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Abstract Anharmonic oscillations of rotating stars have been studied by various authors in literature to

explain the observed features of certain variable stars. However, there is no study available in literature

that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations

of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions

on the anharmonic radial oscillations associated with various polytropic models of pulsating variable

stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation

for rotationally and tidally distorted polytropic models of pulsating variable stars. The main objective of

this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity

curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of

the present study show that the rotational effects cause more deviations in the shapes of radial velocity

curves of pulsating variable stars as compared to tidal effects.
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1 INTRODUCTION

The development of the theory of anharmonic oscilla-

tions is a vital part of oscillation theory in order to under-

stand the form of light and velocity curves, and the evolu-

tionary history of pulsating stars. A theory of anharmonic

oscillation was developed by Rosseland (1943) to explain

the skewness of the radial velocity curve and also longer

period oscillations than predicted by the standard model.

Sen (1948) studied the anharmonic pulsations of Cepheid

variable stars and showed that only homogeneous stars

are capable of uniform, radial and adiabatic pulsations.

Further, Rosseland (1949) developed the theory of anhar-

monic pulsation to study the effect of higher modes and

higher order on the shape of a radial velocity curve for a

pulsating stellar model. Since then, several investigators,

such as Bhatnagar & Kothari (1944), Schwarzschild &

Savedoff (1949), Prasad (1949a), Gurm (1963), van der

Borght & Murphy (1966) and Prasad & Mohan (1969),

have used this theory for studying various problems re-

lated to pulsating stars. Prasad (1949a) used the concept

of Fourier series to solve the anharmonic equation in gen-

eral and developed a method to evaluate coefficients in

the series. He applied it to the standard model of a star

with two overtones. This theory of Rosseland (1949) has

further been utilized by Prasad (1949b), Bhatnagar &

Kushwaha (1951), Jain & Lal (1955) and Gurm (1963)

for the homogenous and inverse square model, Roche

model, two phase model and composite model respec-

tively.

The radial anharmonic pulsations of the standard

model have been considered by Eddington (1918) and

Schwarzschild (1941), while those of polytropes with

polytropic indices, 1.5 and 1, have been considered by

Chatterji (1952) and Lucas (1956). Miller (1929) inves-

tigated the pulsations of polytropic indices 2 and 4 for

the ratio of specific heats γ = 10
7 (α = 0.2). Stempels

et al. (2007) studied variations in the radial velocity of

the classical T Tauri star RU Lupi. They considered bi-

narity and pulsations as possible sources of the radial ve-
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locity variations, however, their study showed that these

variations are probably related to spots on the stellar sur-

face. The third order effects of rotation on the oscillations

of a β-Cepheid star were examined by Karami (2009).

Pandey et al. (2012) studied the anharmonic vibration in

pulsating stars by using the Hamiltonian formulation of

Newtonian dynamics. Using the equation of motion, they

investigated a theoretical model of a star that can produce

the anharmonic nature of pulsation in radial velocity, lu-

minosity and apparent magnitude with respect to time. In

order to understand the pulsation mechanism of Cepheid

variables, Dehnen et al. (2016) presented a model based

on primary physical principles, namely energy conserva-

tion, mechanical adiabaticity and hydrodynamical equi-

librium. They found that a star pulsates anharmonically if

the parameter a takes values close to 1 and harmonically

when a ≈ 0. Kjurkchieva et al. (2017) conducted inten-

sive photometric and spectral observations of the vari-

able star V2551 Cyg. They also studied its radial veloc-

ity curves and found it to be a pulsating star that pulsates

with the fundamental mode.

As most of the theoretical studies in literature on

anharmonic radial oscillations have focused on undis-

torted or rotating stars, we thought of further extending

the anharmonic theory of pulsating stars – as proposed

by Rosseland (1949) and using the methodology given

by Prasad (1949b) – by taking into account the effects of

both rotation and tidal distortions. We have utilized the

methodology of Mohan & Saxena (1985) to incorporate

the effects of rotation and tidal distortions in our study.

So, in the present paper we have tried to investigate the

effects of rotation and tidal distortions on the anharmonic

radial oscillations for certain polytropic models of pul-

sating variable stars. The objective of this study is also

to examine how the inclusion of rotational and tidal ef-

fects in the anharmonic theory of pulsating variable stars

affects the shapes of their radial velocity curves.

We have used the methodology of Mohan &

Saxena (1985), which utilizes the averaging technique

of Kippenhahn & Thomas (1970) and results of Roche

equipotentials as given by Kopal (1972), to incorporate

the effects of rotations and/or tidal distortions in our

present study. The various assumptions that have been

made in this methodology are: (i) The star is highly cen-

trally condensed so that the actual equipotential surface

of a rotationally and tidally distorted star can be ap-

proximated by a Roche equipotential surface. (ii) Binary

systems are considered to be circular, synchronous and

aligned so that the axis of rotation of the star under in-

vestigation (primary component) is at a right angle to the

line joining the center of the primary and secondary com-

ponent of the binary system. (iii) The rotational velocity

as well as ratio of the mass of the companion causing

tidal distortions to the mass of the primary star is not so

large that models do not deviate too much from spherical

symmetry and, hence, the terms beyond second order of

smallness in rotational distortion parameter and tidal dis-

tortion parameter can be neglected in various mathemati-

cal expressions used. (iv) The distorted model of the star

is well within its Roche lobe. (v) The equipotential sur-

face of the distorted star is also the surfaces of equipres-

sure and equidensity. (vi) Oscillations are barotropic so

that fluid elements on the equipotential surface of the star

in its equilibrium position always remain on it during the

entire period of small adiabatic oscillations. So in view of

these assumptions, our present analysis is applicable to

highly centrally condensed pulsating variable stars with

small oscillations that are (i) single and rotating slowly;

(ii) slowly rotating primary components of synchronous,

circular and aligned binary systems in which the mass

of the secondary is very much less than the mass of the

primary star.

The paper is organized as follows: in Section 2 we

formulate the equation of anharmonic pulsation for ro-

tationally and/or tidally distorted (hereafter RTD) stellar

models. In Section 3 the anharmonic pulsation equation

for the RTD polytropic model of stars is obtained. A suc-

cessive approximation method is discussed in Section 4

to solve the anharmonic pulsation equation as developed

in Section 3. In Section 5, numerical computation is per-

formed to obtain the solution of the anharmonic equation

of certain RTD polytropic models (with polytropic in-

dices N = 1.5, 3.0) of stars. Numerical results thus ob-

tained are analyzed and certain conclusions are discussed

in Section 6.

2 FORMULATION OF ANHARMONIC RADIAL

PULSATION EQUATION FOR A

ROTATIONALLY AND TIDALLY DISTORTED

STELLAR MODEL

Following the approach used by Rosseland (1949), the

equation of anharmonic pulsation of a rotationally and

tidally distorted stellar model can be written by applying

it to the topologically equivalent spherical model. Using

the averaging concept of Kippenhahn & Thomas (1970)
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as used in Mohan & Saxena (1985), we assume r1ψ to

be the average displacement on the equipotential surface

(ψ = constant) and write it as

r1ψ =η1(r0ψ)q1(t) + η2(r0ψ)q2(t)

+ η3(r0ψ)q3(t) + . . . ,
(1)

where η1, η2, η3, ... are the solutions for various modes of

the pulsation equation as discussed by Mohan & Saxena

(1985) and q1(t), q2(t), q3(t). . . are functions of time to

be determined by substituting in the exact equation of

motion.

Let rψ denote radius of the topologically equivalent

spherical model which corresponds to an equipotential

surface ψ=constant of the rotationally and tidally dis-

torted model. Also, let Rψ be the value of rψ on the

outermost equipotential surface of the model. So, the

equation of motion for a rotationally and tidally distorted

gaseous sphere can be written as

r̈ψ = −g −
1

ρψ

dPψ
drψ

. (2)

On substituting rψ = r0ψ(1 + r1ψ) in Equation (2) and

using the adiabatic condition Pψ = constant × ργψ and

the equation of continuity ρψrψ
2drψ = ρ0ψr

2
0ψdr0ψ

(subscript zero refers to the equilibrium value), we get

after some simplification

r0ψ r̈1ψ = −
(

1 + r1ψ

)

−2

g0 −

(

1 + r1ψ

)2

ρ0ψ

∂

∂r0ψ

×
[

P0ψ

(

1 + r1ψ

)

−2γ

×
(

1 + r1ψ + r0ψ
∂r1ψ
∂r0ψ

)

−γ]

,

(3)

where P0ψ , ρ0ψ and r0ψ are the equilibrium values of

pressure Pψ, density ρψ and distance from the center rψ
respectively, γ is the ratio of specific heat and r1ψ is the

relative displacement
r−r0ψ
r0ψ

. The dots denote differenti-

ation with respect to time t.

The terms q1, q2, q3,. . . appearing in Equation (1) can

be separated by using orthogonality

∫ Rψ

0

ρ0ψr
4
0ψηjηkdr0ψ = 0, j 6= k . (4)

On expanding the right hand side and retaining terms up

to second order, Equation (3) can be written as

ρ0ψr0ψ r̈ψ =P ′

0ψ

[

(3γ − 4)r1ψ + γr0ψr′1ψ

]

+ γP0ψ

(

4r′1ψ + r0ψr′′1ψ

)

− P ′

0ψ

[1

2
(3γ − 4)(3γ + 1)r2

1ψ

+ γ(3γ − 1)r0ψr1ψr′1ψ +
1

2
γ(γ + 1)r2

0ψr′1ψ
2
]

− γP0ψ

[

4(3γ − 1)r1ψr′1ψ + 2(2γ + 1)r2
0ψr′1ψ

2

+ (3γ − 1)r0ψr1ψr′′1ψ + (γ + 1)r2
0ψr′1ψr

′′

1ψ

]

,

(5)

where the prime symbols denote differentiation with

respect to r0ψ . On multiplying Equation (5) by

r30ψηkdr0ψ , integrating over the entire star and then using

Equation (1), the left hand side of Equation (5) gives

∫ Rψ

0

ρ0ψr
4
0ψηk





∑

j

(ηj q̈j)



 dr0ψ = Ik q̈k, (6)

where

Ik =

∫ Rψ

0

ρ0ψr
4
0ψη

2
kdr0ψ . (7)

The other terms vanish due to orthogonality in

Equation (4). On the right hand side of Equation (5), the

linear terms yield

∫ Rψ

0

γP0ψr
4
0ψηk

[

r′′1ψ+
4 − µ

r0ψ
r′1ψ−

(

3−
4

γ

) µ

r20ψ
r1ψ

]

dr0ψ ,

(8)

where

µ = −
r0ψ
P0ψ

dP0ψ

dr0ψ
.

Substituting for r1ψ from Equation (1) and using the

fact that η1, η2, η3,. . . are eigenfunctions of the pulsa-

tion equation discussed by Mohan & Saxena (1985) with

corresponding periods ( 2π
σ1

, 2π
σ2

, 2π
σ3

,. . . ), Equation (8) can

further be written as

−

∫ Rψ

0

γP0ψr
4
0ψηk

∑

j

σ2
j ρ0ψ

γP0ψ
(ηjqj)dr0ψ

= −Ikσk
2qk. (9)

Now, the second order terms on the right hand side

of Equation (5), after integrating the last two terms by
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parts to get rid of r′′1ψ, gives

−
1

2
(3γ − 4)(3γ + 1)

∫ Rψ

0

P ′

0ψr
3
0ψηkr

2
1ψdr0ψ

+
1

2
γ(3γ − 1)

∫ Rψ

0

P0ψr
4
0ψηkr

′

1ψ
2
dr0ψ

+γ(3γ − 1)

∫ Rψ

0

p0ψr
4
0ψηkr1ψr

′

1ψdr0ψ

+
1

2
γ(γ + 1)

∫ Rψ

0

P0ψr
5
0ψη

′

kr
′

1ψ
2
dr0ψ . (10)

Substituting this expression (1) for r1ψ , it may fur-

ther be expressed as

γ

[

∑

i

Dii,kq
2
i + 2

∑

i,j

i6=j

Dij,kqiqj

]

, (j ≥ i), (11)

where

Dij,k = −
1

2

(

3 −
4

γ

)

(3γ + 1)

∫ Rψ

0

P
′

0ψr
3
0ψηiηjηkdr0ψ

+
1

2
(3γ − 1)

∫ Rψ

0

P0ψr
4
0ψ

(ηiη
′

jη
′

k + η′iηjη
′

k + η′iη
′

jηk)dr0ψ

+
1

2
(γ + 1)

∫ Rψ

0

P0ψr
5
0ψη

′

iη
′

jη
′

kdr0ψ . (12)

Thus, the pulsation equation breaks up into the equations

q̈k + σk
2qk =

γ

Ik

[

∑

i

Dii,kq
2
i + 2

∑

i,j

i6=j

Dij,kqiqj

]

,

(j ≥ i) , (13)

where k = 1, 2, 3 . . . . It is more convenient to take the

time variable τ instead of t such that

τ = σ1t ,

where σ1 is eigenfrequency of the fundamental mode for

the stellar model. This makes the period of oscillation

in the fundamental mode 2π in the variable τ . So using

τ = σ1t , Equation (13) becomes

d2qk
dτ2

+ βkqk =
γ

Ikσ2
1

[

∑

i

Dii,kq
2
i + 2

∑

i,j

i6=j

Dij,kqiqj

]

,

(j ≥ i) for k = 1, 2, 3 . . . ,
(14)

where

βk =
σ2
k

σ2
1

. (15)

Using rψ , ρψ and Pψ (that denote the equilibrium values

on the equipotential surface) in place of r0ψ , ρ0ψ and

P0ψ respectively, the expressions for IK andDij,k finally

become

Ik =

∫ Rψ

0

ρψr
4
ψη

2
kdrψ , (16)

and

Dij,k = −
1

2

(

3 −
4

γ

)

(3γ + 1)

∫ Rψ

0

P
′

ψr
3
ψηiηjηkdrψ

+
1

2
(3γ − 1)

∫ Rψ

0

Pψr
4
ψ

(ηiη
′

jη
′

k + η′iηjη
′

k + η′iη
′

jηk)drψ

+
1

2
(γ + 1)

∫ Rψ

0

Pψr
5
ψη

′

iη
′

jη
′

kdrψ . (17)

So, Equations (14)–(17) constitute the equations of

anharmonic radial pulsations for a rotationally and tidally

distorted stellar model correct up to second order. The

coefficientsDij,k and Ik are constants which can be com-

puted for a given stellar model. In calculating Dij,k and

Ik we take the amplitude of pulsation to be normalized

to unity at the star’s surface, so that the displacement qb
at the surface is given by

qb = q1 + q2 + q3 + · · · . (18)

3 ANHARMONIC RADIAL PULSATION

EQUATION OF A ROTATIONALLY AND

TIDALLY DISTORTED POLYTROPIC MODEL

OF A STAR

Suppose a polytropic model of a star is subject to rotation

and tidal distortions. Then the structure of such a star will

be rotationally and tidally distorted. Following the ap-

proach adopted by Mohan & Saxena (1985) we approxi-

mate the equipotential surface of this distorted model by

Roche equipotential. Let Pψ and ρψ denote the pressure

and density on the equipotential surface (ψ =constant)

of the distorted model respectively. Then the values of

Pψ and ρψ of this distorted model are connected through

polytropic relations of the type

Pψ = Pcψθψ
N+1, ρψ = ρcψθψ

N , (19)

where Pcψ and ρcψ are values of Pψ and ρψ at the center

respectively, θψ is the value of θ (0 ≤ θ ≤ 1) on the

equipotential surface (ψ =constant) and N is the poly-

tropic index. Substituting the values of Equation (19) in

Equation (14), we obtain the anharmonic pulsation equa-
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tion for RTD polytropic model of stars as

d2qk
dτ2

+ βkqk =
γ

I∗kω
2
1

[

∑

i

A∗

ii,kq
2
i + 2

∑

i,j

i6=j

A∗

ij,kqiqj

]

,

(j ≥ i) for k = 1, 2, 3 · · · ,
(20)

where

βk =
ω2
k

ω2
1

; A∗

ii,k =
D∗

ii,k

ω2
1I

∗

k

; A∗

ij,k =
D∗

ij,k

ω2
1I

∗

k

.

I∗k =

∫ 1

0

θNx4η2
kdx .

D∗

ij,k = −
(N + 1)

2

(

3 −
4

γ

)

(3γ + 1)

∫ 1

0

θNθ′x3ηiηjηkdx

+
1

2
(3γ − 1)

∫ 1

0

x4θ(N+1)

(ηiη
′

jη
′

k + η′iηjη
′

k + η′iη
′

jηk)dx

+
1

2
(γ + 1)

∫ 1

0

x5θ(N+1)η′iη
′

jη
′

kdx .

Here, γ is the ratio of specific heat, ω2
1 is eigen-

frequency of the fundamental radial mode, x is a non-

dimensional variable of displacement varying from the

center to surface for a given polytropic model of a star

and η1, η2, η3, ... are the eigenfunctions of various modes

of radial oscillation in RTD polytropic models for stars.

So, Equation (20) governs the anharmonic radial pul-

sations for RTD polytropic models of stars. The coeffi-

cientsD∗

ij,k and I∗k are constants which can be computed

for a given RTD polytropic model of a star. Also, the

displacement qb at the surface can be obtained by using

Equation (18).

The eigenfunctions and eigenfrequencies have been

obtained using the methodology as discussed by Mohan

& Saxena (1985). The equations governing the radial os-

cillations of an RTD polytropic model of a star, as ob-

tained by Mohan & Saxena (1985), in a nondimensional

form are given by

H1
d2η

dr20
+ H2

dη

dr20

+ (H3ω
2 −H4)η = 0 , (21)

where

H1 =1 −
16

3
nr3

0 −
(56

5
q2 +

112

15
nq +

104

45
n2

)

r6
0

−
90

7
q2r8

0 −
44

3
q2r10

0 + ... ,

H2 =
1

r0

[

4 −
64

3
nr3

0 −
(296

5
q2 +

592

15
nq +

1064

45
n2

)

r6
0

−
560

7
q2r8

0 −
316

3
q2r10

0 + ...)

+ (N + 1)
( 1

θψ

dθψ
dx

)

r0H1

]

,

H3 =
(N + 1)

3γr2
0s

ξ2
uK

ρ̄

ρc

1

θψ
,

H4 = −
(

3 −
4

γ1

)

(N + 1)
( 1

θψ

dθψ
dr0

) 1

r0

[

1 −
10n

3
nr3

0 ,

−
(32

5
q2 +

64

15
nq +

188

45
n2

)

r6
0

−
50

7
q2r8

0 − 8q2r10
0 + ...

]

,

ω2 =
D3r2

0sσ
2

GM0

and r0 = xr0s,

n is a rotation parameter (2n = Ω2, Ω is the normalized

angular velocity of rotation), q is the ratio of mass of the

secondary to that of the primary star, D is the separation

between the two components of a binary star system,G is

the universal gravitational constant, M0 is the total mass

of the star, ω2 is the non-dimensional form of the ac-

tual eigenfrequencies of oscillation σ, with r0s being the

value of r0 on the outermost surface, N is the polytropic

index,H1,H2,H3 andH4 are nonlinear functions of dis-

tortions parameters n and q, ρc represents density at the

center, ρ̄ is the average density for the undistorted poly-

tropic model of the star and ξu is the value of ξ (where

ξ is the Lane-Emden variable: specifically we have the

value of ξu = 3.65375, 6.89685 corresponding to poly-

tropic indicesN = 1.5, 3.0 respectively) at the outermost

surface of polytropic models.

4 METHOD FOR SOLVING THE EQUATION OF

ANHARMONIC RADIAL OSCILLATION FOR

ROTATIONALLY AND TIDALLY DISTORTED

POLYTROPIC MODEL OF A STAR

In order to solve Equation (20), we consider the equa-

tions for q1, q2 and q3. These may be written as

d2q1
dτ2 + q1 = A11,1q

2
1 + 2A12,1q1q2 + 2A13,1q1q3 ,

d2q2
dτ2 + β2q2 = A11,2q

2
1 + 2A12,2q1q2 + 2A13,2q1q3 ,

d2q3
dτ2 + β3q3 = A11,3q

2
1 + 2A12,3q1q2 + 2A13,3q1q3 ,

(22)
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whereA11,1, A12,1, A13,1 are constants that are to be de-

termined. Following Prasad (1949b), we assume the so-

lution for these equations of the form

q1 =a0,1 + a1,1 cosn1τ + a2,1 cos 2n1τ

+ a3,1 cos 3n1τ + ... ,

q2 =a0,2 + a1,2 cosn1τ + a2,2 cos 2n1τ

+ a3,2 cos 3n1τ + ... ,

q3 =a0,3 + a1,3 cosn1τ + a2,3 cos 2n1τ

+ a3,3 cos 3n1τ + ... ,

(23)

where a0,1, a1,1, a2,1, ..., a0,2, a1,2, a2,2, ..., a0,3, a1,3,

a2,3, ... and n1 are constants that are to be determined.

These values of q1, q2 and q3 are substituted in

Equation (22). On equating the constant terms and the

coefficients of cos kn1τ (for different k) to zero we get

a0,1 =A11,1

[

a2
0,1 +

1

2
a2
1,1 +

1

2
a2
2,1 +

1

2
a2
3,1 + . . .

]

+ 2A12,1

[

a0,1a0,2 +
1

2
a1,1a1,2 +

1

2
a2,1a2,2

+
1

2
a3,1a3,2 + . . .

]

+ 2A13,1

[

a0,1a0,3 +
1

2
a1,1a1,3 +

1

2
a2,1a2,3

+
1

2
a3,1a3,3 + ...

]

, (24a)

(

1 − n2
1

)

a1,1 =A11,1[2a0,1a1,1 + a1,1a2,1

+ a2,1a3,1 + . . .]

+ 2A12,1[a1,1a0,2 + a0,1a1,2 + a2,1a0,2

+
1

2
(a1,1a2,2 + a2,1a1,2)

+
1

2
(a2,1a3,2 + a3,1a3,2) + . . .]

+ 2A13,1 [2a0,1a1,3 + a1,1a0,3

+
1

2
a1,1a2,3

+
1

2
a2,1a1,3 +

1

2
a3,1a2,3 + . . .

]

, (24b)

(

1 − n2
1k

2
)

ak,1 =A11,1

[1

2

k
∑

i=0

ai,1ak−i,1 +
∞

∑

i=0

ai,1ak+i,1
]

+ A12,1

[1

2

k
∑

i=0

ai,1ak−i,2

+
1

2

∞
∑

i=0

(ai,1ak+i,2 + ak+i,1ai,2)
]

+ A13,1

[1

2

k
∑

i=0

ai,1ak−i,3

+
1

2

∞
∑

i=0

(ai,1ak+i,3 + ak+i,1ai,3)
]

. (24c)

We derive similar equations from the second equation in

Equation (22) which are the same as above but with (β2−

k2n2
1)ak,2 in place of (1 − k2n2

1)ak,1 and A11,2, A13,2

andA22,2 in place ofA11,1,A12,1 andA13,1 respectively.

In order to solve these algebraic equations, defined in

Equations (24a)–(24c), we suppose that a1,1 is a known

small quantity and we determine the other a’s in terms

of a1,1. Considering Equation (24a) we see that a0,1 is

a small quantity of the second order, and all other terms

are square or products and they contain the term a2
1,1.

Similarly, we find that a2,1 is a quantity of the second

order, a3,1 is of the third order and in general ak,1(k > 1)

is of the kth order. Considering the equation for a1,2 is

of third order and a2,2 is of second order and in general

ak,2(k > 1) is of kth order, a first approximation to the

solution of Equations (24a)–(24c) can be given as:

a0,1 =
1

2
A11,1a

2
1,1 ,

a2,1 = −
1

6
A11,1a

2
1,1 ,

a3,1 =
1

16

[

1

3
A2

11,1 +
A12,1

(4 − β2)
A11,2

]

a3
1,1 ,

.................................

a0,2 =
1

2
A11,2a

2
1,1/β2 ,

a1,2 =

[

5

6
A11,1 +

(8 − 3β2)

2β2(4 − β2)
A12,2

]

A11,2a
3
1,1

(β2 − 1)
,

a2,2 = −
1

2

A11,2a
2
1,1

(4 − β2)
,

a3,2 =
1

2

[

1

3
A11,1 +

A12,2

(4 − β2)

]

A11,2a
3
1,1

(9 − β2)
,

.................................

a0,3 =
1

2
A11,3a

2
1,1/β3 ,

a1,3 =

[

5

6
A11,1 +

(8 − 3β3)

2β3(4 − β3)
A13,3

]

A11,3a
3
1,1

(β3 − 1)
,

a2,3 = −
1

2

A11,3a
2
1,1

(4 − β3)
,

a3,3 =
1

2

[

1

3
A11,1 +

A13,3

(4 − β3)

]

A11,3a
3
1,1

(9 − β3)
,

.................................

and

n1
2 = 1 −

[5

6
A2

11,1 + (8 − 3β2)A12,1A11,2/
(

2β2(4 − β2)
)]

a2
1,1 .

These values of ai,1, ai,2 and n1 are substi-

tuted in Equations (24a)–(24c) and a better approxima-

tion is obtained. The new values are resubstituted in
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Table 1 Various Parameters Used in the Manuscript

Parameter Definition

n The rotation parameter that represents distortions due to rotation (2n = Ω2,Ω is normalized

angular velocity of rotation for a star)

q The tidal parameter that represents distortion due to tidal effects (q = m2

m1

, mass of secondary

component to primary component for a binary system)

N Polytropic index

qb(t) The displacement at the surface of a star at time t

τ A variable for time (τ = σ1t)

σ1 Eigenfrequency of fundamental mode

η The relative amplitude of displacement of an element at a distance r from the center of a star

K The skewness coefficient

Table 2 Eigenvalues for Various Modes of Rotationally Distorted Polytropic Models of Stars

N = 1.5 N = 3.0

ω2
1 ω2

2 ω2
3 ω2

1 ω2
2 ω2

3

(n = 0, q = 0) 2.7058 12.5337 26.533 9.2545 16.9839 28.5540

(n = 0.01, q = 0.0) 2.6442 12.0984 25.6116 9.1138 16.6188 27.8497

(n = 0.03, q = 0.0) 2.5747 11.6478 24.5983 8.8233 15.8699 26.4272

(n = 0.05, q = 0.0) 2.4865 11.0428 23.2970 8.5190 15.0990 24.5980

(n = 0.07, q = 0.0) 2.3974 10.3877 21.98165 8.3061 14.6425 23.9485

(n = 0.09, q = 0.0) 2.3072 9.7802 20.6470 7.8535 13.4209 21.1310

Table 3 Eigenvalues for Various Modes of Tidally Distorted Polytropic Models of Stars

N = 1.5 N = 3.0

ω2
1

ω2
2

ω2
3

ω2
1

ω2
2

ω2
3

(n = 0, q = 0) 2.7058 12.5337 26.5330 9.2545 16.9839 28.5540

(n = 0.0, q = 0.1) 2.7050 12.5260 26.5160 9.2522 16.9754 28.5377

(n = 0.0, q = 0.2) 2.7024 12.5026 26.4640 9.2450 16.9497 28.4760

(n = 0.0, q = 0.3) 2.6982 12.4636 26.3770 9.2333 16.9105 28.3776

(n = 0.0, q = 0.4) 2.6931 12.3947 26.2333 9.2162 16.8496 28.2289

(n = 0.0, q = 0.5) 2.6855 12.3378 26.1021 9.1941 16.7664 28.0370

Table 4 Eigenvalues for Various Modes of Rotationally and Tidally Distorted Polytropic Models of Stars

N = 1.5 N = 3.0

ω2
1

ω2
2

ω2
3

ω2
1

ω2
2

ω2
3

(n = 0, q = 0) 2.7058 12.5337 26.5330 9.2545 16.9839 28.5540

(n = 0.505, q = 0.01) 2.4279 10.6362 22.4308 8.3099 14.5690 23.770

(n = 0.515, q = 0.03) 2.4218 10.5909 22.3374 8.2874 14.5112 23.6428

(n = 0.525, q = 0.05) 2.4182 10.5123 22.3225 8.2654 14.4514 23.5060

(n = 0.535, q = 0.07) 2.4094 10.4994 22.1448 8.2418 14.3914 23.3520

(n = 0.55, q = 0.1) 2.3999 10.4282 21.9953 8.2064 14.300 23.1500

Table 5 Values of n2
1 and Skewness Coefficient K for Rotationally Distorted Polytropic Models of Stars

N = 1.5 N = 3.0

n2
1

K n2
1

K

(n = 0, q = 0) 0.90616 0.79 0.99468 0.29

(n = 0.01, q = 0.0) 0.89568 0.79 0.99431 0.29

(n = 0.03, q = 0.0) 0.88040 0.79 0.99353 0.28

(n = 0.05, q = 0.0) 0.85341 0.78 0.99213 0.28

(n = 0.07, q = 0.0) 0.80337 0.78 0.99235 0.27

(n = 0.1, q = 0.0) 0.71363 0.77 0.98854 0.26
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(a) (b)

Fig. 1 Radial velocity curves of rotationally distorted polytropic models (n varies and q = 0).

(a) (b)

Fig. 2 Radial velocity curves of tidally distorted polytropic models (q varies and n = 0).

(a) (b)

Fig. 3 Radial velocity curves of rotationally and tidally distorted polytropic models (both n and q vary).
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Table 6 Values of n2
1 and Skewness Coefficient K for Tidally Distorted Polytropic Models of Stars

N = 1.5 N = 3.0

n2
1 K n2

1 K

(n = 0, q = 0) 0.90616 0.79 0.99468 0.29

(n = 0.0, q = 0.1) 0.90595 0.79 0.99464 0.28

(n = 0.0, q = 0.2) 0.90534 0.79 0.99633 0.28

(n = 0.0, q = 0.3) 0.90430 0.79 0.99461 0.28

(n = 0.0, q = 0.4) 0.90212 0.79 0.99457 0.28

(n = 0.0, q = 0.5) 0.90067 0.79 0.99453 0.28

Table 7 Values of n2
1 and Skewness Coefficient K for Rotationally and Tidally Distorted Polytropic Models of Stars

N = 1.5 N = 3.0

n2
1 K n2

1 K

(n = 0, q = 0) 0.90616 0.79 0.99468 0.29

(n = 0.505, q = 0.01) 0.82681 0.78 0.99166 0.27

(n = 0.515, q = 0.03) 0.82789 0.78 0.99156 0.27

(n = 0.525, q = 0.05) 0.82170 0.78 0.99143 0.27

(n = 0.535, q = 0.07) 0.81556 0.78 0.99133 0.27

(n = 0.55, q = 0.1) 0.80884 0.78 0.99113 0.27

Equations (24a)–(24c) and the process is repeated a num-

ber of times till we attain the desired accuracy.

5 NUMERICAL COMPUTATIONS

We have solved the equation of anharmonic radial os-

cillation for the first three modes of pseudo radial os-

cillations of the rotationally and tidally distorted poly-

tropic models of stars for polytropic indices 1.5 and 3.0,

and for different values of distortion parameters n and q

with γ = 5
3 . Simpson’s rule has been used to numeri-

cally evaluate the coefficients I∗k and D∗

ij,k of the anhar-

monic pulsation Equation (20). The numerical technique

discussed in Section 4 has been used to solve the anhar-

monic Equation (20).

In Table 1, we have described the important param-

eters that have been used in the manuscript. While solv-

ing the anharmonic equation we require various eigen-

frequencies of pseudo radial modes of oscillations of

RTD polytropic models. These are obtained by solving

Equation (21) and presented in Tables 2–4 for certain

polytropic models of stars.

The skewness coefficient K (the ratio of the rise

time, from minimum to the maximum, for the radial ve-

locity to the total pulsation period) has also been com-

puted in each case and is given in Tables 5–7. Finally, ra-

dial velocity curves for each model (graph of dqb
dτ

against

n1τ ) for polytropic indices N = 1.5 and 3.0 has been

obtained, as shown in Figures 1–3.

In the present work, to study the effects of rotation

and/or tidal distortion on the anharmonic radial oscilla-

tions and hence on the radial velocity curves of pulsating

variable stars, we have considered the following poly-

tropic models of pulsating variable stars: (i) undistorted

star (single non-rotating star, no rotational or tidal effects

(n = 0, q = 0)), (ii) single rotating star or rotationally

distorted star (q = 0, n has some value), (iii) tidally dis-

torted star (n = 0, q has some value, although stars with

only tidal distortion and no rotation do not exist obser-

vationally, however, from a theoretical point of view and

for the completeness of our study we have also consid-

ered the case of tidally distorted stars), (iv) a rotating star

which is the primary component in a synchronous, circu-

lar and aligned binary system or a rotationally and tidally

distorted star (n and q have some values; 2n = q + 1 is

the same as what was derived by Kopal (1972) for syn-

chronous binary stars assuming Keplerian angular veloc-

ity).

6 CONCLUDING OBSERVATIONS

The results shown in Tables 2–4 represent the eigenfre-

quencies of the fundamental, first and second pseudo ra-

dial modes of oscillations, for rotationally and tidally dis-

torted polytropic models with γ = 5
3 and with poly-

tropic indices N = 1.5, 3.0. The eigenfrequencies of

radial modes for rotationally distorted, tidally distorted,

and rotationally and tidally distorted polytropic models

are smaller as compared to the values of the undistorted
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polytropic model. These results are in accordance with

previous results of Mohan & Saxena (1985).

From Figure 1, we observe that with an increase in

the value of n (or angular velocity of rotation of a star

or rotational distortion) the radial velocity curves for ro-

tating polytropic models of pulsating variable stars de-

viate from the radial velocity curve of an undistorted

polytropic model and this effect is more appreciable near

points of maxima and minima. Also, polytropes with in-

dex N = 1.5 show more deviation near points of max-

ima and minima with increasing value of n as compared

to the polytropic model with index N = 3.0.

From Figure 2, we can conclude that with increase in

the value of q (tidal distortions due to companion or sec-

ondary component) there is no appreciable effect on the

shapes of radial velocity curves for tidally distorted poly-

tropic models as compared to the radial velocity curve for

the undistorted polytropic model.

It is clear from Figure 3 that when combined effects

of rotation (n) and tidal distortions (q) are considered

then again radial velocity curves of these rotationally and

tidally distorted polytropic models of pulsating variable

stars deviate from the radial velocity curve for the undis-

torted model and these deviations are larger near points

of maxima and minima.

From Tables 5–7, it can be observed that, as com-

pared to the undistorted model, there is a decrease in the

value of skewness coefficient K under the effect of ro-

tational distortions, tidal distortions, and rotational and

tidal distortions. Also from Table 5, it can be concluded

that the value of K decreases with increase in rotational

distortions. However, from Tables 6–7 we can observe

that with an increase in tidal distortions, and rotation and

tidal distortions there is no change in the value of skew-

ness coefficient K .

So from the present study we can conclude that rota-

tional effects cause more deviations in the shapes of ra-

dial velocity curves for pulsating variables stars as com-

pared to tidal effects. Also these deviations in the shapes

of radial velocity curves increase with an increase in the

effects of rotational distortions.
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