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Abstract DArk Matter Particle Explorer (DAMPE) is a general purpose high energy cosmic ray and

gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 GeV

to 10 TeV and hundreds of TeV for nuclei. This paper provides a method using machine learning to

identify electrons and separate them from gammas, protons, helium and heavy nuclei with the DAMPE

data acquired from 2016 January 1 to 2017 June 30, in the energy range from 10 to 100 GeV.
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1 INTRODUCTION

The high energy spectrum of cosmic ray electrons

(CREs) has been investigated both on the ground and in

space in recent years (Aguilar et al. 2014; Picozza et al.

2007; Aharonian et al. 2008), in order to gain knowledge

on CREs’ origin and propagation, and to try to search

for signals of dark matter annihilation (Pospelov & Ritz

2009). The direct detection of CREs in space is more

accurate than ground detections since there is no atmo-

sphere between the primary CREs and the detectors. Due

to the small effective area of satellite experiments, the

electron flux could be measured up to a few TeV. A di-

rect detection of electrons up to 10 TeV may reveal some

unknown physics related to dark matter or nearby sources

(Kobayashi et al. 2004; Yin et al. 2013).

The DArk Matter Particle Explorer (DAMPE) was

successfully launched into a Sun-synchronous orbit at

an altitude of 500 km on 2015 December 17 from the

Jiuquan Satellite Launch Center (Chang et al. 2017).

DAMPE mainly focuses on the detection of Galactic

cosmic rays (GCRs), the potential signal of dark mat-

ter annihilation and gamma-ray astronomy. It consists of

four sub-detectors, a Plastic Scintillator strip Detector

(PSD), a Silicon-Tungsten tracKer-converter (STK), a

BGO (Bi4Ge3O12) imaging calorimeter and a NeUtron

Detector (NUD). The PSD consists of two layers of scin-

tillators to measure the charge of passing nuclei and as

veto detector for gamma rays; the STK consists of 12 lay-

ers of single-sided silicon detectors. It can measure the

trajectory and charge of charged particles, identify nuclei

up to oxygen and the tungsten plates inside can convert

photons into e+e− pairs. The BGO calorimeter is made

of 14 layers where each layer contains 22 BGO bars. It

measures the energy profile of an electromagnetic shower

induced by electrons, positrons or photons, or a hadronic

shower induced by protons and nuclei. The NUD records

the secondary neutrons produced in a BGO shower and

contributes to the identification of electrons/protons.

It is a big challenge to get clean samples of electrons

from GCR data since the number of background pro-

tons is approximately 103 times larger than that of elec-
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trons above hundreds of GeV. The traditional cut-based

method used in DAMPE Collaboration et al. (2017) relies

on a full understanding of the detector but does not take

into account all the relations between the variables used

and in this way could miss some hidden piece of infor-

mation. The machine learning method has been widely

used in data analysis of various physics experiments in

the last decades and usually gives better results than the

traditional cut-based method (Roe et al. 2005; Abdollahi

et al. 2017). In this paper, we present an analysis using

the machine learning method to separate electrons from

background, mainly protons, in energy range from 10 to

100 GeV.

The whole procedure used in the analysis is intro-

duced in Section 2. The data analysis is presented in

Section 3 and Section 4 in detail. A discussion about the

method is provided in Section 5 and the conclusion given

is in Section 6.

2 ANALYSIS PROCEDURE

The analysis starts with DAMPE 2A ROOT files (Monte

Carlo (MC) data from version 5.3.0), which have al-

ready been properly calibrated and reconstructed (Zhang

et al. 2016). A flow chart illustrating the machine learn-

ing method is shown in Figure 1.

The whole process starts with an energy correc-

tion process to correct the energy of electron events

(Sect. 3.1). Since there are lots of events with large in-

cident angles, events in which the shower is partially

recorded in the BGO or events from the bottom of the

detector, the energies may not be precisely reconstructed.

A pre-selection is applied to eliminate those events in

both MC data and on-orbit data (Sect. 3.2). After the

pre-selection, we extract some characteristic variables

from BGO (which represents features of the shower) of

all the surviving electrons and protons in the MC data

(Sect. 4.1), then feed the variables into the machine learn-

ing training algorithm to yield a “discriminator” to distin-

guish electrons from protons (Sect. 4.3).

3 DATA PRE-SELECTION

3.1 Energy Correction

As the first step, the energy of an electron event needs

to be corrected. The total energy of the incident electron

may not be fully collected because some energies of the

shower might be deposited in the supportive structure or

leak from the side or bottom of the detector. So, it is nec-

essary to correct the deposited energy from electrons to

compute their original energy. We use the MC data to

evaluate the deposited energy distribution for electrons.

An example is shown in Figure 2. The distribution of

deposited energy/MC truth energy ratio approximates a

Gaussian distribution.

We fit data displayed in Figure 2 with a Gaussian dis-

tribution, and calculate the mean and sigma values. The

mean value is taken as the ratio between the deposited en-

ergy and the MC truth energy of incident electrons for all

the events in this energy bin. The electron energy resolu-

tion is based on the MC data from 10 to 100 GeV, which

is the sigma from the Gaussian fit, as shown in Figure 3.

This resolution is well-matched with the beam test result,

indicating a good configuration for the simulation (Zhang

et al. 2016).

The energy correction process needs to be applied to

all on-orbit data since we cannot tell if a given event re-

sults from an electron or not. Through this process, the

energies of electrons are corrected but the energies of

protons are also changed. Since our final objective is to

get a clean electron sample and reconstruct the electron

spectrum later, this is not a concern as long as the elec-

tron energy is precise.

3.2 Pre-selection Cut

After the energy correction, we need to select events

whose energies and trajectories can be reconstructed ac-

curately. We call this procedure ‘pre-selection’. Several

cuts are implemented to remove events that have poor en-

ergy reconstruction, both on MC and on-orbit data. Here

are those cuts in order:

(1) There is at least one Globtrack (Chang et al. 2017)

reconstructed successfully. The Globtracks of an

event are its STK tracks which match the BGO re-

constructed track. Then we select the one with the

smallest chi-square value from the track reconstruc-

tion for further analysis.

(2) Use PSD reconstructed energy to eliminate He and

heavier nuclei.

(3) Use PSD reconstructed energy to eliminate photons.

(4) Globtrack goes through both the top and bottom

layer of the BGO calorimeter.

(5) The bar with the maximum deposited energy is not

on the edge of the calorimeter.
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Fig. 1 A flow chart illustrating the machine learning analysis.
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Fig. 2 A Gaussian fit to the distribution of energy ratio Edep/Etrue for MC electrons deposited in the 86.6–100 GeV energy bin,

where Edep is the deposited energy of electrons and Etrue is the true energy. Fit result: mean = 0.929; sigma = 0.011.

(6) The ratio between the total RMS and HorizontalRMS

(defined in Sect. 4.1) is larger than 15 to exclude par-

ticles incident from the flank of DAMPE.

(7) The energy deposition ratio of the first BGO layer is

less than 0.2. This cut tries to eliminate those events

with large incident angles, but which cannot be re-

moved by cut 4 since the reconstructed Globtrack of

these events is inaccurate.

Figure 4 shows the distribution of deposited energy

after all cuts. Those events with y-axis value close to 0

are fully deposited events which need to be preserved. It

is obvious that most events with small deposited energy

have been excluded by these cuts. After all cuts are ap-

plied, about 0.1% of partially deposited events remain in

the whole sample, which is acceptable considering the

error from this effect is about 0.1%.
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Fig. 3 Energy resolution from the Gaussian fit of MC electrons versus the deposited energy.

Table 1 Response of the MC Electrons and Protons to the Cuts

Electrons Protons

Cut 0 2.57× 107 100% 2.46 × 107 100%

Cut 1 1.39× 107 54.1% 1.36 × 107 55.3%

Cut 2 6 426 500 46.2% 4 488 086 33.0%

Cut 3 3 613 769 56.2% 1 526 301 34.1%

Cut 4 1 488 657 41.2% 690 336 45.2%

Cut 5 1 419 133 95.9% 600 799 87.0%

Cut 6 1 305 428 92.1% 488 117 81.2%

Cut 7 1 249 552 96.1%(4.9%1) 464 585 99.7%(1.9%)

Notes: The percentage shown in the table is the ratio of surviving particles after the corresponding cut compared

to number of particles before this cut. 1 The value in brackets is the percentage of surviving events for all cuts.

Moreover, the pre-selection can depress the pro-

ton/electron ratio due to differing profiles of electromag-

netic and hadronic showers. Table 1 shows the statistics

of electrons and protons with these cuts based on the MC

data. The bottom row shows the percentage of surviv-

ing particles compared to all particles. Consequently, the

percentage of electrons is 3 times more than the percent-

age of protons, so the pre-selection has a background re-

jection power of 3 in the energy range 10–100 GeV.

4 DATA ANALYSIS

We now should consider how to increase electron re-

jection power and separate them from the severe back-

ground events. As the BGO calorimeter has a much larger

radiation length than the nuclear interaction length, an

electromagnetic shower is typically thinner and smaller

than a hadronic shower with the same deposited energy.

In order to quantify the shape of a shower, we define

some characteristic variables to describe its profile.

4.1 Define Characteristic Variables

The characteristic variables are mainly based on the dif-

ferences between electromagnetic showers and hadronic

showers in the BGO calorimeter. These variables can be

studied using the MC data and are listed in the following.

The whole detector is defined in a three-dimensional co-

ordinate system. The orientation of positive z is vertical

to the layer of BGO crystals pointing at the STK detector

while x and y are defined in the plane that is parallel with

the layer.

4.1.1 Energy deposition fraction in each layer

The variable Efraci is simply defined as the energy de-

posited in the i-th layer divided by the total deposited
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Fig. 4 Deposited energy of events. (a) Before all cuts. (b) After all cuts. The x axis is the deposited energy. The y axis is (Edep −

Etrue)/Etrue, where Edep is the deposited energy. Etrue is the true energy.

energy, where i is the layer number from 0 to 13. Since

a hadronic shower tends to extend more deeply than an

electromagnetic shower in the BGO calorimeter, the en-

ergy deposition fraction of the last few layers has strong

discriminating power.

4.1.2 Root mean square

The Root Mean Square (RMS) of the deposited energies

in the i-th layer is defined as

RMS i =

22
∑

j=0

Eij × (dij − dcog
i )2, (1)

where Eij is the deposited energy of the j-th bar in the

i-th layer, dij is the one-dimensional coordinate of the

j-th bar in i-th layer and dcog
i is the one-dimensional co-

ordinate of the i-th layer’s center of gravity, defined as

dcog
i =

22
∑

j=0

Eij × dij/Ei. (2)

Here Ei is the deposited energy of the i-th layer, so we

can get a total of 14 RMS values for BGO. Total RMS

used in Section 3.2 is simply the summation of all 14

RMS values. Based on the definition, the RMS indicates

the lateral development of the shower. The electromag-

netic shower is expected to be thinner than the hadronic

shower when the incident particle has the same energy,

resulting in a smaller RMS value.
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4.1.3 RMSr and RMSl

RMSr (Li et al. 2016) is the root mean square where

the center of gravity of energy deposited is along the

Globtrack. RMSr is defined as

RMS r =

√

√

√

√

N
∑

i=1

Ei × D2
i /Etotal, (3)

where N represents all the triggered BGO bars, Etotal is

the total deposited energy in BGO and Di is the distance

between the i-th BGO bar and the Globtrack.

RMSl is similar to RMSr except that Di is the dis-

tance between the i-th BGO bar and the center of gravity,

which is defined as

dcog =

N
∑

i=0

Ei × di/Etotal, (4)

where di is the three-dimensional coordinates of the i-

th BGO bar. These two variables are evaluated for the

whole BGO detector. RMSr and RMSl also indicate the

lateral development of the shower. These two values are

less dependent on the structure of the detector since they

are only calculated using the actual track of the incident

particle.

4.1.4 FValue

FValuei of the i-th layer is defined as

FValuei =

22
∑

j=0

Eij × (dij − dcog
i )2 × Efraction i, (5)

where Efractioni is the fraction representing the de-

posited energy of the i-th layer to the total deposited

energy. Other parameters are the same as defined in

Equation (1). FValuei is a combination of RMS and

Efraci, which shows stronger discrimination power than

these two variables alone (Chang et al. 2008).

4.1.5 L factor

L factor (Li et al. 2016) is a combination of RMSl and

FValue, defined as

L =

(

RMSl

60

)1−α (

F13 + F14

0.1

)α

, (6)

where F13 and F14 are FValue13 and FValue14, respec-

tively; α is defined as

α = 0.5 +
1

π
arctan

(

5 log10

(

E

50GeV

))

. (7)

L factor also considers the energy factor, which allows

the variable to have steady performance over the whole

energy range.

4.1.6 Chi-square

Longo & Sestili (1975) present an equation to describe

the electromagnetic shower as

dE/dx = knormtae−bt, (8)

where a and b are coefficients, and knorm is defined as

knorm = Eba+1/Γ(a + 1), (9)

where Γ is Euler’s Gamma Function. We use this equa-

tion to fit the shower and compute the associated Chi-

square. The Chi-square from the fit is a good estima-

tor to distinguish electromagnetic showers from hadronic

showers. Obviously, the Chi-square of an electromag-

netic shower is smaller compared to the Chi-square of

a hadronic shower with the same deposited energy.

4.1.7 tmax

The variable tmax is derived from Equation (8) after the

fit to the shower. It is defined as

tmax = a/b. (10)

The variable tmax also represents the radiation length

where the energy loss dE
dx

become the largest.

4.1.8 LongitudinalRMS

LongitudinalRMS is defined as

LongitudinalRMS =

14
∑

i=0

Ei × (dzi − dAllcog), (11)

where dzi is the z coordinate of the i-th layer and dAllcog

is the center of gravity for all layers, which is calculated

as

dAllcog =
14
∑

i=0

Ei × di/E, (12)

where E is the total deposited energy. LongitudinalRMS

indicates the longitudinal development of the shower,

which turns out to have strong discrimination capability

as shown in Figure 6.

HorizontalRMS used in Section 3.2 is defined in the

same way as in Equation (11) except that di is the x or y

coordinate of the i-th bar.
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4.2 Variable Comparison

Since the discriminator will be trained using the MC

data, it is crucial to check the consistency between the

MC data and the on-orbit data. First of all, we use three

variables, FValue, L factor and RMS, to select electrons

and protons preliminarily from on-orbit data for variable

comparison. Then all variables in every energy bin of the

MC and the on-orbit data are compared. All the variables

defined in Section 4.1, which show good consistency in

every energy bin, will be used in further analysis. An ex-

ample of the comparison for variable (RMS) is displayed

in Figure 5. The match between MC and on-orbit data

is good based on a visual inspection in this energy bin.

After passing the comparison test in all energy bins, this

variable (RMS) will be used for training.

4.3 Machine Learning

We use the boosted decision trees (BDT) method from

the toolkit TMVA (Hoecker et al. 2007) to train the net-

work. A decision tree is a binary tree structured classi-

fier, in which each internal node is labeled with an in-

put feature. The boosting of a decision tree extends this

concept from one tree to several trees which form a for-

est. Boosting is a way of enhancing the classification

and regression performance (and increasing the stabil-

ity with respect to statistical fluctuations in the training

sample) of typically weak multi-variant analysis (MVA)

methods by sequentially applying an MVA algorithm to

reweighted (boosted) versions of the training data and

then taking a weighted majority vote of the sequence of

MVA algorithms thus produced. It was introduced into

classification techniques in the early 1990s and in many

cases this strategy has resulted in dramatic performance

increases (Freund et al. 1999; Schapire 2003).

MC electrons and protons passing pre-selection are

used for the machine learning. Half of the sample is used

as training sample and the other half as test sample. The

values of the variables for every MC event, forming a

vector, will be input into the training algorithm. The al-

gorithm will generate a discriminator which can distin-

guish electrons from protons. Every energy bin in range

10–100 GeV is trained separately. We show the training

result for the 65.0–75.0 GeV energy bin as an example.

The distributions of some well distinguished variables

are shown in Figure 6.

The Receiver Operating Curves (ROCs) (Bradley

1997) in the 65.0–75.0 GeV energy bin that result from

four BDT methods, namely BDT with adaptive boosting

(BDT), BDT with gradient boosting (BDTG), BDT with

bagging (BDTB), and BDT with decorrelation and adap-

tive boosting (BDTD) (Hoecker et al. 2007), are shown

in Figure 7. The background rejection power of the BDT,

the selected method, is about 0.9997 at signal selection

efficiency of 0.9. Also, in a certain energy bin, the statis-

tic corresponding to protons is mainly contributed by

protons with higher energy (Zhang et al. 2015). Based

on MC data, this so-called “hard suppression” has a sup-

pression power of 9. With hard suppression of 9, the pre-

selection cut’s suppression power of 3 we mentioned be-

fore and the suppression power provided by BDT, this

analysis produces a total of 3 × 9 ÷ (1 − 0.9997) =

9.0 × 104 for background rejection power at 0.9 sig-

nal selection efficiency after pre-selection in the 65.0–

75.0 GeV energy bin. Similar background rejection pow-

ers are obtained in other energy bins of 10–100 GeV.

Applying the discriminator to both training and test-

ing samples, the BDT response distributions of both elec-

trons and protons in the 65.0–75.0 GeV energy bin are

obtained as shown in Figure 8. These distributions are

considered as templates in the template fit to calculate

the counts of electrons and protons, a topic which is not

the content of this paper. Also, an overtraining check is

performed to check if the distributions of training sample

and test sample are consistent. The signal value of 0.194

and the background value of 0.295 indicate no overtrain-

ing is present.

5 DISCUSSION

There are also many other machine learning meth-

ods such as Support Vector Machine (SVM), Artificial

Neutral Network (ANN) and K-Nearest Neighbor

(KNN) available in the TMVA package. It is crucial to

choose appropriate and strong distinguishing characteris-

tic variables in order to have higher background rejection

power. It is worth pointing out some of our BDT training

settings: number of trees is 1000; max depth of a tree is

3; number of grid points in variable range used in finding

optimal cut in node splitting is 20. We have altered some

of these parameters in order to get better training results.

Since the BDT result we obtained is almost perfect, the

tuning did not yield much difference in this case.

In addition, the field of deep learning has devel-

oped very fast over the past several years years and

has been used in many areas, including data analysis in

physics (Baldi et al. 2014; Adam-Bourdarios et al. 2015;
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Fig. 6 The variable distributions of LongitudinalRMS, RMSr , RMSl, Lfactor, TotalHits and RMS for the MC electrons and protons

in the 65.0–75.0 GeV energy bin. Blue: electrons; red: protons.

Sadowski et al. 2015). Deep learning and conventional

machine learning both offer ways to train models and

classify data. Unlike the conventional machine learning

method, which demands the user extract relevant features

from a classified object in order to train a model, the

deep learning method skips the manual step of extract-

ing features. Instead, one can feed an object directly into

the deep learning algorithm which then predicts it. Deep

learning is very powerful when dealing with complex ob-

jects, which is often the case in physics researches. We

also expect an equally good, if not better, performance

than conventional machine learning when deep learning

is applied to DAMPE data for electron/proton separation.

We cannot use other detectors except for the BGO

calorimeter to select pure electrons as a control sample

or training sample from the on-orbit data for discrimina-
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Fig. 8 The output distributions of the BDT method from both training and test samples in the 65.0–75.0 GeV energy bin. The

Kolmogorov-Smirnov test is performed to check overtraining.

tor training like AMS-02. Our analysis relies strongly on

consistency between data generated with the MC tech-

nique and real measurements.

6 CONCLUSIONS

Here the machine learning method is utilized to separate

electrons from protons in DAMPE data which were ac-

quired from 2016 January 1 to 2017 June 30 in the en-

ergy range 10–100 GeV. This machine learning method

makes good use of all information available from the

BGO calorimeter. It turns out that DAMPE can separate

electrons from protons in the energy range 10–100 GeV

with background rejection power of 9.0 × 104 using the

machine learning method, which is higher compared to

the background power rejection of >104 at a signal ef-

ficiency of 90% provided by the traditional cut-based

method used in DAMPE Collaboration et al. (2017).
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