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Abstract In this paper, we propose a new parametrization for Om(z) diagnostics and show how the

most recent and significantly improved observations concerning the H(z) and SN Ia measurements

can be used to probe the consistency or tension between the ΛCDM model and observations. Our re-

sults demonstrate that H0 plays a very important role in the consistency test of ΛCDM with H(z)

data. Adopting the Hubble constant priors from Planck 2013 and Riess, one finds considerable tension

between the current H(z) data and ΛCDM model and confirms the conclusions obtained previously

by others. However, with the Hubble constant prior taken from WMAP9, the discrepancy between

H(z) data and ΛCDM disappears, i.e., the current H(z) observations still support the cosmologi-

cal constant scenario. This conclusion is also supported by the results derived from the Joint Light-

curve Analysis (JLA) SN Ia sample. The best-fit Hubble constant from the combination of H(z)+JLA

(H0 = 68.81+1.50
−1.49 km s−1 Mpc−1) is very consistent with results derived both by Planck 2013 and

WMAP9, but is significantly different from the recent local measurement by Riess.
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1 INTRODUCTION

The fact that our Universe is undergoing an accelerated

expansion at the present stage has become one of the

most important issues in modern cosmology ever since

this aspect was indicated by observations of type Ia su-

pernovae (SNe Ia) (Riess et al. 1998; Perlmutter et al.

1999). This conclusion was also confirmed by other inde-

pendent astrophysical observations including large scale

structure (Tegmark et al. 2004), baryon acoustic oscil-

lation (BAO) peaks (Eisenstein et al. 2005) and cosmic

microwave background (CMB) radiation (Spergel et al.

2003). This phenomenon poses a great mystery concern-

ing what component of our Universe could produce a

repulsive force to drive this accelerating expansion. In

the framework of general relativity, a mysterious sub-

stance with negative pressure, dubbed dark energy, was

proposed to explain this acceleration. Due to the still

unknown nature of dark energy, the investigation of its

equation of state (EoS), w = p/ρ, a critical parameter

to characterize the dynamical property of dark energy,

has also become a significant research theme in mod-

ern cosmology. Many cosmologists suspect that dark en-

ergy is just the cosmological constant with w = −1,

due to its simplicity and remarkable consistency with al-

most all observational data. However, the notable fine-

tuning problem (Weinberg 1989) and coincidence prob-

lem (Zlatev et al. 1999) still question why ΛCDM is de-

clared to be the concordance cosmological model to de-

scribe the overall evolution of the Universe. Thereupon,

the possibility that cosmic EoS is variable, depending

on time, has been explored in a number of dynamical

dark energy models, such as quintessence (Caldwell &

Linder 2005; Zlatev et al. 1999), K-essence (Chiba et al.

2000; Armendariz-Picon et al. 2000), phantom (Kahya
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& Onemli 2007; Onemli & Woodard 2004; Singh et al.

2003), etc. In the face of so many competing dark en-

ergy candidates, it is important to find an effective way

to decide whether the EoS of dark energy is time vary-

ing, which is significant for us to understand the nature

of dark energy.

Following this way, an effective diagnostic named

Om(z), which is sensitive to the EoS of dark energy and

thus provides a null test of the ΛCDM model, was ini-

tially introduced by Sahni et al. (2008) and extensively

studied in many subsequent works (Sahni et al. 2014;

Ding et al. 2015; Zheng et al. 2016). If the value of

Om(z) is a constant at any redshift, dark energy is ex-

actly in the form of a cosmological constant, whereas

the evolving Om(z) corresponds to other dynamical dark

energy models. On the other hand, the slope of Om(z)

could distinguish two different types of dark energy mod-

els, i.e., a positive slope indicates a phase of phantom

(w < −1) while a negative slope represents quintessence

(w > −1) (Sahni et al. 2008). Based on the above

results, many previous works have performed consis-

tency tests of the ΛCDM model, by using reconstructed

Om(z) with the combination of Gaussian processes (GP)

and observations including SN Ia and Hubble parame-

ter data (Seikel et al. 2012; Qi et al. 2016; Yahya et al.

2014). It was found that ΛCDM is compatible with the

Union2.1 SN Ia data set and smaller samples of H(z)

measurements. More recently, Shafieloo et al. (2012) de-

veloped an improved version of the two-point diagnostic

Omh2(z1, z2), which was also extensively used to test

ΛCDM with different samples of H(z) data (Sahni et al.

2014; Ding et al. 2015; Zheng et al. 2016). The general

conclusion, which revealed the tension between H(z)

data and ΛCDM in the framework of Planck data (Planck

Collaboration et al. 2014), implies that the ΛCDM model

may not be the best scenario for our Universe, or dark en-

ergy does not exist in the form of the cosmological con-

stant. Considering the significance of this result to un-

derstand the nature of dark energy, it is still important to

confirm it with alternative techniques.

In this paper, we propose a parametrization of

Om(z) to provide a null test for ΛCDM, which suc-

cessfully alleviates the disadvantages of the traditional

Om(z) associated with its strong dependence on the

smoothing data methodology (Seikel et al. 2012; Qi et al.

2016; Yahya et al. 2014) and the statistical approach used

(Sahni et al. 2014; Ding et al. 2015; Zheng et al. 2016).

With this new parametrization of Om(z), the purpose of

this work is to show how the combination of the most

recent and significantly improved observations regarding

the H(z) and SNe Ia can be implemented to probe the

consistency or reveal tension between the ΛCDM model

and observations. This paper is organized as follows: In

Section 2 we briefly introduce the Om(z) and its newly-

proposed parametrization. In Section 3, we use the lat-

est H(z) data to constrain the Om(z) parameters and

compare with the results obtained from Planck, WMAP9

(Hinshaw et al. 2013) and a local determination of H0

from Riess et al. (2016). Consistency test of ΛCDM with

the Joint Light-curve Analysis (JLA) SN Ia sample is

also provided in Section 4. Finally, the conclusions are

summarized in Section 5.

2 METHODOLOGY AND DATA

Considering flat Friedmann-Lemaı̂tre-Robertson-Walker

spacetime, the general Friedmann equation for a

Universe filled with a perfect fluid with an EoS w(z) (in

addition to pressureless matter and now dynamically neg-

ligible radiation) can be written as

E2(z) ≡
H2(z)

H2
0

= Ωm0(1 + z)3 + (1 − Ωm0)

× exp

(

3

∫

z

0

1 + w(z′)

1 + z′
dz′

)

, (1)

where Ωm0 is the present matter density of the Universe.

Inspired by the form of this equation in the ΛCDM case,

the Om(z) diagnostic has been defined as (Sahni et al.

2008)

Om(z) ≡
E2(z) − 1

(1 + z)3 − 1
. (2)

It is obvious that in the flat ΛCDM model, the Om(z)

evaluated at any redshift is always equal to the present

mass density parameter Ωm0.

Therefore, from observations of the expansion rates

at different redshifts, we would be able to differentiate

between ΛCDM and other dark energy models including

evolving dark energy. For instance, for the simplest phe-

nomenology of dark energy with constant EoS parameter

w = const, a positive slope of Om(z) signifies a phase

of phantom (w < −1) and a negative slope represents

the quintessence model (w > −1) (Sahni et al. 2008),

which is shown in Figure 1. Motivated by the physical in-

dication of Om(z) slope and the well-known Chevalier-

Polarski-Linder (CPL) model concerning reconstruction

of evolving dark energy EoS, we propose the following
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theoretical parametrization for Om(z)

Om(z) = α

(

z

1 + z

)n

, (3)

where α and n are the two constant parameters. From

the above expression, it is straightforward to show that

ΛCDM is fully recovered when α = Ωm0 and n =

0. Moreover, from a simple comparison illustrated in

Figure 1, one may easily find a positive slope n > 0

indicates a phase of phantom, while a negative slope rep-

resents quintessence-like models. Compared with the di-

rect study on the EoS of dark energy in previous works

(Cao & Zhu 2014), the introduction of a new parame-

ter n provides a new cosmological-model-independent

method to differentiate a wider range of cosmological so-

lutions with effective EoS, which focus on gravitational

modifications (i.e., f(R) and f(T ) gravity) to account

for cosmic acceleration without the inclusion of exotic

dark energy (Chiba 2003; Wu & Yu 2011; Qi et al. 2017).

We remark that one disadvantage of this Om(z) param-

eterization is that it would be divergent at z = 0 when

n < 0. However, as is shown in Figure 1, the Om(z) re-

constructed by H(z) data (see Table 1) with GP, which is

consistent with this parametrization within the 1σ confi-

dence level (CL), exhibits a similar divergence feature at

z ∼ 0. Another disadvantage of this parameterization in

this analysis lies in the strong assumption that the slope

parameter n is a constant, which only proposes a special

candidate to test the possible crossing of the cosmologi-

cal constant boundary with different value of n. In order

to make a comparison with other cosmological models

including quintom cosmology (Cai et al. 2010) and other

modified gravity models (Chiba 2003; Wu & Yu 2011; Qi

et al. 2017), a possible solution is to generalize the slope

parameter n as a function of redshift z, which will be

considered in our future work concentrating on more cos-

mological applications. Now, the dimensionless Hubble

parameter can be rewritten as

E2(z) = Om(z)
[

(1 + z)3 − 1
]

+ 1

= α

(

z

1 + z

)n
[

(1 + z)3 − 1
]

+ 1, (4)

and further used to estimate the values of α and n from

various observational data by minimizing the respective

χ2-function. It is noteworthy that we do not aim to pin-

point the right dark energy candidate among many com-

peting models, but our goal is to propose an effective and

sensitive probe for testing the validity of the concordance

ΛCDM model. One possible controversy here is whether

E(z = 0) = 1 is still valid for the case of n < 0,

due to the divergence of the Om(z) parametrization pro-

posed above. In fact, because the term
[

(1 + z)3 − 1
]

in

Equation (4) approaches zero at z = 0, the convergent re-

sult of E(z = 0) = 1 in this case will be naturally recov-

ered, which can be clearly seen from the enlarged subplot

in Figure 2. More importantly, the Om(z) parametriza-

tion with different slope parameters also agrees very well

with the evolution of E(z) reconstructed by H(z) data

with GP.

In this paper, we use the latest H(z) data set includ-

ing 41 data points to place a constraint on the Om(z)

parametrization proposed above. In general, measure-

ment of H(z) could be obtained by two different tech-

niques: galaxy differential age, also known as cosmic

chronometer (hereafter CC H(z)) and radial BAO size

method (hereafter BAO H(z)) (Zhang et al. 2010). The

latest data set, 41 H(z) data including 31 CC H(z)

data and 10 BAO H(z) data, is compiled in Table 1.

Moreover, the Hubble function H(z) should be normal-

ized to the dimensionless Hubble parameter E(z) =

H(z)/H0, whose uncertainty could be obtained through

σ2
E =

σ2
H

H2
0

+
H2

H4
0

σ2
H0

, (5)

where σH and σH0
are the uncertainty of H(z) and

H0, respectively. In this work estimate the parameters by

minimizing the χ2-function defined as

χ2
H(z, p) =

41
∑

i=1

[Eth(zi, p) − Eobs(zi)]
2

σE(zi)2
, (6)

where p denotes the Om(z) parameters, and Eth and

Eobs respectively stand for the theoretical and observed

values of the dimensionless Hubble parameter.

3 RESULTS AND DISCUSSION

We remark here that, as a benchmark for the whole

H(z) data set, the influence of the Hubble constant

value on the test of the Om(z) parameter should be

taken into account. Therefore, three recent measure-

ments of H0, H0 = 67.3 ± 1.2 km s−1 Mpc−1 with

1.8% uncertainty (Planck Collaboration et al. 2014),

H0 = 70.0 ± 2.2 km s−1 Mpc−1 with 3.1% uncer-

tainty (Hinshaw et al. 2013) and H0 = 73.24 ±

1.74 km s−1 Mpc−1 with 2.4% uncertainty (Riess et al.

2016), are respectively used in our analysis. The best-fit

parameters (with 1σ uncertainties) for these three priors

are presented in Table 2.
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Fig. 1 The evolution of Om(z) versus redshift z (black dashed lines) for the parametrization of Om(z) with n =
−0.1, −0.05, 0.05, 0.15. Three different cosmologies (ΛCDM, quintessence and phantom) denoted by solid lines are also added

for comparison. The light blue shadowed area represents the 1σ confidence region of Om(z) reconstructed by GP applied to H(z)
data.
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Fig. 2 The evolution of E(z) versus the redshift z for the parametrization of Om(z) with n = −0.2, 0.1. The light blue shadowed

area represents the 1σ confidence region of E(z) reconstructed by GP applied to H(z) data.

3.1 Comparison with Planck 2013 Results

To start with, we determine the best-fit Om(z) pa-

rameters by applying the Markov Chain Monte Carlo

method to find the maximum likelihood based on the χ2-

function. Then we compare the results with cosmological

parameters (Planck Collaboration et al. 2014) obtained

by Planck 2013. Adopting the Hubble constant prior

H0 = 67.3±1.2km s−1 Mpc−1 in the H(z) data, we ob-

tain the best-fit value of the parameters α = 0.268+0.02
−0.02

and n = −0.172+0.12
−0.114 at the 68.3% CL. The value of

slope parameter n is obviously smaller than zero at the

68% CL, which implies that quintessence may be a good

candidate for dark energy as suggested by the Om(z)

parametrization. The marginalized 2D confidence con-

tours of α − n are shown in Figure 3, in which the

ΛCDM model (n = 0.0 and Ωm0 = 0.315) charac-

terized by Planck 2013 data is also added for compari-

son. The deviation from ΛCDM at the 2σ confidence re-

gion strongly indicates tension between the current H(z)

data and ΛCDM, which confirms the conclusion obtained
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Fig. 3 The 68.3% and 95.4% confidence regions in the α − n parameter space for the Om(z) parameterization constrained from

H(z) data (with the prior of H0 = 67.3 ± 1.2 km s−1 Mpc−1 from Planck). The red point represents the ΛCDM model (n = 0.0,

Ωm0 = 0.315).
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Fig. 4 The 68.3% and 95.4% confidence regions in the α − n parameter space for the Om(z) parameterization of Om(z) con-

strained from H(z) data (with the prior of H0 = 70.0 ± 2.2 km s−1 Mpc−1 from WMAP9). The red point represents ΛCDM

(n = 0.0, Ωm0 = 0.279).

in previous works (Sahni et al. 2014; Ding et al. 2015;

Zheng et al. 2016).

3.2 Comparison with WMAP9 Results

In the second case, we adopt the prior of H0 = 70.0 ±

2.2 km s−1 Mpc−1 from WMAP9 results (Hinshaw et al.

2013) to constrain the parametrization of Om(z). By

minimizing the χ2, the parameter n implied by our sta-

tistical analysis gives n = −0.021+0.151
−0.142, which indi-

cates that there is no deviation from the ΛCDM sce-

nario. Moreover, the best fit obtained for the dark en-

ergy parameter is α = 0.268+0.026
−0.024 (68.3% CL), which

is in excellent agreement with the matter density Ωm0 =

0.279 given by WMAP9. As can be seen from Figure 4,

the discrepancy between H(z) data and ΛCDM deter-



66–6 J.-Z. Qi et al.: Using Parameterized Om(z) Diagnostics to Test ΛCDM

Table 1 The latest H(z) measurements including 31 data
points from the CC H(z) method (I) and 10 data points from
the radial BAO size method (II).

z H(z) Method Reference

(km s−1 Mpc−1)

0.09 69 ± 12 I Jimenez et al. (2003)

0.17 83 ± 8 I

0.27 77 ± 14 I

0.4 95 ± 17 I

0.9 117 ± 23 I Simon et al. (2005)

1.3 168 ± 17 I

1.43 177 ± 18 I

1.53 140 ± 14 I

1.75 202 ± 40 I

0.48 97 ± 62 I Stern et al. (2010)

0.88 90 ± 40 I

0.35 82.1 ± 4.9 I Chuang & Wang (2012)

0.179 75 ± 4 I

0.199 75 ± 5 I

0.352 83 ± 14 I

0.593 104 ± 13 I Moresco et al. (2012)

0.68 92 ± 8 I

0.781 105 ± 12 I

0.875 125 ± 17 I

1.037 154 ± 20 I

0.07 69 ± 19.6 I

0.12 68.6 ± 26.2 I Zhang et al. (2014)

0.2 72.9 ± 29.6 I

0.28 88.8 ± 36.6 I

1.363 160 ± 33.6 I Moresco (2015)

1.965 186.5 ± 50.4 I

0.3802 83 ± 13.5 I

0.4004 77 ± 10.2 I

0.4247 87.1 ± 11.2 I Moresco et al. (2016)

0.4497 92.8 ± 12.9 I

0.4783 80.9 ± 9 I

0.24 79.69 ± 2.65 II Gaztañaga et al. (2009)

0.43 86.45 ± 3.68 II

0.44 82.6 ± 7.8 II

0.6 87.9 ± 6.1 II Blake et al. (2012)

0.73 97.3 ± 7 II

0.35 84.4 ± 7 II Xu et al. (2013)

0.57 92.4 ± 4.5 II Samushia et al. (2013)

2.3 224 ± 8 II Busca et al. (2013)

2.34 222 ± 7 II Delubac et al. (2015)

2.36 226 ± 8 II Font-Ribera et al. (2014)

Table 2 The best-fit values of the Om(z) parameters derived

from the H(z) data with different H0 priors. The correspond-

ing values for ΛCDM are also presented for comparison.

H0 priors α n ΛCDM (α, n)

Planck 2013 α = 0.268+0.02
−0.02

n = −0.172+0.12
−0.114

(0.315, 0)

WMAP9 α = 0.268+0.026

−0.024
n = −0.021+0.151

−0.142
(0.279, 0)

Riess (2016) α = 0.196+0.034

−0.032
n = 0.162+0.163

−0.147
(-, 0)

mined by Planck 2013 data has gone, i.e., observations

of the Hubble parameter still support the existence of a

cosmological constant in the framework of this Om(z)

parametrization.

Obviously, the same H(z) data set corresponding to

different values of H0 and Ωm0 from Planck 2013 and

WMAP9 gives very different conclusions. Concerning

the previous works (Sahni et al. 2014; Ding et al. 2015;

Zheng et al. 2016), their estimates of Omh2 are com-

pared with Ωm0h
2, the combination of Ωm0 and H0

(h = H0/(100 km s−1 Mpc−1)) determined by Planck

observations. Therefore, it is hard to tell the source of

tension between H(z) data and ΛCDM. However, in our

method, the impact of H0 and Ωm0 on the final con-

clusion could be separately discussed. From the above

analysis, we may conclude that the value of H0 is the

most influential factor in performing a consistency test

of ΛCDM with H(z) data. For instance, in the case

of H0 = 67.3 ± 1.2 km s−1 Mpc−1 from Planck 2013

data, ΛCDM with any value of Ωm0 is ruled out at the

68.3% CL. However, with the prior of H0 = 70.0 ±

2.2 km s−1 Mpc−1 from WMAP9, the H(z) data exhibit

very good consistency with the concordance cosmologi-

cal constant model.

3.3 Comparison with Riess (2016) Results

Considering the significant influence of H0, in the fi-

nal case a local determination of H0 = 73.24 ±

1.74 km s−1 Mpc−1 with 2.4% uncertainty from Riess

et al. (2016) can be taken to perform a consistency test.

We show the contours constrained from the statistical

analysis in Figure 5 and the best fit is α = 0.196+0.034
−0.032

and n = 0.162+0.163
−0.147 (68.3% CL). Different from the

first case based on Planck measurements, a positive value

for the slope parameter, which corresponds to a phan-

tom cosmology, is favored in the framework of this

Om(z) parametrization. Moreover, because this mea-

surement of H0 is a local determination obtained in a

cosmology-independent method, we may comment on

the value of matter density in the framework of ΛCDM,

i.e., at the 95.4% CL the range of Ωm0 is restricted to

(0.2118, 0.2504) with the current H(z) data, which is

generally lower than the value given by most other types

of cosmological observations. Therefore, the measure-

ment of H0 from Riess et al. (2016) will significantly

affect our understanding of ΛCDM and thus the compo-

nents in the Universe.
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4 CONSTRAINTS FROM JLA SN IA SAMPLE

As mentioned above, the parametrization of Om(z) pro-

posed in this paper makes it possible to perform a con-

sistency test for ΛCDM with other astronomical obser-

vations. More importantly, the previous literature has ex-

amined the role of H(z) and SN Ia data in cosmological

constraints, and found that they could play a similar role

in constraining the cosmological parameters (Cao et al.

2011a; Cao & Liang 2013; Cao et al. 2015b). Therefore,

we turn to the JLA sample of 740 SNe Ia data (Betoule

et al. 2014). For the JLA data, the observed distance mod-

ulus is given by

µSN = m∗

B
+ α · x1 − β · c − MB , (7)

where m∗
B

is the rest frame B-band peak magnitude, and

x1 and c are the time stretch of light curve and the super-

nova color at maximum brightness respectively, which

are the three parameters needed for a light curve fitted

by SALT2 (Guy et al. 2007). Moreover, the parameter

MB describes the absolute B-band magnitude, whose

value is assumed to be dependent on the host stellar mass

(Mstellar) by a simple step function (Betoule et al. 2014)

MB =

{

M1
B

for Mstellar < 1010M⊙,

M1
B

+ ∆M otherwise.
(8)

Therefore, there are four nuisance parameters (α, β, M1
B

and ∆M ) to be fitted along with the Om(z) parameters.

On the other hand, the theoretical distance modulus

µth is expressed as µth ≡ 5 log (DL(z)/Mpc) + 25,

where DL(z) is the luminosity distance. Thus, χ2 for the

JLA sample is constructed as

χ2
JLA = ∆µT

·Cov
−1

· ∆µ, (9)

where ∆µ = µSN(α, β, M1
B

, ∆M ; z) − µth(z) and

Cov is the total covariance matrix defined as

Cov = Dstat + Cstat + Csys. (10)

Here Dstat corresponds to the diagonal part of the sta-

tistical uncertainty, while Cstat and Csys denote the

statistical and systematic covariance matrices, respec-

tively. The details of the covariance matrix Cov includ-

ing its construction can be found in Betoule et al. (2014).

Considering the significance of the Hubble constant in

testing ΛCDM, in this section we will treat H0 as a

free parameter in the χ2-minimization procedure. Thus

there are four nuisance parameters plus three parameters

(H0, α, n) referring to the parametrization of Om(z)

that we are interested in.

Table 3 The best-fit values (with 1σ uncertainties) of the

Hubble constant and Om(z) parameters with different data

combinations (H(z), JLA and H(z)+JLA).

H0 α n

JLA 67.63+4.06

−2.18
0.292+0.097

−0.075
−0.014+0.240

−0.250

H(z) 67.799+5.67

−13.29
0.276+0.070

−0.026
−0.164+0.434

−0.545

H(z)+JLA 68.81+1.50

−1.49
0.262+0.020

−0.018
−0.096+0.105

−0.098

In order to break the strong degeneracy between pa-

rameters, we also perform a joint statistical analysis by

using the JLA data and the Hubble parameter measure-

ments to constrain the parametrization of Om(z). The

total χ2 with the combined data set of JLA and H(z) can

be given by

χ2
tot = χ2

H + χ2
JLA. (11)

The best-fit parameters (with 1σ uncertainties) for differ-

ent data sets are presented in Table 3.

The marginalized 2D confidence contours of param-

eters (α and n, α and H0, and n and H0) are shown in

Figure 6. It is apparent that the principal axes of con-

fidence regions obtained with H(z) data and JLA data

intersect, which implies that the joint analysis with H(z)

and JLA could effectively break the strong degeneracy

between parameters and thus provide a more stringent

constraint on the three parameters. On the one hand, al-

though the best-fit Om(z) slope parameter is slightly

smaller than zero, which suggests that the current ob-

servational data tend to support a quintessence cosmol-

ogy, the ΛCDM model (n = 0) is still included within

the 1σ confidence region. On the other hand, the best-

fit Hubble constant from the combination of H(z)+JLA

(H0 = 68.81+1.50
−1.49 km s−1 Mpc−1) is consistent with the

results derived by both Planck 2013 and WMAP9, but is

significantly different from the recent local measurement

by Riess et al. (2016).

5 CONCLUSIONS AND DISCUSSIONS

An important issue in modern cosmology is whether the

EoS of dark energy is a constant or varying with time.

Based on an effective diagnostic Om(z) and its improved

versions Om(z1, z2) and Omh2(z1, z2), many recent

works have performed a null test of ΛCDM determined

by Planck observations, which implies that the ΛCDM

model may not be the best scenario for our Universe, or

dark energy does not exist in the form of a cosmological

constant. In this paper, we have proposed a parametriza-

tion of Om(z) to investigate the validity of ΛCDM,
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Fig. 5 The 68.3% and 95.4% confidence regions in α−n parameter space for the Om(z) parameterization of Om(z) constrained

from H(z) data (with the prior of H0 = 73.24±1.74 km s−1 Mpc−1 from Riess et al. (2016)). The horizontal black line delineates

ΛCDM (n = 0.0).
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Fig. 6 The 68.3% and 95.4% confidence regions in the H0 − α − n parameter space derived from JLA, H(z) and H(z)+JLA.

which successfully clarifies the impact of H0 and Ωm0

on the final conclusion. With three different priors of the

Hubble constant H0, the latest H(z) data are used to set

a constraint on the Om(z) parameters of interest. Our re-

sults showed that the value of H0 plays a very important

role in the consistency test of ΛCDM. Here we summa-

rize our main conclusions in more detail:
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– Adopting the Hubble constant prior H0 = 67.3 ±

1.2 km s−1 Mpc−1 (Planck Collaboration et al.

2014) for the H(z) data, we find the value of the

slope parameter n to be smaller than zero at the 68%

CL, which implies that quintessence may be a good

candidate for dark energy according to this Om(z)

parametrization. The deviation from ΛCDM at the

2σ confidence region strongly indicates tension be-

tween the current H(z) data and ΛCDM, which con-

firms the conclusion obtained in the previous works.

– With the prior of H0 = 70.0 ± 2.2 km s−1 Mpc−1

from WMAP9 results, the discrepancy between

H(z) data and ΛCDM disappeared, i.e., the data an-

alyzed in the framework of this Om(z) parametriza-

tion still support the cosmological constant scenario.

– In the third case with the local determination of

H0 = 73.24 ± 1.74 km s−1 Mpc−1 from Riess

et al. (2016), a positive value for the slope param-

eter, which corresponds to a phantom cosmology, is

strongly favored by the current H(z) data. Moreover,

at the 95.4% CL the range of matter density is re-

stricted to Ωm0 = (0.2118, 0.2504), which is gener-

ally lower than the value given by most other types

of cosmological observations.

Moreover, the parametrization of Om(z) makes it

possible to perform a consistency test of ΛCDM with

other astronomical observations. We studied the con-

straining power of the JLA sample that has 740 SNe

Ia (Betoule et al. 2014) and its combination with the

Hubble parameter measurements on the parametrization

of Om(z). Here we summarize our main conclusions in

more detail:

– Although the best-fit Om(z) slope parameter is

slightly smaller than zero, which suggests that

the current observational data tend to support a

quintessence cosmology, the ΛCDM model (n = 0)

is still included within the 1σ confidence region.

– The best-fit Hubble constant from the combination

of H(z)+JLA (H0 = 68.81+1.50
−1.49 km s−1 Mpc−1)

is very consistent with the results derived both by

Planck 2013 and WMAP9, but is significantly dif-

ferent from the recent local measurement by Riess

et al. (2016).

As a final remark, the parametrization of Om(z)

proposed in this paper has opened a robust window for

testing the validity of the concordance ΛCDM cosmol-

ogy and suggesting other possible dynamical dark en-

ergy models. However, more precise model selection

still remains a difficult task with current accuracy of the

data and the important role played by the Hubble con-

stant. We hope that future data related to strong gravita-

tional lensing observations (Cao et al. 2011b; Cao & Zhu

2012; Cao et al. 2012b,a, 2015a), high-redshift SNe Ia

from SDSS-II and the Supernova Legacy Survey (SNLS)

collaboration (Betoule et al. 2014), ultra-compact struc-

ture in high-redshift radio quasars (Cao et al. 2017) and

weak lensing surveys combined with CMB measure-

ments (Planck Collaboration et al. 2016) will lead to sub-

stantial progress in this respect.
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