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Abstract With the increasing precision of the GRAIL gravity field models and topography from LOLA, it

is possible to investigate the substructure beneath crater Clavius. An admittance between gravity and topog-

raphy data is commonly used to estimate selenophysical parameters, including load ratio, crustal thickness

and density, and elastic thickness. Not only a surface load, but also a subsurface load is considered in esti-

mation. The algorithm of particle swarm optimization (PSO) with a swarm size of 400 is employed as well.

Results indicate that the observed admittance is best-fitted by the modeled admittance based on a spher-

ical shell model, which was proved to be unsatisfactory in the previous study. The best-fitted load ratio

f is around -0.194. Such a small load ratio conforms to the direct proportion between the nearly uncom-

pensated topography and its corresponding negative gravity anomaly. It also indicates that a surface load

dominates all the loads. Constrained within 2σSTD, a small crustal thickness (∼30 km) and a crustal density

of ∼2587 kg m−3 are found, quite close to the results from previous GRAIL research. Considering the well

constrained crustal thickness and density, the best-fitted elastic thickness (∼7 km) is rational. This result

is slightly smaller than the previous study (∼12 km). Such difference can be attributed to the difference in

crustal density used and the precision of gravity and topography data. Considering that the small difference

between the modeled gravity anomaly and observations is quite small, a parameter inversed here could be

an indicator of the subsurface structure beneath Clavius.

Key words: Moon — planetary systems: planets and satellites: fundamental parameters — planetary sys-

tems methods: data analysis

1 INTRODUCTION

Lunar gravity anomalies are mainly caused by surface to-

pography and density variations at the crust-mantle in-

terface. Analogously to the Earth’s lithosphere, the lunar

lithosphere can adjust to loads acting on it and such a re-

sponse is generated as the bending of the lithosphere. Then

the bending can produce density variations at the crust-

mantel interface, finally generating a gravity anomaly.

Hence, the free-air gravity anomaly and surface topogra-

⋆ Corresponding author.

phy are commonly used to probe the possible subsurface

structure referring to crustal thickness bc and density ρc,

and effective elastic thickness Te. The elastic thickness is

an indicator of the lithospherical strength and is an im-

portant factor to constrain ancient lunar thermal evolu-

tion as well (Huang et al. 2014; Wieczorek et al. 2013).

Academically, a statistical admittance between gravity

anomaly and topography is generally employed to inves-

tigate the parameters mentioned above.

Considering the non-negligible membrane stresses

that support loads (Turcotte et al. 1981; Zhong & Zuber
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2000), the lunar lithosphere is supposed to be modeled

as a thin elastic spherical shell. Owing to its nonlinear-

ity, it is complicated to directly solve its governing equa-

tion of the shell. However, it will be possible to resolve

such an equation when the estimated parameters are pre-

sumed to be isotropic within studied areas. Then the re-

lations between loads and bending of the lithosphere can

be expanded in the spherical harmonic domain (McGovern

et al. 2002; Crosby & McKenzie 2005; Belleguic et al.

2005; Huang & Wieczorek 2012; Beuthe et al. 2012). Not

only do loads act on the surface, but also in the subsurface.

Forsyth (1985) introduces load ratio f between subsurface

and surface loads to consider both cases. Such considera-

tion plays an important role in the global best-fit when es-

timating parameters (Forsyth 1985; McGovern et al. 2002;

Zhong et al. 2014, 2018).

The crater Clavius is located in the rugged southern

highlands of the Moon, centered at (58.4◦ S, 14.4◦ W) and

with a radius of ∼113 km. This crater is one of the old-

est formations on the lunar surface. It is relatively well-

preserved from the Nectarian period. Crosby & McKenzie

(2005) firstly investigated the elastic thickness over crater

Clavius, using the low-precision line of sight accelera-

tions from Lunar Prospector. The Gravity Recovery and

Interior Laboratory (GRAIL) gravity field models show an

unprecedented high-precision over the last five years. The

updated GRAIL model even expands to a degree and order

of 1500 (Park et al. 2015). In practice, the maximum de-

gree of the gravity field model and topography is truncated

to no more than 200, since the deflection of the crustal-

mantle interface in responses to loads makes only a negli-

gible contribution to the observed gravity anomaly beyond

degree and order 150 (Wieczorek et al. 2013).

In this paper, the lunar lithosphere is considered as

a thin elastic shell. A localized spectral admittance anal-

ysis is performed between GRAIL gravity field model

GL0990D (Konopliv et al. 2014) and LOLA topography

(Smith et al. 2010). The modeled admittance spectra are

interpreted according to loading models including surface

and subsurface loads. The particle swarm optimization

(PSO) (Shi 1998; Kennedy & Eberhart 2001) algorithm is

also employed to estimate selenophysical parameters in-

cluding load ratio f , crustal thickness bc and density ρc,

and elastic thickness Te. The best-constrained parameters

over crater Clavius will provide a new insight into the an-

cient subsurface structure during the Nectarian period.

2 METHODS

2.1 Statistical Admittance between Gravity and

Topography

The gravity g and topography h on a reference sphere can

be given as a linear combination of spherical harmonics as

(Wieczorek & Simons 2005, 2013)

g (Ω) =
∑

ilm

glmYlm (Ω) , h (Ω) =
∑

ilm

hlmYlm (Ω) ,

(1)

where Ylm denotes a spherical harmonic of degree l and

orderm, while glm and hlm are the spherical harmonic ex-

pansion coefficients of g and h, respectively. Ω represents

the position on the sphere referring to colatitude θ and lon-

gitude ϕ. i ranges from 1 to 2 for cos(mϕ) and sin(mϕ).

In order to investigate selenophysical parameters at a local-

ized region within angular radius θ0, the global distributed

gravity and topography are supposed to be localized by an

axisymmetric windowing function ψ(θ0) up to maximum

degree lwin (Wieczorek & Simons 2005, 2013)

Cilm =
4π∆ρR3

M(2l+ 1)

l+3
∑

n=1

nhilm

Rnn!

Πn
j=1(l + 4 − j)

l + 3
, (2)

where Cilm = C1
ilm + C2

ilm +
(

1 −
bc

R

)l
C3

ilm +
(

1 −
zb

R

)l (

C4
ilm + C5

ilm

)

is the normalized Legendre

polynomial of degree j. The localized gravity and topogra-

phy are g(Ω)ψ(θ0) and h(Ω)ψ(θ0), respectively. The total

cross-power SΦΓ(l) of the localized gravity and topogra-

phy is expressed by

∞
∑

l=0

SΦΓ(l) =

∞
∑

l=0

l
∑

m=−l

ΦlmΓlm

=
1

4π

∫

Ω

[ψ (θ0) g (Ω)] [ψ (θ0)h (Ω)] dΩ .

(3)

Similarly, we can get the auto-power spectrum SΦΦ(l) and

SΓΓ(l) of the localized gravity and topography, respec-

tively. The wavelength-dependent localized admittance

z(l) and correlation γ(l) can be given by

z(l) =
SΦΓ(l)

SΓΓ(l)
, γ(l) =

SΦΓ(l)
√

SΦΦ(l)SΓΓ(l)
. (4)

The localized admittance error is estimated as (Bendat &

Piersol 2000; Wieczorek & Simons 2013)

σ2
z (l) =

SΓΓ (l)

SΦΦ (l)

1 − γ2 (l)

2l
. (5)
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2.2 Misfit Function

Given a series of parameters such as ρc, f , bc and Te, the

modeled gravity can be deduced from the governing equa-

tion of a thin spherical shell. Using Equations (2)–(5), we

can calculate the modeled admittance. If the measurement

errors follow a Gaussian distribution, these aforesaid pa-

rameters can be estimated by minimizing the misfit be-

tween the modeled admittance and the observations. The

misfit function is generally replaced by the chi-squared

function (Belleguic et al. 2005)

σ2 =
1

N

lmax
∑

l=lwin

[

zobs (l) − zmod (l)

σz(l)

]2

, (6)

where zobs(l) and zmod(l) are the observed and modeled

admittances for a given degree l in terms of Equation (4)

respectively, σz(l) is the error of the observed admittance

shown in Equation (5), lwin is the maximum degree of the

windowing function shown in Equation (2) and lmax is the

maximum degree of the utilized gravity. N is the number

of degrees of freedom (which equals lmax − 2lwin − 4 in

this study). The standard deviation of the chi-squared func-

tion is approximately equal to
√

2/N . The global best-

fitted values of the parameters can be constrained within

2σSTD = 2
√

2/N .

2.3 Modeled Gravity Anomaly

In order to minimize the misfit function in Equation (6),

calculating the gravity anomaly in the modeled admittance

is firstly needed. Given a series of parameters (f , bc, ρc and

Te), the subsurface density variation can be deduced, espe-

cially at the crust-mantle interface. The resultant gravity

anomaly arising at a density-contrast interface can be cal-

culated according to the finite-amplitude correction from

Wieczorek & Phillips (1998), which is as follows

C+

ilm =
4π∆ρR3

M (2l+ 1)

l+3
∑

n=1

nhilm

Rnn!

∏

n
j=1 (l + 4 − j)

l + 3
, (7)

where M is the mass of the Moon, ∆ρ is the density con-

trast at the density variation interface, while i ranges from

1 to 2 for cos(mϕ) and sin(mϕ). Other parameters are

given in Table 1.

The modeled gravity anomalies are summed at four

interfaces in our model. These interfaces include surface,

crust-mantle interface, subsurface load and its reference in-

terface. These interfaces are summarized in Table 2. The

potential coefficients at every interface are estimated ac-

cording to Equation (7). All the coefficients are sums of

the coefficients for the four interfaces

Cilm =C1
ilm +

(

R− bc
R

)l

C2
ilm

+

(

R− zb
R

)l
(

C3
ilm + C4

ilm

)

,

(8)

where zb is the depth of subsurface load and we take a

depth equivalent to crustal thickness in this study (zb =

bc). Then the modeled gravity anomalies at reference ra-

dius r are given by

∆g =
GM

r2

∑

ilm

(

R

r

)2

(l + 1)CilmYilm (Ω) , (9)

where G is the gravitational constant. The coefficients of

the modeled gravity anomalies are (l + 1)Cilm, which are

used in calculation of the modeled admittance according to

Equation (4).

3 RESULTS AND DISCUSSION

The GRAIL gravity field model GL0990D (Konopliv et al.

2014) and topography data from LOLA (Smith et al. 2010)

are considered in our admittance analysis. The gravity and

topography data can be expressed to degrees and orders of

990 and 2050, respectively. Considering the fact that the

deflection of the lithosphere in response to loads makes

only a negligible contribution beyond spherical harmonic

degree and order 150, these gravity and topography data

are truncated up to 200 (corresponding to maximum de-

gree lmax = 200). The studied area is constrained within

an angular radius of 5◦, corresponding to a spherical har-

monic bandwidth of 52. Then, the number of degrees of

freedom considered in this analysis is 88, with a corre-

sponding 2σSTD of 0.2998. It means that the parameters

are constrained with a root mean square (RMS) misfit σ

lower than 1.2998. Topography (Fig. 1a) and free-air grav-

ity anomaly (Fig. 1b) around crater Calvius (circled in

black) are shown in Figure 1. The low-lying craters demon-

strate a direct proportion in the form of a negative gravity

anomaly, while ridges around craters exhibit a small pos-

itive gravity anomaly. Most of the areas around Clavius

show a nearly isostatic state.

In order to estimate parameters describing crater

Clavius, we use a nonlinear algorithm, PSO, to minimize

the misfit σ between the modeled admittance and obser-

vations. We apply a swarm size of 400 and 50 iterations

in PSO to inverse the parameters. The best-fitted crustal

thickness and density are close to 30 km and 2587 kg m−3,

respectively. A small load ratio f of –0.194 is found. The

elastic thickness is constrained around 7 km. The spectra
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Table 1 Nominal Parameter Values

Parameter name Value or range

Load ratio f −0.8 ∼ 5

Mean crustal density ρc(kg m−3) 2000∼3200

Mean crustal thickness bc (km) 0.0∼60

Lithospheric elastic thickness Te (km) 0.0∼150

Surface gravity acceleration g (m s−2) 1.721

Reference radius R (km) 1737.15

Mass of the Moon M (kg) 7.3458998185 × 1022

Poisson’s ratio of lithosphere ν 0.25

Young’s modulus of lithosphere E (Pa) 1.0 × 1012 (McGovern et al. 2002)

Mantle density ρm(kg m−3) 3220 (Wieczorek et al. 2013)

Table 2 The Reference Interfaces Employed in Modeled Gravity Anomaly Calculation

No. Interface Height of Interface Density contrast Reference radius

1 Surface h ρc R

2 Crust-Mantle interface –(hb + wt) ρmρc Rbc

3 Subsurface load wbwt ρb Rzb

4 Reference layer of Subsurface load –(hb + wt) –ρb Rzb

of modeled admittance and observation in Figure 2 climb

until degree 60. Then, they descend slowly until almost de-

gree 75. The spectra ascend after that degree, but they de-

cline again after degree 80. Such declines stop until degree

123; then the spectra rise again until degree 135. It is evi-

dent that the modeled admittance spectrum shows a similar

fluctuation with the observed spectrum. The correspond-

ing misfit σ is close to 1.2491. Meanwhile, the spectrum

of correlation is almost close to unity except for deviation

around degree 75.

In order to test the acceptable ranges of the best-fitted

parameters within the 2σSTD constraint, we have carried

out a trade-off study in Figure 3 and an analysis of the exact

range of parameters in Figure 4. In the trade-off study be-

tween Te and f in Figure 3(a), the best-fitted elastic thick-

ness Te ranges from 2 km to 8 km, with a corresponding

load ratio f between –0.235 and –0.197. The other pan-

els in Figure 3 exhibit a small value of Te in the range

[6.5 km, 7.5 km]. The best-fitted crustal thickness falls in

the range [27.5 km, 31 km] and crustal density varies be-

tween 2577 kg m−3 and 2597 kg m−3. Moreover, the misfit

σ in Figure 3(a) is quite a bit lower than those in the other

panels. This result indicates that the load ratio f is sensitive

to elastic thickness Te, rather than bc and ρc. Such lowest

misfit σ is coincident with the corresponding large ranges

of Te and f .

To further find an exact range of parameters,

Figure 4(a) and Figure 4(b) give a load ratio f of

−0.194+0.0094
−0.0036 and a crustal thickness of 29+1.5

−1.2 km, re-

spectively. Such a small load ratio coincides with that in

Figure 3(a), which indicates that a surface load dominates

all the loads. Such a small value of f is also coincident

with the direct proportion between surface low-lying to-

pography and negative gravity anomaly in Figure 1. The

other panels in Figure 4 exhibit a best-fitted crustal den-

sity varying between 2580 kg m−3 and 2590 kg m−3, and

a best-estimated elastic thickness ranging from 6.62 km to

7.25 km. In the research of Wieczorek et al. (2013), the es-

timated crustal thickness and density around Clavius are

around 31 km and 2600 kg m−3, respectively. It is evident

that the best-inversed crustal thickness (∼30 km) and den-

sity (∼2587 kg m−3) in our study are quite close to the re-

sults of Wieczorek et al. (2013).

The previous research of Crosby & McKenzie (2005)

found that a spherical shell loading model is less satisfac-

tory for Clavius. Based on a thin plate model with a two-

layer crust, and an assumption with an upper crustal den-

sity of 2900 kg m−3 and a lower density of 3000 kg m−3,

they estimated an elastic thickness of ∼12 km. However,

our research indicates that a shell with a small elastic thick-

ness of 7 km satisfies the best-fitting between modeled ad-

mittance and observation. The density that Crosby (Crosby

& McKenzie 2005) used in their study is somewhat larger

than the mean value (2550 kg m−3) of the whole high-

land area. Moreover, the precisions of the gravity and to-

pography they used are lower than those of the GRAIL

gravity and topography from LOLA. The difference in

elastic thickness between their and our results can be at-

tributed to the difference between the crustal density used

in estimation and precision of the gravity and topography

data. Considering the well constrained crustal thickness

and density around Clavius, the best-fitted elastic thick-
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Fig. 1 Mercator projection of topography (a) from LOLA and free air gravity anomaly (b) from GL0990D. Crater Clavius is circled

with an angular radius of 5◦.
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Fig. 5 Localized admittance analysis over crater Clavius (white circles). (a) Observed gravity; (b) residual gravity between the modeled

gravity and observations; (c) modeled gravity derived with the best-fit parameters.

ness (∼7 km) is rational. Given the best-fitted parameters,

we simulate the modeled gravity anomaly based on the

four interfaces in Table 2. The modeled gravity anomaly

in Figure 5(c) shows a similar feature of the observed

free-air gravity anomaly in Figure 5(a). Their difference

in Figure 5(b) is found to be around zero mGal. This result

indicates that the estimated parameters mentioned above

could be an indicator of the subsurface structure beneath

Clavius.

4 CONCLUSIONS

In this paper, we employ a PSO to estimate the parame-

ters over crater Clavius. Considering a swarm size of 400

and a maximum number of iterations of 50, we have suc-

cessfully inversed a best-fitted load ratio f of –0.194. Such

a small load ratio agrees with the direct proportion be-

tween the uncompensated low-lying topography and its

corresponding negative gravity anomaly. It also indicates

that a surface load dominates the loads. Constrained within

2σSTD, a small crustal thickness (∼30 km) and a crustal

density of ∼2587 kg m−3 are found in our study, which

are quite close to the results from the previous GRAIL

research. Considering the well constrained crustal thick-

ness and density around Clavius, the best-fitted elastic

thickness (∼7 km) is rational. The spherical shell model

was previously proved to be unsatisfactory when using a

low-precision gravity field model. Our research indicates

that such a model with a small elastic thickness satisfies

the best-fitting between modeled admittance and observa-

tion. This difference can be attributed to the difference in

the crustal density used in estimation and the precision

of gravity and topography data. Using the best-estimated

parameters, the difference between the modeled gravity
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anomaly and observations is around zero mGal. These

best-estimated parameters could be an indicator of the sub-

surface structure beneath Clavius.
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Appendix A:

The lithosphere of small celestial bodies shall be mod-

eled as an elastic and thin spherical shell (Turcotte et al.

1981; Zhong & Zuber 2000). The deflection wL (positive

downward) of the lithosphere responding to a load q (pos-

itive downward) is expressed as (Kraus & Kalnins 1968;

Turcotte et al. 1981)

D∇
6wL + 4D∇

4wL + ETeR
2
∇

2wL + 2ETeR
2wL

= R4
[(

∇
2 + 2

)

− (1 + v)
]

,
(A.1)

where R is the reference radius of the shell (equivalent

to the lunar mean radius), E is Young’s modulus, v is

Poisson’s ratio and D =ET3
e/[12(1 − v2)] is the flexural

rigidity (as shown in Table 1). It is known that a geoid dis-

placement is only important for loads whose wavelengths

are of the order of the mean radiusR (Turcotte et al. 1981).

The geoid displacement is thus neglected in the load ex-

pression. Then, the load qt induced by a surface load of

height ht and corresponding deflection wt of the litho-

sphere is given by (Turcotte et al. 1981; McGovern et al.

2002)

qt = g [ρcht − (ρm − ρc)wt] , (A.2)

where g is the acceleration at the lunar surface; ρm and

ρc are mantel and crustal densities listed in Table 1, re-

spectively. Similarly, by neglecting the geoid displacement

load qb induced by a subsurface load of heightwb, the cor-

responding deflection hb of the lithosphere is expressed as

(Turcotte et al. 1981; McGovern et al. 2002)

qb = g (ρbwb − ρmhb) , (A.3)

in which ρb is the density contrast between the load and

its surroundings. Substituting surface and subsurface loads

into Equation (A.1) and expanding all the quantities in

terms of spherical harmonics, we can have their relation-

ship in the spherical harmonics domain. In the case of sur-

face load, assuming ht,lm and wt,lm are the spherical har-

monic coefficients of the surface load height ht and the

deflection wt of the lithosphere, their relation is given by

(Zhong et al. 2014)

wt,lm = Cs,l

Γs,1

Γs,2

ht,lm , (A.4)

where

Cs,l =
1

1 + Σl+Hl+Tl

Γs,2Θl

, (A.5)

Γs,1 =

(

1 −
3ρm

(2l+ 1) ρ̄

)

ρc

ρm − ρc

, (A.6)

Γs,2 = 1 −
3ρm

(2l+ 1) ρ̄
·

(

1 −
bc
R

)l+2

, (A.7)

Σl = σ(n3 + 2n2) , (A.8)

Hl = −4σ · l(l+ 1) , (A.9)

Tl = n · τ , (A.10)

Θl = (n+ 1 + v) , (A.11)

n = l(l+ 1) − 2 , (A.12)

σ =
D

gR4 (ρm − ρc)
, (A.13)

τ =
ETe

gR2 (ρm − ρc)
. (A.14)

As to subsurface load, regarding wb,lm and hb,lm as the

spherical harmonic coefficients of the subsurface load

height wb and the deflection hb of the lithosphere, their

relation is then given by (Zhong et al. 2014)

hb,lm = Cb,l

Γb,1

Γb,2

wb,lm , (A.15)

where

Cb,l =
1

1 + Σl+Hl+Tl

Γb,2Θl

, (A.16)

Γb,1 =
ρb

ρm − ρc

, (A.17)

Γb,2 =
ρm

ρm − ρc

. (A.18)
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Other quantities are similar to those in Equations (A.8)-

(A.14). Assuming the initial amplitudes of the surface and

subsurface loads are hi and wi, respectively, we can have

their relations in the forms of their heights and their corre-

sponding lithospherical deflection (Forsyth 1985)

hi = ht + wt , (A.19)

wi = wb + hb . (A.20)

Accordingly, the observed surface topography h represents

a sum of the components

h = ht − hb . (A.21)

In order to combine surface and subsurface loads, Forsyth

(1985) introduced load ratio f between subsurface and sur-

face loads and it is defined as

f =
ρbwi

ρchi

. (A.22)

Assuming the estimated parameters are isotropic in the

studied area (within angular radius), we can have their re-

lations expressed as spherical harmonic coefficients, which

are as follows

hi,lm = ht,lm + wt,lm , (A.23)

wi,lm = wb,lm + hb,lm , (A.24)

hlm = ht,lm − hb,lm , (A.25)

where hlm and hi,lm are the spherical harmonic coeffi-

cients of the observed surface height h and its initial height

hi, respectively. Others have the same meanings. Thus, we

can have the relation as

hi,lm = αt,lht,lm , (A.26)

αt,l = 1 + Cs,l

Γs,1

Γs,2

, (A.27)

wi,lm = αb,lwb,lm , (A.28)

αb,l = 1 + Cb,l

Γb,1

Γb,2

, (A.29)

f = −kl

wb,lm

ht,lm

, (A.30)

k =
ρbαb,l

ρcαt,l

. (A.31)

Then, we can deduce the spherical harmonic coefficients

ht,lm and wb,lm of the surface load height ht and the sub-

surface load height wb, respectively

wb,lm =
hlm

1 −
kl

f
− αb,l

, (A.32)

ht,lm =
hlm

1 + f
kl

(αb,l − 1)
. (A.33)

According to Equations (A.4)–(A.33), the subsurface de-

flections in Table 2 can be calculated in terms of the spher-

ical harmonic coefficient hlm of the observed surface to-

pography h.
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