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Abstract We introduce a new code for cosmological simulations, PHoToNs, which incorporates fea-

tures for performing massive cosmological simulations on heterogeneous high performance computer

(HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute grav-

itational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force,

the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) al-

gorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve

is used to decompose the computing domain. Threads programming is advantageously used to more

flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree

Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves

68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the

code against the much used Gadget-2 in the community and found excellent agreement.
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1 INTRODUCTION

During the last decades, cosmological N -body simu-

lation has become an essential tool for understanding

the large scale structure of the Universe, due to the

nonlinear physical nature of the formation and evo-

lution of cosmic structure. Demanded by future large

scale galaxy surveys, the new generation of cosmolog-

ical simulations requires a huge number of particles and

a huge simulation volume in order to obtain good statis-

tics and simultaneously achieve high resolution to re-

solve faint galaxies that can be observed in galaxy sur-

veys. For example, a recent simulation by Potter et al.

(2017) evolved an unprecedented 2 trillion particles in a

3 Gpc3 volume for the upcoming Euclid survey. To per-

form such a simulation, an exquisite simulation code is a

must. Indeed many cosmological simulation codes have

been continuously developed in recent years (Efstathiou

et al. 1985; Bertschinger & Gelb 1991; Jing & Suto

2002; Teyssier 2002; Makino et al. 2003; Makino 2004;

Wadsley et al. 2004; Springel 2005; Stadel et al. 2009;

Bagla & Khandai 2009; Ishiyama et al. 2009; Klypin

et al. 2011; Prada et al. 2012; Ishiyama et al. 2012;

Warren 2013; Wang et al. 2015; Emberson et al. 2017;

Yu et al. 2017).

At the same time, high performance computing ar-

chitecture has undergone significant changes, and many

new high performance computer (HPC) systems have a

mixed CPU+GPU architecture rather than the traditional

pure CPU one (Makino et al. 1997, 2003). Many existing

cosmological simulation codes were developed based on

the pure CPU systems and thus are not able to take ad-
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vantage of the power provided by popular heterogeneous

HPC machines (Guo et al. 2011). In this paper, we intro-

duce a novel cosmological simulation code PHoToNs. It

has two characteristics; the first feature is that the code

is programmed based on threads and the other is that it

is highly optimized for heterogeneous architectures, such

as Intel Xeon Phi (MIC).

The organization of the paper is as follows. We

briefly introduce the background of the physical model

in Section 2. The force calculation algorithm is presented

in Section 3. Section 4 discusses our parallelization and

implementation strategy. In Section 5, we describe the

numerical accuracy and performance of PHoToNs.

2 EQUATIONS OF MOTION

In cosmological N -body simulations, the underlying

matter of the Universe is usually sampled with collision-

less dark matter particles which are only governed by

gravity. Thus the Lagrangian of a particle reads

L =
p2

2a2
− φ

a
, (1)

where the momentum p = av and φ refers to comov-

ing potential (Peebles 1980), which is determined by

Poisson’s equation

∇2φ = 4πGa3 [ρm (r, t) − ρ̄m (t)] . (2)

The density field ρ can be constructed from discrete mass

points

ρ (r) =
∑

∀i

mi

a3
δD (r − ri) . (3)

Here the Dirac delta function δD can be modified by con-

sidering different mass distributions.

According to the Lagrangian, the motion equations

of an individual particle are given by

ṙ =
p

a2
,

ṗ = −∇φ

a
. (4)

It is apparent that the gravity between two particles satis-

fies the inverse-square law due to the form of the Poisson

equation. The acceleration of a particle is solved by the

gradient of potential and pairwise Newtonian gravity in

the simulation.

3 FORCE CALCULATION ALGORITHM AND

IMPLEMENTATION

The most challenging problem for cosmological N -body

simulation is how to compute the gravitational force ef-

ficiently and accurately. In PHoToNs we adopt a hybrid

scheme to do the task, namely using the Particle-Mesh

(PM) algorithm to compute the long range force, and

a novel combination of Tree algorithm and direct sum-

mation Particle-Particle (PP) to compute the short range

force. We describe our force calculation scheme in detail

below.

3.1 PM-Tree-PP Method

The PM method (Hockney & Eastwood 1988) is a com-

mon and efficient algorithm to solve the Poisson equation

(Eq. (2)). In Fourier space, the Poisson equation can be

expressed as an algebraic equation, and its solution can

be simply obtained by convolution of the Green function

under the periodic boundary condition. The Green func-

tion of the Poisson equation has a simple form of −/k2,

and its 3-point difference in k space reads

gk(l, m, n) =
πG∆2

g

sin2
(

π
N

l
)

+ sin2
(

π
N

m
)

+ sin2
(

π
N

n
) ,

(5)

where ∆g denotes the width of a mesh, N is the mesh

number on one side, and l, m, n denote the discrete wave

number. The convolution of density field and Green func-

tion is a multiple in Fourier space and can be imple-

mented with a Fast Fourier Transformation (FFT). As

FFT works on regular meshes, one needs to assign the

density field sampled by a number of discrete particles

into a regular mesh. Then the Poisson equation is solved

in Fourier space, and an inverse FFT transformation

is applied to obtain gravitational potential on meshes.

Finally, the acceleration of each particle can be linearly

interpolated from the potential meshes.

The force accuracy of the PM method is nearly ex-

act at large scales but drops dramatically within a few

mesh sizes (Bagla 2002). In past years many other grav-

ity solver algorithms were invented to improve force ac-

curacy on small scales. Among these, a popular grav-

ity solver is the Tree method, introduced by Barnes &

Hut (1986), which provides a robust efficiency even for

a highly clustered system. In their original approach,

the simulation volume is recursively divided into eight

smaller subcubes until each subcube only contains one

particle. Each subcube contains information about the

center of mass and the multiple moments associated

with the mass distribution enclosed in the subcube, as

well as other information. Considering every particle as

a leaf, one can organize the adjoined particles in hier-

archical branches (tree nodes) of a tree data structure,

so that the gravity from distant tree nodes can be com-
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puted as individual mass points, otherwise the closer

nodes are opened. The force calculation of a particle is

complete when the tree-walk recursively goes though all

branches. The time complexity of such a Tree method is

O(N logN).

Bagla (2002) suggests a hybrid approach to com-

bine the advantages of the Tree and PM methods in or-

der to achieve adequate force accuracy at both large and

small scales. The idea is to elaborately compute long

range gravity with the PM method and calculate the short

range force with the Tree algorithm. The combination

of these two parts achieves an accurate model of grav-

ity at all scales. To this end, for each particle, when do-

ing the PM calculation, an additional low-pass Gaussian

filter, 1 − exp(−s2/2R2
s), is convolved to take out the

short range force of the PM calculation. Here s is the

spatial separation of two particles, and Rs is a charac-

teristic parameter to control the splitting scale at which

the long and short range force calculations take effect.

Correspondingly, the expression of the short range force

also needs to be modified by the following factor

f sh
i (s) = erfc

(

s

2Rs

)

+
s

Rs

√
π

exp

(

− s2

4R2
s

)

, (6)

where s is the spatial separation from the particles i. Rs is

the splitting radius. From the expression one can readily

see that the short range force drops rapidly as the separa-

tion increases. Beyond a certain scale Rcut, contribution

from the short force is negligible. Here the exp and erfc

functions in Equation (6) are both computationally ex-

pensive, and so Equation (6) is usually estimated based

on interpolation from a pre-built-float table.

Following Bagla (2002) and Springel (2005),

PHoToNs also carries out most of the force calculation

with the PM-Tree scheme (Xu 1995). For the PM part,

PHoToNs employs a conventional Cloud-in-Cell (CIC)

scheme to assign particles into regular grids. For the Tree

calculation part, we adopt a much used oct-tree (Barnes

& Hut 1986) structure for the tree construction. In con-

trast to some existing Tree codes, we follow Springel

(2005) to adopt monopole moments for tree nodes. As

discussed in Springel (2005), there are some attractive

advantages in using the monopole moments scheme, for

example, less memory consumption which also improves

the efficiency of tree operations. However, the monopole

scheme usually requires a more strict opening criterion in

order to achieve the same level of force error when com-

pared to multiple moments. In addition to the geometric

effect, accuracy of the tree method is also affected by the

dynamical state, and we follow the criterion of Gadget-2,

GM

s2

(

l

s

)2

≤ α|a| , (7)

where s is the separation between the target particles, a

tree node has a width of l, α is a control parameter and

a is acceleration of a particle. This opening criterion re-

sults in higher force precision for particles with larger

acceleration and is more effective than the pure geomet-

ric opening criterion; please refer to Springel (2005) for

details.

When considering the scale at which the PM and

Tree calculations are split, Bagla (2002) found that the

gravity error is less than 1% if Rcut is 3.5 times larger

than Rs. A more strict cut scale is used in PHoToNs,

which follows Gadget-2 (Springel 2005), Rcut = 4.5Rs

and Rs = 1.2∆g. Springel (2005) shows that, with these

parameters, a force error of more than 99.99% for the

particles is smaller than 0.005% for a typical value of

α = 0.001. This implies the Rcut should be larger than

5.4∆g. Thus our choice of Rcut = 6∆g is sufficient.

We demonstrate the idea of force splitting in

Figure 1. The coarse grains (thick solid lines) are referred

to as the ground tree-node and the number on one side

(Nside) should be 2 to the power of n. The fine grains

(dotted lines) represent the PM mesh. The size of the

coarse grains is set to be exactly 6 times the fine one

(> 5.4∆g), which has the advantage that the tree calcu-

lation part for the target point (a filled square in the dia-

gram) only needs to consider its adjacent coarse grains

and itself. Our domain decomposition strategy is also

based on this splitting scheme; we will discuss this fur-

ther in later sections.

In the standard PM-Tree method, the short range

force is computed all the way with the tree method.

PHoToNs implements some modifications, and instead

we use the PP method to replace the tree calculation

when a tree branch is left a given number of particles,

Npp. This implementation has two advantages. Firstly

by doing this, the depth of a tree is reduced by a factor of

about 15%−20%, hence reducing the memory consump-

tion and the levels of tree-walk. Secondly, compared to

the Tree method, it is more efficient to compute force of

a group of particles with the PP if the number is small. In

practice, we found Npp = 100 is a good number to keep

the force calculation efficiency and at the same time re-

duce memory consumption. PHoToNs also includes sev-

eral improvements to the Tree-building part as described

below.
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Fig. 1 Diagram illustrating the long and short range force decomposition. The coarse grain corresponds to the ground tree node

and fine grid is for the PM calculation. Gravitational force in any target area (the filled square) is a summation of the long range

PM and short range Tree force. The radius of the dashed circle is exactly six times the PM grid, thus the adjoining ground tree node

(coarse grain) contains all information needed for the short range force calculation.

3.2 Tree Building

PHoToNs initially builds a conventional oct-tree as other

Tree codes do, with a series of pointers that are defined

in the tree nodes structure to record the relationship be-

tween parent and offspring nodes. During the procedure,

a tree is built recursively by inserting particles one by

one. As a result, tree nodes are not contiguously ordered

in memory, which is not friendly for tree-walk. Some

modifications have been made to improve the tree-walk

efficiency by rearranging the tree nodes later in the order

of tree-walk, however even by doing this the data storage

for particles is still incontiguous. Such a scheme is nei-

ther friendly for memory access nor hardware optimiza-

tion, and it is even more serious on some heterogeneous

architectures, for instance Intel MIC due to the commu-

nication and memory allocation strategy on MICs.

Desirably, all particles associated with the same tree

node should be in a contiguous sequence in memory, and

PHoToNs adopts two steps to achieve this. Firstly, all

ground grids are marked with the index of (i×Nside +

j)×Nside+k. Then we label each particle with the index

of the grid in which it resides and apply a bucket sorting

to collect the particles with the same index into the same

grid. Now all particles in the same grid should be adja-

cent in the ground level. In the second step we need to

refine the ground tree nodes to make them continuous in

memory. We adopt a Morton key to rearrange all particles

of each grid. Morton key is a spatial filling sequence, and

the order of the key is exactly the same as the structure

of the oct-tree. After doing this, all particles are assigned

into the proper tree node at each level, and the number

of particles in a node and the position (offset) of the first

particle in the global array are recorded in the tree node

data structure. After all these steps, not only the children

of a branch node are contiguously stored in the memory,

but also a particle in any node can also be easily identi-

fied in just one memory block without much time latency

caused by the cache miss. This scheme greatly improves

the memory access efficiency in the consequent tree-walk

procedure, especially on MIC. The memory arrangement

for tree and particle is shown in 2D in Figure 2.

3.3 Dual Tree Traversal

PHoToNs allows an option to run on Intel MIC architec-

ture by employing a Dual Tree Traversal (DTT) scheme

to calculate gravitational force. In the conventional Tree

method, the gravitational force of a target particle is the

interaction between the target particle and tree nodes and

so the program needs to walk through the entire tree,

while the DTT computes gravity based on interactions

between tree nodes as described in detail below.
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Fig. 2 A diagram for the tree structure. The left panel displays a group of particles (from A to N) residing in a cube on the

configuration space, the middle panel shows the tree structure and the right panel displays these 14 particles and 10 tree nodes that

are stored in the contiguous memory after operations, see text for details.
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Fig. 3 Adaptive KDK scheme. The central point is a massive point. The cross marks the initial position of one close binary, and the

blue solid curve traces its exact closed orbit (nearly overlapping with the red curve) run with a sufficiently small time step. The red

curves indicate the KDK scheme with an insufficiently small time step and the dotted (gray) curve represents the DKD scheme with

the same time step. The result suggests that KDK has better ability to conserve energy during long time evolution for an N -body

system.

Given the side width of the two nodes, A and B

respectively, we define the two opening criteria θ1 =

(B + A)/R and θ2 = B/(R − A). If the opening an-

gle is larger than the criteria, such as θ = 0.3, one node

should be opened and its offsprings are checked with re-

spect to the other node recursively, until all node pairs

are accepted or end up as a leaf (Benoit Lange & Fortin

2014). In our framework, a leaf is a package with a given

number of particles. Once the criteria are met, all par-

ticles of the target node gain the gravity from the mass
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center of the other node (in the case of 1 to N). If traver-

sal occurs between two fat leaves (in the case of N to M),

a subroutine, the PP kernel, is called; this case usually

occurs in dense regions. Since particles are contiguous in

memory after the tree is built as we described in the last

section, the force accumulation can be readily optimized.

In regards to the opening criteria, a previous study

(Benoit Lange & Fortin 2014) suggested opening a rela-

tively larger node. In our experience, however, we found

this is a good choice only on the pure CPU platform. On

MIC architecture, it performs better to preserve the tar-

get node and open the other one, no matter which one is

larger.

3.4 Adaptive KDK Stepping

The N -body problem is a Hamiltonian system whose

long time behavior can often be changed by non-

Hamiltonian perturbations introduced by ordinary nu-

merical integration methods, thus a symplectic integra-

tion method is desired. Here we adopt the cosmic sym-

plectic scheme proposed by Quinn et al. (1997). Based

on the Lagrangian of Equation (1), two symplectic oper-

ators can be defined. The one to update the particle po-

sition is referred to as Drift and the other one to update

momentum is Kick. The specific expressions read

D(t1; t2) : r(t2) = r(t1) + p

∫ t2

t1

dt

a2
,

K(t1; t2) : p(t2) = p(t1) −∇φ

∫ t2

t1

dt

a
. (8)

Drift and Kick must be alternately applied. This can be

implemented with two feasible updating schemes, Kick-

Drift-Kick (KDK) or Drift-Kick-Drift (DKD). For the

KDK scheme, the momentum is updated by a half time

step (from t1 to t1 + (t2 − t1)/2) (Kick), then the posi-

tion is updated by an entire step from t1 to t2 (Drift), and

finally the momentum is updated again by the remain-

ing half step (from t1 + (t2 − t1)/2 to t2) (Kick). The

integration order of DKD is just reversed for KDK.

In order to examine the robustness of those schemes

under decomposition of long and short range force calcu-

lation schemes, we set up a 3-body system, in which we

define two mass points orbiting around a central massive

object. Fine-tuning the mass ratio, velocities and config-

urations is set so that the scale of the revolved orbit about

the central mass point is larger than the split scale and the

close binary is dominated by the short-range force. The

exact orbits can be solved by an extremely high resolu-

tion integration with a direct 3-body gravity, which is a

closed orbit denoted by the (blue) solid curve in Figure 3.

Then we decrease the stepping rate. In the KDK

scheme (the red curve), the lower stepping rate is still

stable but causes an extra procession. However the tra-

jectory of DKD (the gray dotted curve) is unstable and

spiraling outwards. It suggests that KDK is more robust

for scale splitting as well. So, PHoToNs also employs the

KDK scheme.

In cosmological N -body simulation, as matter be-

comes more and more clustered, a higher stepping rate

(or shorter step) is needed to accurately follow the more

rapid change of trajectory. PHoToNs follows the criterion

of Gadget-2,

tacc =
2ηǫ

√

|a|
,

to evaluate whether to refine the step length. If it is not

satisfied, the current step length is divided by 2, so that

the step length of any particle in a variant environment

always has a power of 2 at the top level. Such a half-and-

half refinement is flexible for synchronizing the adaptive

steps among the particles in variant environments at dif-

ferent levels.

4 IMPLEMENTATION AND

PARALLELIZATION

4.1 Domain Decomposition

The essential task for parallelization of an N -body prob-

lem on scalar architectures is how to distribute particles

into individual processors. We follow the scheme pro-

posed by Springel (2005) with some improvements. The

basic idea of the scheme is to use a self-similar Peano-

Hilbert curve to map 3D space into a 1D curve which can

be cut further into pieces that define the individual do-

main. In practice, we firstly partition the simulation box

into 23n grids and label each grid with a unique integer

key, which is referred to as a PH key, labeling the order

of a point in the curve. Next, we sort the grids in order of

the key and find the cutting positions of the filling curve,

then we collect the particles in the same segment as a do-

main. In our implementation, we follow the approach of

Ishiyama et al. (2012) to partition the 1D curve according

to the workload by using wall clock time of each segment

as the weight to assess the workload in those segments.

As shown by Ishiyama et al. (2012), this can significantly

improve load imbalance. Note, while the Peano-Hilbert

curve is not the only option, its decomposition is rela-

tively spatially compact and has a low ratio of surface to
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Fig. 4 A sketch of a domain in PHoToNs. The domain in a computing node is a simply connected region determined by the Peano-

Hilbert filling curve method. A domain is surrounded by the ghost layer (yellow). The frontier part of the domain (green) needs to

export data to its adjacent domains. The inner (blue) part is independent of other domains. The subcube denotes ground nodes.

Fig. 5 A sketch of the task queue. The index labels the order of ground grids (right panel) and it forms a natural queue of tasks

(left queue). Multiple threads roll the task queue in ascending order. In each task, PHoToNs is optimized by the strategy of data

parallelization.

volume; the latter is advantageous in communications of

the domain boundaries.

As an example, Figure 4 illustrates the structure of

a domain. Each grid is one of 23n described above, and

a group of them makes up of a domain. Since the short

range force needs information from particles in adjacent

domains, an entire domain includes a ghost layer contain-

ing data of adjacent domains. In Figure 4, the ghost layer

(“adjoining” in the label) (yellow) stores information on

the particles in its adjacent domains. Correspondingly,

frontier layer (green) also needs to send its interior par-

ticle information to its adjacent domains. Therefore we

allocate an extra buffer to store information for adjacent

ghost layers, while the inner part (blue) of the domain

does not require information from other domains.

4.2 Particle Mesh Implementation

PHoToNs employs the PM method to compute the

long-range force. It involves Fourier transformation for

which we use the publicly available FFTW package in

PHoToNs. However the data storage for FFTW does

not match the strategy of our domain decomposition.

In the FFTW, the mass density field must be assigned

into the slabs along a specific direction. In addition

to the conventional MPI COMM WORLD for the do-
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main decomposition, we add an exclusive MPI commu-

nicator, PM COMM WORLD for the PM. The rank

of MPI COMM WORLD increases along the Peano-

Hilbert key, while the rank of PM COMM WORLD

increases along the z direction. We construct the den-

sity mesh for the PM on the local domain, send the mesh

information to the proper rank, then fill the information

into the correct position.

PHoToNs forks one thread for the PM and one thread

for domain communications. The most time consuming

part of the calculation, tree-walk, uses all the remaining

resources on each computing node. For instance, a CPU

with 12 cores has to create a thread for domain decom-

position, then create a thread for the PM and a thread for

the Tree-building at the same time. Since PM calculation

decouples with the Tree walking part, the PM and Tree

traversal can be carried out at the same time. This im-

proves scalability of the code because scalability of the

FFT decreases with the number of employed meshes.

4.3 Task Queues

In our framework, the tree walking does not start from

the root but from ground grids. Each ground grid is a

branch of a local tree. Since the grid size is exactly 6

times larger than the PM grid (see Fig. 1), each grid

will complete the short-range force calculation by walk-

ing through the 26 surrounding adjoined local grids and

itself. The right panel of Figure 5 illustrates a domain

consisting of the ground tree node. It is a natural queue

pool to identify one grid as one task. This represents an

effective task-parallelization strategy in which multiple

threads roll the task queues, e.g. each thread fetches a

grid data point for the tree walking and the PP calcu-

lation. Such a task strategy can also better take advan-

tage of the DTT method (Yokota & Barba 2013; Yokota

2012).

4.4 Heterogeneity

PHoToNs is designed for a heterogeneous system. In this

work, we focus on the Intel co-processor MIC which has

heterogeneous architecture, the advantage of which is

high concurrency and wide Single Instruction Multiple

Data (SIMD) instruction. Since the average bandwidth

and memory access latency on an MIC core is relatively

lower than that of a CPU, we offload particles onto MIC

memory to accelerate the short-range force calculation.

Because the particles are recorded on the ground grain,

the computing workload can be readily estimated. After

assessing the particle numbers in grains, we can deter-

mine an optimized partition workload ratio between CPU

and MIC in task queues. PHoToNs also provides a dy-

namic mechanism to adjust the partition ratio according

to the real elapsed time on MIC and CPU. The MIC run

with offload mode and the data of the particles and tree

nodes are transferred to MIC memory at the beginning

of each time step. This can optimize communication be-

tween MIC and main memory and avoid repeated data

exchange.

The forces for particles in a leaf are computed with

the direct summation method PP. To speed up this pro-

cedure, we optimize its performance with the idea of

data parallelism. This allows us to put more particles into

leafs without consuming additional time. This substan-

tially reduces depth of the tree and so decreases the tree-

walk. According to our experiment, the maximum parti-

cle number in a leaf can be set between 512 and 2048 on

an MIC and between 16 to 128 on a CPU (Habib et al.

2013).

5 TEST AND PERFORMANCE

In order to test the accuracy of our code, we carry out two

cosmological N -body simulations starting from an iden-

tical initial condition but run with PHoToNs and Gadget

which has been commonly used in the community. The

simulations follow 1283 particles within a comoving box

with a side length of 100 h−1 Mpc. The initial condi-

tion of our simulations is generated by 2LPTic at redshift

z = 49, and the cosmological parameters are assumed to

be ΩM = 0.25, ΩΛ = 0.75, H0 = 0.7 and σ8 = 0.8. In

Figure 6, we provide visualization of the matter density

map for both simulations at z = 0. Clearly the two maps

are indistinguishable.

In Figure 7 we provide a quantitative comparison of

both simulations. In the left panel of the figure, we com-

pare the matter power spectrum of both simulations at

different epochs, z = 0, 0.2, 1 and 4. Solid lines are re-

sults from the run with PHoToNs and symbols are from

the run with Gadget. As can be seen clearly, matter power

spectra in both simulations are identical. The middle

panel of the figure presents a comparison of the halo mass

function in both simulations. Again results from the two

simulations are indistinguishable. In the right panel of

the figure, we plot the density profile of the most mas-

sive halo in both simulations. The vertical dashed lines

show the softening length of our simulations, and the
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Fig. 6 Comparison of density map from our simulations run with different codes. The left panel shows a slice of the simulation run

with Gadget-2 and the right panel shows the result from PHoToNs.
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Fig. 7 Comparisons of various properties from simulations run with Gadget-2 and PHoToNs: power spectrum (left panel), dark

matter halo mass function (middle panel) and density profile of the largest halo in each simulation (right panel). In the left and

middle panels, lines indicate results from Gadget and various symbols are from PHoToNs. In the right panel, open squares are from

Gadget-2 and filled squares are from PHoToNs, as indicated in the label. ∆n is the difference of halo number in each mass bin.

solid curve is the best Navarro-Frenk-White (NFW) fit to

the profiles. Clearly, density profiles of both simulations

agree well with each other down to the softening length.

This suggests that the numerical accuracy of PHoToNs is

comparable to the popular code–Gadget (Heitmann et al.

2008; Kim et al. 2014).

Our benchmark runs on the Era supercomputer1,

which is a 300 Tflop/s (double precision) cluster. The

computer contains 256 CPU nodes, 40 MIC nodes and

30 GPU nodes. Each node comprises two twelve 2.8 GHz

Ivy Bridge Xeon E5-2680v2 cores and 64/128 GB DDR3

of system memory. These nodes are interconnected with

the EDR Infiniband which provides 56 Gbps peer to peer

bandwidth. Each of the 40 MIC codes has two Xeon Phi

5110p cards with 60 cores (four threads per core) running

1 http://www.sccas.cn/yhfw/yjzy/xyd/

at 1.05 GHz and 8 GB of GDDR5 memory. The peak sin-

gle precision (SP) performance is 896 Gflops for CPU

node and 4.926 Tflop/s for MIC node.

Table 1 shows that PHoToNs has good scalabil-

ity both on pure CPU and CPU+MIC platforms. When

reaching the limit of our test machine, 40 nodes on

Era, the wall clock time roughly decreases linearly.

CPU+MIC architecture generally speeds up the CPU

platform by roughly 3 times. Assuming 22 flops in one

interaction (Nitadori et al. 2006), the efficiency goes up

to 68.6% of peak performance on MIC and 74.4% on two

Sandy Bridge CPUs.

6 SUMMARY

We describe a new cosmological N -body simulation

code PHoToNs. The code is designed to run on both
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Table 1 Scalability of PHoToNs on the Era supercomputer.

Nside denotes the number of PM meshes used in tests. CPU

and C+M indicate wall clock time run with pure CPUs and

CPU+MIC, respectively.

#Node 2 4 8 16 24 32 40

Nside = 192

CPU (s) 721.0 364.0 188.4 97.7 66.7 51.6 42.0

C+M (s) 240.9 123.1 66.4 34.2 24.8 19.4 17.5

Nside = 384

CPU (s) 270.8 137.5 71.9 38.7 28.3 21.4 20.3

C+M (s) 54.9 30.9 17.3 11.0 10.2 8.2 9.5

pure CPU based and heterogeneous platforms. In partic-

ular, our implementation on the heterogeneous platform

is dedicated to performing massive simulations on the

CPU+MIC architecture, for instance, the Tianhe-2 super-

computer.

PHoToNs adopts a hybrid scheme to compute grav-

ity solver, including the conventional PM to calculate the

long-range force and the Tree method for short-range

force, and the direct summation PP to compute force

between very close particles. A merit of PHoToNs is it

better takes advantage of the multi-threads feature of the

new generation of supercomputers by using DTT and a

flexible task queue to make use of multiple threads and

improve the load imbalance. In addition, our PM compu-

tation is independent of our tasks and thus can be hidden

during the tree-walk, which improves scalability of the

code. The performance is effectively improved by opti-

mizing the PP kernel with data parallelism on the het-

erogeneous architecture of MIC. The future development

of PHoToNs will include hydrodynamics, which will be

presented in the another paper.
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