressed as

S =
M

(T − T1)2
. (9)

We calculate S for every simulation case and PHP based

on Criterion 4 in different ranges of S. We find S of the

companion planet in the system has a linear relation with

the PHP of an Earth-like planet in the HZ, as shown in the

left panel of Figure 5. The point in the figure represents the

PHP of the specific range of S. Excluding the two outliers

(green pentagrams), we can fit a linear relation between S

and PHP using the blue points. It turns out to be

PHP = −0.088 log10 S + 0.922 . (10)

This correlation can be applied to estimate PHP using

the mass and period of another planet. However, besides

the blue points in the left panel of Figure 5, two green

points obviously deviate from the linear fitting. Both points

have a much lower PHP than the predicted value. The

lower PHP is mostly contributed by planets with very short

periods (<40 d) and very large periods (>10 yr), which are

hard to detect accurately. In the short-period case, the SNR

decreases because the planet is close to the host star. Since

the SNR is small, it is hard to detect the hot planet, whose

signal is hidden as additional noise when we try to find the

planet in the HZ. In the long-period case, motion of the

star induced by the planet becomes approximately linear.

Thus, it is hard to detect the other planet if the period is

long enough. Consequently, the signal of planets in the HZ

is hard to extract.

In the right panel of Figure 5, we show the relation-

ship between the companion SNR and PHP. The planetary

systems are from the two green points in the left panel.

Most planets in systems with S < 1 have a semi-major axis

larger than 10 AU. These planetary periods are far over 5 yr

and the fitting program cannot find the planet properly. In

this case, the influence of the signal from a planet is a small

arc, but we can only fit the signal with a linear model that

takes into account the proper motion term. The astrome-

try fitting residual is mainly from the differences between

linear fitting of a small arc, which can be expressed as

A ≈ 0.93 µas

(

Mp

1M⊕

)

( ap

1AU

)−2

. (11)

Most planets in systems with 5 < S < 7 are short-period

(<40 d) planets. The short-period planets’ astrometry sig-

nal is calculated based on Equation (5) because it can fin-

ish the entire orbit in 5 yr. As we can see in Figure 5(b),

the two dashed lines have an obvious decrease between

SNR of 0.5 and 2. In this area, the signal of the companion

planet is similar to the observational noise and can hardly

be detected. Thus, PHP decreases because the signal of

the undetected planet makes the planet in the HZ hard to

detect. In the case when SNR is small enough, the signal

of the undetected planet is also small and limitedly influ-

ences the PHP, hence PHP increases. The fitting results get

worse when the signal of the companion planet is compa-

rable with noise. For PHP < 80%, the SNR of planets with

5 < S < 6 is between 0.6 and 1.5, but S < 1 is between

1.6 and 2.0.

With knowledge of the companion planet’s mass and

period, using Equation (10), we can estimate PHP of

the planets in the HZ. Note, Equation (10) assumes that

the SNR of the planet in the HZ is 10. Considering
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Fig. 5 The left panel is the relationship between PHP and S. The blue and green points demonstrate that different S values lead to

different PHP, with the same SNR (=10) of planets in the HZ. Excluding the two green pentagrams as outliers, the red line is the

linear fitting of the blue points as shown in Equation (10). The right panel shows how the SNR of the companion planet (the X-axis)

influences the PHP. In the range of 0.5 < SNR < 2, PHP obviously decreases.

Fig. 6 Assuming an SNR for a planet in the HZ of 10, we estimate the influence of the companion planet. The blue, green and red lines

represent the upper limits of the companion planet in different locations to achieve specific PHP of 60%, 80% and 90% respectively.

The orange area is the two special regions where the SNR of the companion planet is about 0.5–2. In these two regions, PHP has an

obvious reduction.

Equation (8), the PHP can be expressed as

PHP ≈1.20 exp

(

−
(K − 1.20)2

0.325

)

× (−0.088 log10 S + 0.922) .

(12)

Because PHP cannot be larger than 1, the final result is the

minimal value between 1 and the calculated one. Assuming

the SNR of the planet in the HZ is 10, we calculate the

different relationship between the mass of the companion

planet M and its period T .

In Figure 6, we set the PHP to be 90%, 80% and 60%.

The red, green and blue lines indicate the respective com-

panion planet’s mass upper limits when plotted versus dif-

ferent semi-major axes. Only with mass below a specific

line can we get a certain PHP. The orange area is the two

dips we discuss in the right panel of Figure 4. The plane-

tary systems in these two areas have P as low as 70%. For

all the known nearby single planetary systems, we can esti-

mate the parameters K and S. Using Equation (12), we can

estimate PHP if there is an additional Earth-like planet in

the HZ. According to the estimated PHP, it is necessary to

rank nearby planet hosts as possible targets for the HEPS

mission.

4 DISCUSSION AND CONCLUSIONS

In this work, we are aiming to find suitable configurations

of planetary systems that can be targeted by the future po-

tential space mission HEPS. Using a simplified astrometric

model of a star, we simulate the astrometric signals and de-
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velop a fitting program of planet parameters. Since multi-

planet systems are much more common than single sys-

tems, we try to detect planets in the HZ of multi-planet sys-

tems. We define the detection probability PHP to evaluate

the detection probability of an Earth-like planet in the HZ,

according to different criteria stated in Section 3. We set

four criteria according to the fitting precision of the planet

period, mass, eccentricity and inclination. To investigate

the differences of PHP between single and multi-planetary

systems, we include another companion planet with dif-

ferent mass and location. The SNR of both planets will

influence the detection of planets in the HZ according to

Criterion 4.

In our simulations, all the host stars are fixed as solar-

like stars with 1 solar mass at 10 pc. We find the SNR

of the HZ is still one of the key factors influencing PHP.

PHP > 80% requires the SNR> 10. We fit PHP as a func-

tion of SNR (Eq. 8). However, the SNR is not the only

factor that influences detectability of the planets. The com-

panion planet’s mass and semi-major axis greatly influence

PHP even when Earth-like planets in the HZ have the same

SNR. To describe the influence from companion planets,

we define a parameter S depending on the parameters of

both planets, as shown in Equation (9). By calculating PHP

with different S, we find a logarithmic negative correlation,

as shown in Equation (10). However, we find two dips in

Figure 4, where the SNR of the companion planet is be-

tween 0.5 and 2. Because we cannot detect the companion

planets in these two regions, the signal of the companion

planets is considered as noise when fitting the planet in the

HZ. Therefore, the SNR of the planet in the HZ reduces

and PHP decreases. As an extended conclusion, an Earth-

like planet in the HZ is harder to detect (PHP < 80%)

in a system with a hot Jupiter or warm Jupiter (typically

within 2 AU). Considering both SNR and influence from

the companion planet simultaneously, we estimate an ap-

proximation of PHP, as shown in Equation (12).

The crucial reason why another planet influences the

detection of a planet in the HZ is the degeneracy of the

large number of parameters. The fitting residuals of the

first planet will contaminate the small signal of the planet

in the HZ. In the case of a solar system at 10 pc, Jupiter

generates an astrometric signal of ∼5 mas, while the signal

induced by Earth is only 0.3 µas. Thus, the fitting param-

eter of Jupiter must be very precise to ensure the residuals

will be smaller than the signal from Earth. Especially when

the first planet is not detected, the detection probability of

the planet in the HZ obviously decreases. Combining data

via transiting or radial velocity, we can improve the detec-

tion probability and accuracy of fitting parameters for the

first planet, thus enhancing PHP.

Our work here is based on the two-planet systems we

simulate. Real multi-planet systems containing more than

two planets have a much larger parameter space. The in-

fluences from the companion planets are much more com-

plicated than two planet systems. Besides the SNR of the

planet in the HZ, we show that the negative correlation be-

tween S and PHP is another major characteristic. In the

next work, we will test the relationship we find here in de-

tecting planet systems and rank detection probabilities of

Earth-like planets in the HZ around all the nearby planet

hosts.
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