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Abstract In this paper we have searched for the existence of Lyra’s cosmology in a hybrid universe

with minimal interaction between dark energy and normal matter using Bianchi-V space-time. To derive

the exact solution, the average scale factor is taken as a = (tnekt)
1
m which describes the hybrid nature

of the scale factor and generates a model of the transitioning universe from the early deceleration phase

to the present acceleration phase. The quintessence model makes the matter content of the derived

universe remarkably able to satisfy the null, dominant and strong energy condition. It has been found

that the time varying displacement β(t) co-relates with the nature of cosmological constant Λ(t). We

also discuss some physical and geometrical features of the universe.
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1 INTRODUCTION

In the recent past, astronomical observations of SNe

Ia (Riess et al. 1998; Perlmutter et al. 1999; Riess

et al. 2001; Rodrigues 2008) have indicated that the

present universe is undergoing an accelerated expansion.

However, the cause of this acceleration is still unknown

and represents an open question for theoretical physi-

cists. In the literature, numerous cosmological models

had been proposed to resolve this problem including the

modified theory of gravity and possible existence of dark

energy (DE).

Firstly, Caldwell et al. (2006) and later on sev-

eral other authors (Yadav 2012; Yadav & Sharma 2013;

Pradhan & Amirhashchi 2011; Yadav 2016) studied

models of the transitioning universe in different physi-

cal contexts. The cosmological constant Λ is assumed to

be the simplest candidate for DE but it suffers from two

problems on theoretical grounds – fine tuning and cos-

mic coincidence. So, in the literature, different models of

DE with various effective equations of state (EoSs) have

been proposed.

A Bianchi type-V universe, being the natural gener-

alization of the Friedmann-Robertson-Walker model of

the universe, is of particular interest because it describes

a homogeneous and anisotropic universe that has differ-

ent scale factors along each spatial direction. Moreover,

the Bianchi-V universe converts to the Bianchi-I universe

by considering specific choices for parameters. In 2011,

Kumar and Yadav investigated the Bianchi-V DE model

governed by power law expansion. Later on, Pradhan &

Amirhashchi (2011) proposed the simple form of a hy-

brid expansion law in Bianchi-V space-time. In Kumar

& Yadav (2011); Pradhan & Amirhashchi (2011), the

authors considered an isotropic distribution of DE, but

here we assume the generalized form of a hybrid ex-

pansion law in Bianchi-V space-time with an anisotropic

distribution of DE that gives new and different expres-

sions for cosmological parameters. In the literature, sev-

eral authors (Yadav & Yadav 2011; Akarsu & Kılınç

2010; Kumar & Yadav 2011; Kumar & Singh 2011;

Pradhan et al. 2012) have considered the EoS of DE

(ω(de)) to be time dependent. A time dependent ω(de)

describes the three types of accelerating universe mod-

els - quintessence, ΛCDM and phantom. According to

the latest cosmological data available, the associated un-

certainties are still too large to discriminate these three
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cases, i.e.

ω(de) > −1 , ω(de) = −1 , and ω(de) < −1 ,

respectively, which describe the quintessence, ΛCDM

and phantom models of the accelerating universe. The

case of ω(de) = −1 simply represents a cosmological

constant dominated universe which has two main theo-

retical problems - the cosmic coincidence and fine tun-

ing puzzles. The possibility of quintom DE containing

both quintessence and phantom DE has been studied in

Saha et al. (2012). Carroll et al. (2003) investigated the

issue of whether phantom DE density can become infi-

nite at a finite time – the big rip condition. The possi-

bility of the quintessence model (i.e. ω(de) > −1) has

been already mentioned in Hinshaw et al. (2009). Some

other applications of Bianchi type DE models in context

with recent observational data have been also discussed

in Amirhashchi (2017b,a); Amirhashchi & Amirhashchi

(2018). In this paper, we confine ourselves to a transition-

ing model of the universe within the framework of Lyra’s

manifold in Bianchi-V space-time. Recently, Akarsu

et al. (2014) investigated observational constraints, re-

ferred to as the hybrid expansion law, which provide an

elegant description of a transitioning universe from de-

celeration to acceleration.

Firstly in 1951, Lyra proposed a scalar-tensor theory

that suggests some modifications in Riemannian geom-

etry by introducing a time varying gauge function (Lyra

1951). This alternative theory is attractive because it pro-

duces similar effects as Einstein’s theory. The time vary-

ing vector field β(t) plays the same role as cosmological

constant Λ(t) in general relativity (Halford 1970, 1972).

In the literature, numerous authors (Sen & Vanstone

1972; Bhamra 1974; Singh & Singh 1992; Rahaman

et al. 2005; Pradhan et al. 2005; Yadav 2010; Yadav &

Haque 2011) have studied different cosmological mod-

els based on Lyra geometry in various physical contexts.

In this paper, we present the model of a hybrid uni-

verse that describes an accelerating universe as well as a

singularity free universe, in Bianchi-V space-time within

the framework of Lyra geometry. We observe that the

quintessence model validates the energy conditions with

suitable choice of problem parameters. The outline of the

paper is as follows: In Section 2, the field equations are

established. The generalized hybrid expansion law and

solution of field equations along with physical signifi-

cance are presented in Section 3. Validation of the stabil-

ity condition for the derived model is given in Section 4.

Finally, the findings are summarized in Section 5.

2 FIELD EQUATIONS

The spatially homogeneous and anisotropic Bianchi-V

space-time reads as

ds2 = −dt2 + X2dx2 + eαx(Y 2dy2 + Z2dz2) , (1)

where X(t), Y (t) and Z(t) are the metric functions.

We define a = (XY Z)1/3 as the average scale factor

for the space-time described in Equation (1). Hence, the

average Hubble parameter is expressed as

H =
ȧ

a
=

1

3

(Ẋ

X
+

Ẏ

Y
+

Ż

Z

)

, (2)

where a = (XY Z)1/3 is the average scale factor and an

overdot denotes derivative with respect to cosmic time t.

The directional Hubble parameters along x, y and z

directions, respectively, may be defined as

Hx =
Ẋ

X
, Hy =

Ẏ

Y
, Hz =

Ż

Z
. (3)

The field equations in Lyra geometry are given by

R
j
i −

1

2
g

j
i R +

3

2
φiφ

j −
3

4
g

j
i φkφk = −T

(m)i
j − T

(de)i
j ,

(4)

where T
(m)
ij and T

(de)
ij are the energy momentum tensors

of perfect fluid and DE respectively. These are given by

T
(m)
ij = diag

[

− ρ(m), p(m), p(m), p(m)
]

, (5)

T
(de)
ij = diag

[

− ρ(de), p(de)
x , p(de)

y , p(de)
z

]

= diag
[

− 1, ω + δ, ω + γ, ω + η
]

ρ(de).
(6)

Here, ρ(m) and ρ(de) are the energy densities of nor-

mal matter and DE components respectively. p(m) is the

pressure of normal matter. px = (ω + δ(t))ρ, py =

(ω+γ(t))ρ and pz = (ω+η(t))ρ are the EoS parameters

along the spatial directions. δ(t), γ(t) and η(t) are called

the skewness parameters which are introduced to modify

the EoS parameters of the DE component that quantifies

the anisotropic nature of DE.

In Equation (4), φi is the displacement field vector

which is defined as

φi =
(

0, 0, 0, β(t)
)

. (7)

In a comoving co-ordinate system, the field Equations (4)

for the anisotropic Bianchi-V space-time (1), along with

Equations (5) and (6), can be written as

Ÿ

Y
+

Z̈

Z
+

Ẏ Ż

Y Z
−

α2

X2
−

3

4
β2 = −p(m) − (ω + δ)ρ(de) ,

(8)
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Z̈

Z
+

Ẍ

X
+

ŻẊ

ZX
−

α2

X2
−

3

4
β2 = −p(m) − (ω + γ)ρ(de) ,

(9)

Ẍ

X
+

Ÿ

Y
+

ẊẎ

XY
−

α2

X2
−

3

4
β2 = −p(m) − (ω + η)ρ(de) ,

(10)

ẊẎ

XY
+

Ẏ Ż

Y Z
+

ŻẊ

ZX
−

3α2

X2
+

3

4
β2 = ρ(m) +ρ(de) , (11)

2
Ẋ

X
−

Ẏ

Y
+

Ż

Z
= 0 . (12)

One may consider that the perfect fluid and DE compo-

nent interact minimally (Akarsu & Kılınç 2010; Yadav

2011, 2016). Hence, the energy conservation equation of

perfect fluid and DE component can be conserved sepa-

rately.

The energy conservation equation T
(m)i
j = 0 of the

perfect fluid leads to

˙ρ(m) + 3(ρ(m) + p(m))H = 0 , (13)

where the energy conservation equation T
(de)i
j = 0.

The DE component yields

ρ̇(de) + 3ρ(de)(ω + 1)H

+ ρ(de)(δHx + γHy + ηHz) = 0 ,
(14)

and conservation of the right hand side of Equation (4)

leads to

(

R
j
i −

1

2
g

j
i R
)

;j
+

3

2

(

φiφ
j
)

;j
−

3

4

(

g
j
i φkφk

)

;j
= 0 .

(15)

Equation (15) reduces to

3

2
φi

[∂φj

∂xj
+ φlΓj

lj

]

+
3

2

[∂φi

∂xj
− φlΓ

l
ij

]

−
3

4
g

j
i φk

[∂φk

∂xj
+ φlΓk

lj

]

−
3

4
g

j
i φ

k
[∂φk

∂xj
− φlΓ

l
kj

]

= 0.

(16)

Equation (16) is identically satisfied for i = 1, 2, 3. For

i = 4, Equation (16) reduces to

3

2
β
[∂(g44φ4)

∂x4
+ φ4Γ4

44

]

+
3

2
g44φ4

[∂φ4

∂t
− φ4Γ

4
44

]

−
3

4
g4
4φ4

[∂φ4

∂x4
+ φ4Γ4

44

]

−
3

4
g4
4g

44φ4
[∂φ4

∂t
− φ4Γ4

44

]

= 0 .

(17)

Equation (17) leads to

3

2
ββ̇ +

3

2
β2

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

= 0. (18)

3 THE GENERALIZED HYBRID EXPANSION

LAW

Following Yadav (2016) and references therein (Yadav &

Sharma 2013; Akarsu et al. 2014; Yadav et al. 2015), we

consider the generalized form of a hybrid expansion law

for scale factor as follows:

a =
[

tn exp(ξt)
]

1
m

, (19)

where n ≥ 0, ξ ≥ 0 and m > 0 are constants.

Equation (14) may be split into two parts – one cor-

responds to deviation of EoS parameters for the DE com-

ponent and the other represents parameters where no de-

viation is present (Yadav & Yadav 2011).

ρ̇ + 3ρ(de)(ω + 1)H = 0, (20)

ρ(de)(δHx + γHy + ηHz) = 0. (21)

The dynamics of skewness parameters on the x-axis, y-

axis and z-axis are considered as

δ(t) = α1(Hy + ηHz) , (22)

γ(t) = η(t) = −α1Hx . (23)

Here α1 is the proportionality constant.

In view of Equations (22)–(23), the solution of

Equation (20) reads

ρ(de) = ρ
(de)
0 a−3(ω+1), (24)

where ρ
(de)
0 is a positive constant.

Integrating (12) and absorbing the constant of inte-

gration in B or C, one can obtain

X2 = Y Z. (25)

Subtracting Equation (7) from Equation (8), Equation (7)

from Equation (9), Equation (8) from Equation (10) and

taking the second integral of each, we get the following

three relations respectively:

X

Y
= d1 exp

[

x1

∫

(tneξt)
−3
m dt

−
αρ

(de)
0

ω

∫

(tneξt)
−3(ω+1)

m dt
]

, (26)

X

Z
= d2 exp

[

x2

∫

(tneξt)
−3
m dt

−
αρ

(de)
0

ω

∫

(tneξt)
−3(ω+1)

m dt
]

, (27)

Y

Z
= d3 exp

[

x3

∫

(tneξt)
−3
m dt

]

. (28)

The parameters d1, x1, d2, x2, d3 and x3 are constants of

integration.
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3.1 Solution of the Field Equation and its Physical

Significance

Solving Equations (25)–(28), we obtain the following ex-

pressions for scale factors

X(t) = (tneξt)
1
m exp

[

−2αρ
(de)
0

3ω

∫

(tneξt)
−3(ω+1)

m dt
]

,

(29)

Y (t) =A(tneξt)
1
m × exp

[

l

∫

(tneξt)
−3
m dt

+
αρ

(de)
0

ω

∫

(tneξt)
−3(ω+1)

m dt
]

,

(30)

Z(t) =A−1(tneξt)
1
m × exp

[

− l

∫

(tneξt)
−3
m dt

+
αρ

(de)
0

ω

∫

(tneξt)
−3(ω+1)

m dt
]

,

(31)

where

A = 3
√

d2d3, l =
(x2 + x3)

3
, d2 = d−1

1 , x2 = −x1 .

The deceleration parameter (DP) in the derived

model is given by

q =
d

dt

( 1

H

)

− 1 =
mn

(nt + ξ)2
− 1. (32)

The expressions for directional Hubble parameters,

anisotropy parameter (△) and shear scalar (σ2) are re-

spectively given by

Hx =
1

m

(n

t
+ ξ
)

−
2αρ

(de)
0

3ω
(tneξt)

−3(ω+1)
m , (33)

Hy =
1

m

(n

t
+ ξ
)

+ l(tneξt)
−3
m

+
αρ

(de)
0

3ω
(tneξt)

−3(ω+1)
m ,

(34)

Hz =
1

m

(n

t
+ ξ
)

− l(tneξt)
−3
m

+
αρ

(de)
0

3ω
(tneξt)

−3(ω+1)
m ,

(35)

△ =
2m2

3(n
t + ξ)2

×

[

l2(tneξt)
−6
m

+
αρ

(de)
0

2

3ω2
(tneξt)

−6(ω+1)
m

]

,

(36)

σ2 = l2(tneξt)
−6
m +

αρ
(de)
0

2

3ω2
(tneξt)

−6(ω+1)
m . (37)

Solving Equation (18), we obtain

β = ζ(tneξt)−
3
m , (38)

where ζ is the constant of integration.

In the derived model, we observe that for the gen-

eralized hybrid expansion law (19), the expansion scalar

(θ) is proportional to mean Hubble parameter (H) and

volume is equal to the cube of the scale factor. The

anisotropy parameter (△) and shear scalar (σ2) decrease

with time, which match the properties of a realistic uni-

verse. The behavior of displacement vector (β) versus

time is graphed in Figure 1. The displacement vector (β)

is a decreasing function of time and finally approaches a

very small positive value which co-relates β(t) with the

nature of cosmological constant Λ(t).

The skewness parameters are given by

δ(t) = α1(Hy + Hz) = α1

[ 2

m

(n

t
+ ξ
)

+
2αρ

(de)
0

3ω
(tneξt)

−3(ω+1)
m

]

, (39)

γ(t) = η(t) = −α1(Hx) = −α1

[ 1

m

(n

t
+ ξ
)

+
2αρ

(de)
0

3ω
(tneξt)

−3(ω+1)
m

]

. (40)

The directional EoS parameters of DE are given by

ωx = ω + δ(t) = ω + α1

[ 2

m

(n

t
+ ξ
)

+
2αρ

(de)
0

3ω
(tneξt)

−3(ω+1)
m

]

, (41)

ωy = ωz = ω − α1

[ 1

m

(n

t
+ ξ
)

−
2αρ

(de)
0

3ω
(tneξt)

−3(ω+1)
m

]

. (42)

The energy density and pressure of the DE components

read as

ρ(de) = ρ
(de)
0 (tneξt)

−3(ω+1)
m , (43)

p(de) = ωρ
(de)
0 (tneξt)

−3(ω+1)
m . (44)

The pressure and energy density of the perfect fluid are

obtained as

p(m) =
2n

mt2
−

3

m2t2
(n + ξt)2 − l2(tneξt)

−6
m

−
α2ρ

(de)
0

2

ω2
(tneξt)

−6(ω+1)
m −

3

4
ζ(tneξt)−

3
m ,

(45)

ρ(m) =
3

m2t2
(n + ξt)2 − l2(tneξt)

−6
m

− ρ
(de)
0 (tneξt)

−3(ω+1)
m

−
α2ρ

(de)
0

2

3ω2
(tneξt)

−6(ω+1)
m +

3

4
ζ(tneξt)−

3
m .

(46)
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Fig. 1 The displacement vector (β) vs. time for n = 0.5, ξ = 10 and ω = −0.91.

The perfect fluid density parameter (Ω(m)) and DE den-

sity parameter (Ω(de)) are expressed as

Ω(m) =1 −
m2t2

3(n + ξt)2
l2(tneξt)

−6
m

+ ρ
(de)
0 (tneξt)

−3(ω+1)
m

+
α2ρ

(de)
0

2

3ω2
(tneξt)

−6(ω+1)
m + ζ(tnekt)−

3
m ,

(47)

Ω(de) =
m2t2ρ

(de)
0

3(n + ξt)2
(tneξt)

−3(ω+1)
m . (48)

Thus, the overall density parameter (Ω) is obtained as

Ω = Ω(m) + Ω(de) = 1 −
m2t2

3(n + ξt)2

×

[

l2(tneξt)
−6
m +

α2ρ
(de)
0

2

3ω2
(tneξt)

−6(ω+1)
m

]

. (49)

From Equation (49), it is evident that for t → ∞, the

overall density parameter approaches 1, which is sup-

ported by astrophysical observations (Perlmutter et al.

1999; Riess et al. 1998).

From Equations (29), (30) and (31), it is clear that the

metric functions X(t), Y (t) and Z(t) vanish at t = 0.

This shows that the derived model has point type sin-

gularity at t = 0. Further, it can be noted that n = 0,

q = −1 and dH
dt = 0 yield the fastest rate for expansion

of the universe and generate a singularity free universe,

which seem reasonable for understanding the future dy-

namics of the universe.

From (32), it is evident that when t is in the range

(0,
√

mn−n
ξ ), the value of q is positive which leads to de-

celeration. At t =
√

mn−n
ξ , the transition from decelera-

tion to acceleration take place and after t >
√

mn−n
ξ , the

universe expands with acceleration.

In Figure 2, the behavior of q is graphed in the ac-

celerating mode of the universe for a particular choice of

constants.

4 STABILITY CONDITION

In this section, we check the stability of the correspond-

ing solution with respect to perturbation of the metric

(Saha et al. 2012). The perturbations will be considered

for all three expansion factors ai as follows:

ai → aBi + δai = aBi(1 + δbi). (50)

With reference to Equation (50), we obtain the follow-

ing relations that represent the perturbations of volume

scalar, directional Hubble factors and mean Hubble fac-

tor

V → VB + VB

∑

i

δbi,

θi → θBi +
∑

i

δbi,

θ → θB +
1

3

∑

i

δbi.

(51)

According to Saha et al. (2012), for the metric perturba-

tion δbi to be linear in δbi, the following equations must

be obeyed
∑

i

δb̈i + 2
∑

θBiδḃi = 0, (52)

δb̈i +
V̇B

VB
δḃi +

∑

j

δḃjθBi = 0, (53)

∑

δḃi = 0. (54)

Equations (52)−(54) lead to

δb̈i +
V̇B

VB
δḃi = 0 , (55)
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td

q

Fig. 2 Variation of DP (q) for m = d, n = 0.5 and ξ = 10.

Fig. 3 Plot of ai versus time for k = 10, n = 0.5 and m = 1.25.

where VB is the background volume scalar which reads

VB = t
3n

m exp

(

3kt

m

)

. (56)

Equations (55) and (56) lead to

δbi = c2 − c1

(

3k

m

)

−1+ 3n

m

Γ

[

1 −
3n

m
,
3kt

m

]

, (57)

where c1 and c2 are the constants of integration.

Thus, the actual fluctuations for each expansion fac-

tor δai = aBiδbi are expressed as

δai = c2t
−3n

m exp
(

−
3kt

m

)

−c1

(3k

m

)

−1+ 3n

m

t
−3n

m exp
(

−
3kt

m

)

×Γ
[

1 −
3n

m
,
3kt

m

]

. (58)

Figure 3 depicts the behavior of actual fluctuations

(δai) versus time which also shows that δai starts with a

very small positive value and quickly approaches 0 with

evolution of the universe. Thus the background solution

is stable against perturbation of the graviton field.

5 CONCLUDING REMARKS

In this paper, we have searched for a DE model of a tran-

sitioning universe with minimal interaction between DE

and normal matter in Bianchi-V space-time. The field

equations have been solved exactly by taking into ac-

count the generalized form of the hybrid expansion law.

The main results of this paper are summarized below:

(1) The volume of derived quintessence DE model in-

creases with cosmic time. The parameters H , θ and

Ā have extremely large values at t = 0 and finally
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Fig. 4 Validity of SEC, ρ(de) + 3p(de) ≥ 0, for m = d, n = 0.5, ξ = 10 and ω = −0.91 .
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Fig. 5 Validity of DEC, ρ(de) − p(de) ≥ 0, for m = d, n = 0.5, ξ = 10 and ω = −0.91.
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Fig. 6 Validity of NEC, ρ(de) + p(de) ≥ 0, for m = d, n = 0.5, ξ = 10 and ω = −0.91.
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drop to a minimum positive value at t → ∞. Thus

the derived model turns out to be a suitable model

that exhibits the dynamics of the present universe.

(2) The strong energy condition (SEC), null energy con-

dition (NEC) and dominant energy condition (DEC)

are satisfied in the derived model. Plots of energy

conditions are displayed in Figures 4, 5, and 6.

(3) The derived quintessence DE model shows the tran-

sition of the universe from its past deceleration phase

to current acceleration.

(4) The displacement vector β(t) decreases with pas-

sage of time and finally approaches a small positive

value at large time. The β(t) matches the behavior of

Λ(t).

(5) It is to noted that in the absence of a time vary-

ing displacement field, for m = 2 and ξ = 1,

the derived model reproduces the result obtained by

Pradhan & Amirhashchi (2011) and Pradhan et al.

(2012). Thus, the results of Pradhan & Amirhashchi

(2011); Pradhan et al. (2012) are a special case of

our result.

(6) The derived model validates the stability condition

which confirms that the solution demonstrated in this

paper is stable and may be useful for better under-

standing dynamics of the accelerating universe.

(7) As a final comment, we note that the derived model

shows the possibility of incorporating both features

of the universe, the decelerating as well as accel-

erating phases, depending upon the values of pa-

rameters under consideration. It can also be noted

that for some certain values of problem parameters,

the derived model describes an accelerating universe

with non-negative pressure of its matter/energy con-

stituent, which needs to be tested by other theories.
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Akarsu, Ö., & Kılınç, C. B. 2010, General Relativity and

Gravitation, 42, 119
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