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Abstract The main surface of a large Cassegrain antenna consists of a large number of panels. There are

inevitably random and systematic errors which will degrade the antenna pattern and limit its applicability

when working at high frequencies. Correcting the subreflector surface is difficult to describe by a global

expansion effectively with a small amount of data. This paper presents a simple and clear way for

correcting the subreflector surface of a large Cassegrain antenna for achieving such compensation. The

advantage of the method is that the geometrical optics (GO) analysis is extremely simplified by the

concept of equivalent prime-focus paraboloid, and corrected deformations of the subreflector surface are

determined by simple formulas which represent the relationship between distortions of the subreflector

surface and phase of the main surface current. The final shape of the subreflector surface is represented

by a B-spline surface. To obtain a satisfactory antenna pattern with the simplest subreflector surface, the

optimal number of B-spline patches are searched by particle swarm optimization (PSO). The shaping

process is verified by compensating a 22-m Cassegrain antenna whose main reflector has 96 panels. The

results are satisfactory and demonstrate the simplicity and effectiveness of the approach.
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1 INTRODUCTION

Large reflector antennas play an important role in ap-

plications like radar, communications and radio astron-

omy (Baars & Krcher 2018). Especially for space ex-

plorations and observational astronomy, radio telescopes

with a large aperture, high precision and facilities that op-

erate in multi band are scarce. Some famous large dual-

reflector telescopes, such as the Sardinia Radio Telescope

(SRT) 64-m (Ambrosini et al. 2013), Effelsberg 100-m

(Wielebinski et al. 2011), Green Bank Telescope (GBT)

110-m (Prestage et al. 2009), etc., have been built and

have made great contributions. China has constructed

some large telescopes to support the related research and

is preparing the Qitai Radio Telescope (QTT) (Xu &

Wang 2016), which will be the world’s largest fully steer-

able dual-reflector antenna in Qitai, China.

However, an antenna’s reflector will be distorted by

the effects of the environment and technology, which in-

troduce random errors (Ruze 1966) and systematic er-

rors (Duan & Wang 2009), and these errors tend to de-

grade the antenna’s performance. For a dual-reflector

telescope, there are three components which can be cor-

rected to compensate the distortions of the main reflec-

tor. First of all, for the main reflector, actuators can be

placed on the back of the supporting structure for the

main reflector, such as in GBT and SRT. Second, it has

been widely suggested to use an array type feed (Rahmat-

Samii 1991). However, these two methods are usually

costly and complicated in applications. Extra weight will

also be included in some applications which will in-

crease the burden to the support structure. The last way

aims at changing the subreflector surface to compen-

sate for residual errors arising from distortions in the

main reflector, which cannot be compensated by adjust-

ing the position of the subreflector. The method that im-

plements a mechanically deformable subreflector is con-

sidered to compensate for astigmatic deformation of the

main reflector (von Hoerner & Wong 1979). The other

approach uses a deformable flat plate which can be re-
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ferred to in Imbriale (2001). These two methods are

compromised of a number of actuators. With the re-

cent development of microstrip reflectarrays, it is pro-

posed to utilize these subreflectarrays as a subreflector

to achieve such compensation (Xu et al. 2009) which

can be implemented in narrow-band operation. The most

simple and effective way is shaping a suitable subreflec-

tor surface to achieve compensation. Geometrical optics

(GO)/physical optics (PO) and PO/PO analysis methods

have been used respectively in Hoferer & Rahmat-Samii

(2002) and Gonzalez-Valdes et al. (2013) to calculate the

shape of the subreflector surface, and the global Fourier-

Jacobi expansions which are related to Zernike polyno-

mials describing the shape of the surface are employed.

Actually, a large antenna needs to work at high frequen-

cies and its surface is composed of a large number of

panels, so the PO/PO analysis was not able to be realized

and the global surface expansions cannot effectively rep-

resent the local characteristics of distorted panels with a

small amount of data.

In this paper, a simple and efficient approach to cor-

recting the subreflector surface, whose deviation is de-

signed from a perfect hyperboloid, is presented to com-

pensate for the residual error which is the distortion be-

tween the real primary surface and its homologous sur-

face. A B-spline surface fitting with particle swarm opti-

mization (PSO) is used to describe the corrected surface.

The main part of the method includes two aspects. One is

the GO analysis which is simplified by the concept of an

equivalent prime-focus paraboloid and deformations of

the corrected subreflector surface are determined by their

effect on the antenna pattern. The formulas are presented

in Section 2. The other one is that the corrected deforma-

tions of the subreflector surface are described by a uni-

form bicubic B-spline surface. The interpolated surface is

determined by a small number of control points. PSO has

been used to optimize a nonlinear function which repre-

sents the relation between an integer number of B-spline

patches and the far field pattern. The formulations of the

B-spline surface and PSO are presented in Section 3.

Section 4 includes an example applying the method in

a 22-m Cassegrain antenna whose surface is made up of

96 panels, and the results are satisfactory. Section 5 pro-

vides the concluding remarks of the paper.

2 GO/PO ANALYSIS

2.1 PO Analysis for the Far Field Pattern

The telescope’s reflector can be treated as a perfect elec-

trical conductor. With the observation point, whose direc-

tion is (θ, φ), the unit vector is r̂ in the far field region,

and r′ is a point on the reflector surface. The far-field pat-

terns can be calculated by the main reflector PO currents

(Rahmat-Samii 1984)

EPO
(

θ,φ
)

= −jkη
e−jkr

4πr

(

¯̄I − r̂r̂
)

·

∫

S

JPO
(

r′

)

ejkr̂·r′

ds , (1)

JPO (r′) = 2n̂m × HGO , (2)

where j is the unit of the imaginary number, k is the wave

number, η is the free-space wave impedance, and ¯̄I and

r̂r̂ are the dyadic of the unit and r̂ respectively. S is the

reflector surface, JPO is the induced current, n̂m is the

unit normal vector on the main reflector surface and HGO

is the incident magnetic field which is reflected off of the

subreflector.

2.2 GO Analysis with Simplification

The magnetic field of the main reflector can be ob-

tained by GO analysis. Especially for Cassegrain and

Gregorian antennas, the concept of an equivalent prime-

focus paraboloid (Huang & Jin 1986) is an extreme sim-

plification for GO analysis because it has the same field

amplitude and homogeneous phase in the aperture. As

shown in Figure 1, the light propagates along a straight

line in a homogeneous medium based on Fermat’s prin-

ciple (Silver 1949). According to the principle of energy

conservation in a radial pipe, the Cassegrain type design

has
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where the plane φ is perpendicular to the plane θ, and

dφ2 = dφ1 , (4)

dS = ρe
2 sin θ2dθ2dφ2 = ρ2 sin θ1dθ1dφ1 . (5)

Substituting Equations (4) and (5) into Equation (3)

yields
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and there are some relations that

ρ =
2F

1 + cos θ1

, (7)

ρe = Mρ , (8)

where M is the magnification factor. If e is the eccentric-

ity of the hyperboloid, there is

M =
tan θ1

2

tan θ2

2

=
e + 1

e − 1
. (9)
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Fig. 1 Equivalent prime-focus paraboloid.

Synthesizing Equations (7) ∼ (9), the incident mag-

netic field HGO′

can be easily obtained because the

equivalent prime-focus paraboloid is illuminated by the

feed directly. Namely, using a virtual parabola, the com-

plicated Cassegrain antenna is simplified to a single sur-

face antenna with the same feed and aperture, but the

equivalent focal length Fe is M times the original one

(Huang & Jin 1986). This method avoids calculation of

the principal radii of curvature such that the ray is re-

flected off of the subreflector and incident on the main

reflector, which makes the calculation simple and fast.

2.3 Deformations of the Shaped Subreflector

In fact, the primary surface of any reasonable antenna

will have small errors, and the real surface differs very lit-

tle from the original one, so the surface normal vector and

field amplitude will not deviate substantially compared

with an undistorted antenna (Smith & Bastian 1997). If

the vector located on the integration points of the dis-

torted reflector is r′

∆ (see Fig.1), it differs from the cor-

responding point on the desired undistorted reflector by

εz = f∆ (r′ ) ẑ , (10)

where f∆ is the scalar value at the integration points de-

fined by r′. Then, the integrand in Equation (1) will be

multiplied by ejkf∆(r′)(cos θ−cos θ′) to calculate the real

far field where θ′ is the intersection angle between r′ and

ẑ. Namely, the main surface distortion will change the

path length of the PO currents as

δmain = f∆ (r′) (cos θ1 − cos θ′) . (11)

There are simple formulas (Ruze 1969) for the phase

variation and error of the main reflector surface distor-

tion, axial and lateral feed displacements with similar

displacements and rotation of the subreflector. These for-

mulas are verified by the ray tracing method in Mathcad

(Lamb & OVRO 2001). Based on these simple formulas,

the peak gain of the Cassegrain antenna can be obtained

with the subreflector position adjustment and the rela-

tionship between the surface accuracy and beam position

of the Cassegrain antennas is presented in Zarghamee

(1982); and optimal surface adjustment and upgrade of

the Haystack antenna (Zarghamee et al. 1995) have re-

ceived useful guidance. Through the above-mentioned

cases, it seems natural to use these simple formulas to

determine the deformations of the subreflector surface

and compensate. The following formula represents the

relationship between subreflector distortions and phase

variation of the surface current.

The expression for the change in radio frequency

(RF) path length due to distortions in the subreflector sur-

face can be written as

δsub = as · ds , (12)

where ds = (ds−x, ds−y , ds−z) is the displacement of

the subreflector surface point. For a paraboloid with the

form z = r2/(4F ) , the coefficient vector as can be

expressed as

as = − (ap + af ) . (13)

For a Cassegrain antenna (Zarghamee 1982), ap =

[ap−x, ap−y, ap−z] and af = [af−x, af−y, af−z], and

ap−x = cp cosφ1 , (14a)

ap−y = cp sin φ1 , (14b)

ap−z = −
8F 2

4F 2 + r2
, (14c)

af−x = cf cosφ1 , (15a)

af−y = cf sin φ1 , (15b)

af−z = −
−4(MF )

2
+ r2

4(MF )2 + r2
. (15c)

In addition

cp =
4Fr

4F 2 + r2
, (16a)
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cF =
4 (MF ) r

4(MF )
2

+ r2
. (16b)

According to the above mentioned formulas (12) ∼

(16), changes in the RF path length which are caused by

deformations in the subreflector surface are computed. It

can be translated into the antenna phase error by multi-

plying by k. The whole path length error, which is caused

by the main reflector and subreflector, is

δwhole = δmain + δsub . (17)

In order to recover the far field pattern, the path

length error δwhole is expected to be zero. So, the data ds

from the subreflector can be calculated by Equation (17)

with the least squares method and then be used to deter-

mine functions that can describe the shape of the surface.

The variables describing the subreflector surface defor-

mations and optimal method are provided in Section 4.

2.4 Constraints on the Corrected Subreflector

Section 2.3 shows a simplification of the GO analysis in

the case of the Cassegrain design. The rays, being from

the far field and reflected by the main reflector, must not

cross each other before reaching the subreflector when

they illuminate the subreflector.

The following states are confined to the primary re-

flector in a Cassegrain type design with deviations ∆zm.

We consider that the deviations have a large positive cur-

vature but a small slope. The reflected rays will cross

each other at the critical distance Fc as (von Hoerner

1976)
1�Fc

= 1�F + 2∆z′′m , (18)

where F is the focal length of an ideal parabolic tele-

scope, and ∆z′′m is the second derivative in that direc-

tion which is the largest.

To derive the subreflector surface that does not have

crossing rays, the following formula must be applied (see

Fig. 1)

Fc ≥ F − B . (19)

Substituting Equation (19) into Equation (18), the

general condition is

∆z′′m ≤
B

2F (F − B)
. (20)

This section, which provides the limit for correct-

ing a subreflector to compensate for the main surface de-

viations, is also suitable for other dual-reflector antenna

types according to the demand for equal path length (von

Hoerner 1976). For example, this is true in the case of

Gregorian-type antennas whose incoming rays must have

crossed each other before reaching the subreflector.

3 GLOBAL BICUBIC B-SPLINE SURFACE WITH

PARTICLE SWARM OPTIMIZATION

To describe the corrected deformations of the subreflec-

tor surface, some requirements need to be taken into

account for the whole compensatory process (Duan &

Rahmat-Samii 1995). Namely, the results can converge

easily, the surface can be analytically smoothed through

second derivatives and the method can be readily used as

a synthesis tool with optimization techniques, so global

surface expansions are usually considered. Several func-

tions are evaluated, such as Fourier-Bessel functions,

modified Jacobi polynomials and Zernike polynomials.

It deserves to be mentioned that modified Jacobi poly-

nomials, which are used in Hoferer & Rahmat-Samii

(2002) and Gonzalez-Valdes et al. (2013), are related to

Zernike polynomials, and they are different in the in-

dex schemes in addition to the normalization constant

(Duan & Rahmat-Samii 1995). Actually, optical devices

are more precise than microwave antennas, and Zernike

polynomials, whose polynomials have a special meaning,

have been previously studied and widely applied in the

classification of optical aberrations (Doyle et al. 2002).

The distortions of examples in Hoferer & Rahmat-Samii

(2002) and Gonzalez-Valdes et al. (2013) are also some

of the terms in Zernike polynomials, and are well com-

pensated by the shape of the subreflector through their

method. However, it is difficult for these global expan-

sions to accurately represent local characteristics with a

small number of coefficients, because large antennas are

composed of many panels and these panels have diverse

local characteristics. There is a statement about this in

Section 4.

3.1 B-spline Surface

Based on the above requirements, the surface fitting

method of a uniform bicubic B-spline surface (Chiu

1996) is considered. The method is part of the subject

of Computer Aided Geometric Design (Farin 2002) and

it satisfies the above mentioned requirements, and its

other advantages are also obvious. For example, it can

accurately represent local characteristics, needs a small

amount of data, can be computed and programmed eas-

ily, etc. Therefore, the method replaces the global surface

expansion to describe the deformation in a subreflector

surface. It should be noted that the paper calls a uniform

bicubic B-spline surface, which is a type of B-spline rect-

angular patch defined in spherical coordinates, a B-spline

surface.

A B-spline rectangular patch is defined by control

points bij (See Fig. 2), knot vectors U and W , and B-
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Fig. 2 Bicubic B-spline surface patch.

spline basis functions. The general formula is

p (u, w) =

3
∑

i=0

3
∑

j=0

Fi,3 (u)Fj,3 (w)bij

= [U ] [MB] [b] [MB]
T
[W ]

T

u, w ∈ [0, 1] ,

(21)

where

Fl,n(t) =
1

n!

n−l
∑

j=0

(−1)
j n!

j! (n − j)!
(t + n − l − j)

l = 0, 1, . . . , n ,
(22)

[U ] =
[

u3 u2 u 1
]

, (23)

[W ] =
[

w3 w2 w 1
]

, (24)

[MB] =
1

6









−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0









, (25)

[b] =









b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33









. (26)

The B-spline surface is made up of a series of B-

spline patches. Two key properties of the method are lo-

cal modification and second derivatives of the surface.

These properties are what the surface expansions really

need. Once the characteristic grid vertices bij are ob-

tained, the global surface can be spliced by the patches.

3.2 PSO for the Number of B-spline Patches

Actually, the data points p can be computed by GO/PO

analysis, and the knot vectors U and W are variables

determined by PSO. However, the control points bij need

to be computed, so there is a reverse computation of the

B-spline surface, and the solution uses the two-way curve

method. If the data points p are known, the reverse steps

are presented as follows:

(1) Provide the data pij (i = 1, 2, . . . , m; j = 1, 2, . . .,

n);

(2) Calculate the n characteristic polygons of the n B-

spline curves along vector U with the inverse algo-

rithm of B-spline curves as

bi−1 + 4bi + bi+1 = 6pi (i = 1, 2, . . . , m) . (27)

Add two supplementary equations according

to the boundary condition. Take the vertices

of the obtained characteristic polygons as

Vij (i = 0, 1, 2, . . . , m + 1);

(3) Take Vij as the data points and calculate the m + 2

characteristic polygons in step (2) along vector W .

Then, the control points bij are obtained.

The above mentioned steps show how the global B-

spline surface is generated. However, the optimal data

points pij are difficult to find as there is a nonlinear re-

lationship between it and the far field pattern. Therefore,

the paper uses the PSO method (Robinson & Rahmat-

Samii 2004) for global optimization to determine the op-

timal number m and n of data points pij .

The following summarizes the PSO. Assume there is

a D dimensional search space, and the population

X = (X1, X2, . . . , XNu
)

consists of Nu particles, where particle i corresponds to a

D dimensional vector Xi = (xi1, xi2, . . . , xiD)T which

represents the position in the search space and a potential

solution. According to the objective function, the fitness

of every particle can be computed. The velocity of par-

ticle i is Vi = (Vi1, Vi2, . . . , ViD)
T

, the individual best

fitness is Pi = (Pi1, Pi2, . . . , PiD)
T

and the global best

fitness is Pg = (Pg1, Pg2, . . . , PgD)
T

. The particles will

update their individual velocity and position through in-

dividual and global best fitness as

V ge+1
id = ωV ge

id +c1r1 (P ge
id − Xge

id )+c2r2

(

P ge
gd − Xge

id

)

.

(28)

Xge+1
id = Xge

id + V ge+1
id , (29)

where ω is the weighting factor, d = 1, 2, . . . , D, i =

1, 2, . . . , n, ge represents the current iterations, and c1

and c2 are nonnegative constants that are called scal-

ing factors. r1 and r2 are random numbers distributed

in [0, 1]. The detailed algorithms of PSO can be found in



79–6 Y. Ban et al.: B-spline Surface Fitting and Simplified GO/PO Analysis to Subreflector Correction

Robinson & Rahmat-Samii (2004). To prevent the parti-

cles from searching aimlessly, the position and velocity

should be limited to a certain range which is presented in

the examples in Section 4.

It is noted that the optimization is also an integer pro-

gramming problem for variables m and n, which are in-

tegers. There are some special modifications:

(1) The initial particle should be a random integer that

belongs to the feasible zone. The feasible zone is de-

fined as m × n ≤ Nm, where Nm is the number of

main reflector points which generate the scattering

field.

(2) V ge+1
id is a good direction for the particle, and the

updated position must be integrated.

(3) The fitness is determined by the objective function

which is the number of B-spline patches and it will

be punished by unacceptable far field results which

are compensated by the shape of the subreflector.

Specific applications are provided in Section 4.

4 CALCULATED EXAMPLES

4.1 Antenna Configuration and Distortion

The following example demonstrates the effectiveness

of the method to recover the far field pattern for an

antenna through subreflector shaping. A finite element

method (FEM) model of a 22-m Cassegrain telescope

is built which adopts an umbrella-type design to support

the back of the structure, like what is used in the 100-m

Effelsberg radio telescope. The primary reflector is di-

vided into five rings and is made up of 96 panels. The

back of the supporting structure for the main reflector is

illustrated in Figure 3, and the parameters of the antenna

are listed in Table 1.

Table 1 Geometrical Parameters of the 22-m Antenna

Main Reflector

Reflector diameter D = 22 m

Focal length/Diameter F/D = 0.33

Offset height H = 0

Tilt between axis α = 0◦

Subreflector

Major axis a = 2.97 m

Minor axis b = 2.087 m

Eccentricity e = 11/9

Focal length f = 3.63 m

Offset height h = 0 m

Homological design has been used in structure op-

timization (Levy 1996) where the best fitting method is

applied to eliminate structural deformities which have no

adverse effects in microwave. In order to make the sim-

ulation close to reality, virtual random errors associated

with the panel installation are considered and they obey a

normal distribution where the mean is zero and the vari-

ance is 1/20 of the optimized structural root mean square

(RMS). In addition, the polarization direction of the feed

is along the x axis, and its pattern is described by

fE (θ′) = fH (θ′) = M (1 + cos θ′) , (30)

where M is the magnification factor and is set to 1, and

fE (θ′) and fH (θ′) are the patterns on the face of φ′ =

0◦ and φ′ = 90◦ respectively. The antenna is expected to

work at 100 GHz and the primary surface is distributed

into 27 094 triangular subdomains with 15 612 discrete

points.

At a 45◦ angle, distortions in the main reflector cause

errors in the aperture path length. This is depicted in

Figure 4 where (a) and (b) are the best fitting before and

after respectively (Levy 1996), and the final best fitting

RMS is 0.6023 mm. The ∆z′′m of the main surface dis-

tortions are all suitable for Equation (20) which can be

directly correctable without problems by the proposed

approach. The antenna works at an angle and the far field

pattern is not satisfactory (see Fig. 5). The deformation

of the shaped subreflector can be obtained by the method

described in Section 3 to compensate for distortions in

the main reflector to obtain acceptable performance.

4.2 Shaped Subreflector with Zernike Polynomials

Taking the best fitting paraboloid as the theoretical re-

flector surface, the theoretical and real normalized pat-

terns are shown in Figure 5. As mentioned above, several

expansion functions, especially the Zernike polynomials,

are evaluated, because terms in the Zernike polynomi-

als have special geometric meaning and are widely used

in optical instruments (Doyle et al. 2002). Zernike func-

tions, in theory, are part of an infinite number of polyno-

mials which form complete, orthogonal basis functions

over the unit circle. The expression is

{

Zm
n (r, θ)

Z−m
n (r, θ)

}

= Rm
n (r)

{

sin (mθ)

cos (mθ)

}

, (31)

where

Rm
n (r) =

n−m

2
∑

k=0

(−1)k (n − k)!

k!
(

n+m
2

− k
)

!
(

n−m
2

− k
)

!
rn−2k

n = 0, 1, 2, . . . , (n − m) even .

(32)
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Fig. 3 The main part of the back of the supporting structure for the 22-m antenna.

Fig. 4 The aperture pathlength error of the main reflector distortion. (The area of the inner circle is blocked by the subreflector.)

Fig. 5 The normalized pattern for the farfield at 100 GHz. (NC: No compensation for the subreflector, ZC: Zernike polynomials

describing the shape of the subreflector to realize compensation, BC: B-spline surface describing the shape of the subreflector to

realize compensation.)

Error in the reflectors can be expressed by a se-

ries of coefficients associated with the dominant Zernike

modes as

f (r, θ) =

∞
∑

n=0

n
∑

m=−n

cnmZm
n (r, θ) (33)

and the coefficients can be calculated by

cnm =

∫∫

f (r, θ) Zm
n (r, θ) rdrdθ . (34)

However, the global surface expressions need fast

convergence and can be readily used as a synthesis tool

with optimization techniques, so that the expressions
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Table 2 Parameter Settings for PSO (I)

Parameter Value

c1 1.49

c2 1.49

[Vmin, Vmax] [–4, 4]

[Xmin, Xmax] [2,200]

Population size 10

Max Iterations 300

∆GMax

Case 1 3 dB

Case 2 2 dB

Case 3 1 dB

∆SLLL Max Case 1 6 dB

= Case 2 4 dB

∆SLLR Max Case 3 2 dB

cannot be expressed by infinite polynomials, and have a

small number of expected terms. The residual error of the

aperture path length, which is compensated by the shape

of the subreflector described by 37 terms of the former

Zernike polynomials, is shown in Figure 6(a), but the re-

sults of the normalized pattern are still unsatisfactory (see

Fig. 5 and Table 2). This indicates that the local charac-

teristics of the large antenna surface, which is composed

of many panels, are difficult to represent by Zernike poly-

nomials, and the results are also suitable for other global

expressions.

4.3 Shape of the Subreflector with B-spline Surface

The method that applies a B-spline surface obtains good

results (see Fig. 5 and Fig. 6 (b), (c) and (d)). As men-

tioned in the above sections, the subreflector is shaped by

the GO method and the optimal number of data points is

determined by PSO so that the deformations in shape are

described by the B-spline surface. To obtain an accept-

able pattern for the far field, an optimal model is neces-

sary

Find : X = [Xm, Xn]
T

Min : Npatches = (Xm − 1) × Xn

s.t. ∆G ≤ ∆GMax

|∆SLLL| ≤ ∆SLLL Max

|∆SLLR| ≤ ∆SLLR Max

(Xm · Xn) ≤ Nmain ,

(35)

where Xm and Xn are the number of data points in the

radial and circular directions respectively, Npatches is the

number of B-spline patches and Nmain represents dis-

crete points on the main reflector obtained from FEA

which are regarded as precise data. The constraint, that

is expected to get an acceptable far field pattern, is sim-

plified as ∆G, ∆SLLL and ∆SLLR which are the re-

ductions of gain and variation of the left and right first

sidelobes respectively.

The optimization of PSO is mentioned in Section 4.

To get reasonable results as soon as possible, the parame-

ter settings and optimization process are shown in Table 2

and Figure 7, respectively.

There are three cases for the shaped subreflector

which are described by the B-spline surface, and they

are different from each other in terms of constraints on

∆GMax, ∆SLLL Max and ∆SLLR Max. The renormal-

ized pattern is more satisfactory than the shaped subre-

flector surface which is described by Zernike functions

(see Fig. 5), which can be explained in that the residual

error of the aperture path length is smaller (see Fig. 6 and

Table 3). The specific data are shown in Table 3, and the

number of data points for the three cases of B-spline sur-

faces is all far less than that of Zernike functions. The

good results indicate that the B-spline surface is a simple

and effective way to describe the shape of the surface.

It is noted that the average fitness does not need to be

shown and the final results of the example may not be

the globally best solution, but the results are also satis-

factory and demonstrate the effectiveness of the method.

In addition, the method can use a minimum number of B-

spline patches to recover the required performance of the

antennas, thus reducing difficulties in subreflector man-

ufacturing. Moreover, it is also easy to add constraints

related to the manufacturing ability and cost according

to practical situations using the proposed method.

5 CONCLUSIONS

This paper presents a simple and useful method for shap-

ing the subreflector surface to compensate for deterio-

ration in the pattern of a large Cassegrain antenna. It

simplifies the GO analysis by the concept of equivalent

prime-focus paraboloid, and deformations of the shaped

subreflector are determined by the relationship between

subreflector surface distortions and the far field pattern,

because the distortions in the subreflector surface will

change the phase of the main surface current. It does not

include any complicated iterative computations. As the

surface of a large antenna is composed of many panels,

there are local characteristics of the panels in addition

to aberration of the entire reflector surface. The global

surface expansion with orthogonal polynomials, such as

Zernike polynomials, are not effective for describing it

with a small number of coefficients. A B-spline surface is

a simple and effective method to represent deformations

in shape of the subreflector surface, which can not only

provide analytical smoothing through the second deriva-

tives, but can also represent local characteristics of the
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Fig. 6 The residual aperture path length error after compensation by the shaped subreflector surface.

Fig. 7 The optimization process of the PSO.

surface, and can be readily used as a synthesis tool with

optimization techniques. There is a complex nonlinear

relationship between the number of B-spline patches and

the far field pattern of the antenna, and PSO provides a

good solution to search for the global optimal solution

with the least number of patches for minimum manufac-

turing cost. A 22-m Cassegrain antenna has been pre-

sented and the results of compensation by the shaped

subreflector surface are satisfactory, demonstrating the

excellent performance of the proposed approach.

It is noted that the processing method described

in this paper is also suitable for other types of dual-

reflector antennas because the B-spline surface and PSO

are universal. The difference is in the simple formulas

for the relationship between deformations of the sub-

reflector surface and the far field pattern, but it can

be derived in the same way. In addition, the equiv-

alent prime-focus paraboloid concept just applies to

Cassegrain and Gregorian antennas. This method also

provides an approach to upgrading currently-operating

large dual-reflector antennas through shaping a new sub-

reflector rather than costly rebuilding of the main reflec-

tor.
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Table 3 Parameter Settings for PSO (II)

Surface expression of

shaped subreflector
NC ZC

BC

Case 1 Case 2 Case 3

∆G/dB
φ = 0◦ 4.2845 3.0415 2.8059 1.9713 0.8109

φ = 90◦ 4.3198 3.0415 2.7860 1.9713 0.8109

∆SLLL/DB
φ = 0◦ 3.8117 3.0767 2.4726 1.9983 1.3136

φ = 90◦ 2.4802 2.6798 2.0637 0.9590 1.0959

∆SLLR/DB
φ = 0◦ 3.5826 2.5544 2.4053 1.1235 0.6563

φ = 90◦ 1.8733 2.4836 3.0283 1.5950 0.6617

Aperture pathlength

error/mm
0.6023 0.4437 0.4417 0.3932 0.2852

The number of discrete

points to describe the

shape of the subreflector

/ 15612 150 210 390
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