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Abstract The application of data mining in astronomical surveys, such as the Large Sky Area Multi-

Object Fiber Spectroscopic Telescope (LAMOST) survey, provides an effective approach to automati-

cally analyze a large amount of complex survey data. Unsupervised clustering could help astronomers

find the associations and outliers in a big data set. In this paper, we employ the k-means method

to perform clustering for the line index of LAMOST spectra with the powerful software AstroStat.

Implementing the line index approach for analyzing astronomical spectra is an effective way to extract

spectral features for low resolution spectra, which can represent the main spectral characteristics of

stars. A total of 144 340 line indices for A type stars is analyzed through calculating their intra and inter

distances between pairs of stars. For intra distance, we use the definition of Mahalanobis distance to ex-

plore the degree of clustering for each class, while for outlier detection, we define a local outlier factor

for each spectrum. AstroStat furnishes a set of visualization tools for illustrating the analysis results.

Checking the spectra detected as outliers, we find that most of them are problematic data and only a few

correspond to rare astronomical objects. We show two examples of these outliers, a spectrum with ab-

normal continuum and a spectrum with emission lines. Our work demonstrates that line index clustering

is a good method for examining data quality and identifying rare objects.
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1 INTRODUCTION

Due to the limitations associated with observational

equipment, traditional astronomy and astrophysics re-

search efforts are basically based on small samples. With

the improvement of observational capabilities of tele-

scopes, more and more multi-object surveys have been

conducted. Generally, large sky area surveys including

photometry and spectroscopic survey projects have been

carried out, and collections of survey data have be-

come bigger and bigger. A representative telescope is the

LAMOST facility, which took the lead in the world for its

efficiency in obtaining celestial spectra (Cui et al. 2012).

The Galactic surveys undertaken by LAMOST have pro-

duced a large amount of stellar spectra (Luo et al. 2012,

2015), and there are more than 7 million spectra observed

from Nov 2011 to June 2016; the Fourth Data Release

(DR4) has been made available (http://dr4.lamost.org).

The LAMOST spectral analysis pipeline uses templates

for stellar classification according to the similarity with

observed templates (Wei et al. 2014).

Template based classification is a supervised ap-

proach, and all data can be grouped into the class for

which the template is labeled. However, this approach

would result in some rare objects dropping into a pre-

supposed class which could not be detected. Data min-

ing methods can automatically analyze a large amount of

data, revealing hidden, previously unknown and poten-

tially valuable information (Liu et al. 2015). Clustering,

outlier analysis and feature learning are examples of

methods that can be applied to mining data and discov-

ering new knowledge. A very useful data mining tool,

AstroStat (Kembhavi et al. 2015), has been developed

since 2009, and is employed in this work to deal with

LAMOST stellar spectra. We consider the performance

of applying AstroStat to clustering LAMOST data.
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The topic of clustering aims at partitioning and ag-

gregating unlabeled data, and revealing hidden patterns

of the data in an unsupervised way from the perspective

of machine learning. Clustering is also a crucial task in

scientific data analysis and engineering in various disci-

plines. By using the process of aggregating similar data

together, the unaggregated data are obviously less sim-

ilar according to some measure. An unsupervised clus-

tering algorithm does not require the step of learning in

advance, but the data still need to be preprocessed. Due

to the diversity of structures and features in astronomical

data, unsupervised clustering algorithms are suitable for

recognizing the inherent distribution of the data and the

hidden knowledge pattern without requiring information

on classification. By analyzing outliers, we can identify a

few data with characteristic anomalous spectra from the

survey data.

Feature extraction is the most important step in data

mining investigations. As is well known, absorption and

emission lines are important features in a spectrum. The

line index system is defined as a powerful feature extrac-

tion tool, and a series of values for line indices represent a

spectrum with specific physical characteristics. The line

index is measured from the equivalent width by integrat-

ing. A line index integrates the total flux of a spectral

line or a magnitude of the multi-band at different wave-

lengths in a spectrum. A widely used line index system

is the Lick line index, which has been applied in deal-

ing with many survey data such as SDSS. In this paper,

the Lick line index is used in LAMOST spectral data to

extract atmospheric parameters, since the line index is al-

most unaffected by flux calibration errors and redshifts,

and does not need any extinction correction because of

the definition of line index. The line index is calculated

from the average flux value over a relatively large wave-

length range and incorporates normalization of spectral

energy distribution, so it has a higher signal to noise ra-

tio (S/N) than the original spectrum. When the spectral

resolution changes, the line index will not change, unlike

line fitting by using a pseudo-continuous spectrum. In

LAMOST data releases (Wei et al. 2014), the line indices

used in our research are provided in the form of arrays on

LAMOST’s official web site. Each value is named by a

spectral line, which indicates the specific integral flux of

spectral lines in a spectrum.

This paper is organized as follows. In Section 2,

we introduce the AstroStat software and the line in-

dex data from LAMOST. In Section 3, we describe the

k-means method, intra-cluster correlation analysis with

Mahalanobis distance and employing a local outlier fac-

tor (LOF) to detect outlier measurements with distance.

In Section 4, we search for outliers through the data min-

ing process including using Mahalanobis distance, LOF

factor, etc. In Section 4, we analyze the clustering re-

sult by checking the distance of outliers and their spectra.

Finally, we conclude in Section 5.

2 TOOLS AND DATA

2.1 AstroStat

The interface of AstroStat, based on Java, was devel-

oped by the Virtual Observatory-India (VOI) project

and allows astronomers to apply both simple and

sophisticated statistical routines on large datasets. It

is an easy-to-use software tool for statistical anal-

ysis and visual description applicable to big data.

Users can freely download the software package from

http://vo.iucaa.ernet.in/voi/VOStat.html. AstroStat loads

the VOPlot service and the currently active data file, and

uses the file for many kinds of data visualization. Some

points of interest can be noted directly in the plot, which

provides the possibility to select these points for man-

ual analysis. We utilize VOPlot in AstroStat to realize

the data analysis with visualization tools when analyzing

LAMOST data. AstroStat shows the toolbar and k-means

partitioning primary interface at the top which allows the

user to select columns from multiple files in Figure 1.

2.2 R Language and LAMOST FITS

Data mining algorithms in AstroStat are based on the R

language. The R language came into existence as a free

counterpart of the S statistical language developed by

Bell Labs. Ross Ihaka and Robert Gentleman (Ihaka &

Gentleman 1996) developed R with many users involved,

which resulted in a very large number of contributions

from the users. It has all the common tools needed for

advanced statistics: classification, clustering, etc.

AstroStat is based on the R language, and since R is

a versatile open-source system for statistics, it integrates

multiple data analysis and visualization methods. We de-

cided to use R as the preprocessing step for LAMOST

data. It not only has powerful data analysis capabilities,

but also can effectively simplify the data analysis pro-

cess.
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Fig. 1 A screenshot of AstroStat showing the toolbar at the top and the k-means partitioning primary interface which allows the

user to select columns from multiple files.

The first step in preprocessing is reading the

LAMOST FITS files by using the RFITSio package in R.

Although AstroStat integrates the FITS reading package,

we prefer to use the RFITSIO directly to avoid the prob-

lem of non-standard formatting in LAMOST spectra.

The FITS data from LAMOST are written by the Cfitsio

package, and the FITS file name is “spec-MMMMM-

YYYY−spXX-FFF.fits” (Luo et al. 2012). Downloading

the data and loading the required FITSio package with

the function (FITSio), we can read the spectral data file

by readFITS (“ path * .fits ”). Using the readFITS return

value and the parameter, we can extract the eigenvector

matrix and store it in format files “*.csv” and “*.txt”,

and then read the corresponding parameter information

in the form of data columns and limit the maximum data

range for values. We then use the function “plot()” to se-

lect type = “s” and select, for example, the A0III star

spectral data file spec-55976-GAC−099N04−V5−sp12-

128.fits in the LAMOST survey database, as shown in

the plot of the flux spectrum in Figure 2.

2.3 Data

The LAMOST project processes spectra to have the same

starting and ending wavelength scale at 3800Å to 9000Å

respectively. In the data release, the Lick line indices

are provided for A type stars. We download 144 340

A type stars with line indices released. An important

goal in astronomy is to discover anomalous, sparse and

even unknown types, and as an important contributing

effort, outlier data mining can effectively identify a fea-

ture anomaly or the relatively tiny differences from the

survey data from some day. Spectral lines are important

main features in spectra, especially for A type stars be-

cause their continua are relatively smooth. The Lick line

indices are extracted features of absorption lines which

represent the physical character of a star.

3 CLUSTERING

As an important unsupervised classification method,

cluster analysis is more suitable for investigating charac-

teristics of data, and has been widely used in astronomi-

cal research. Qualitatively analyzing the clustering result

is a key step for correlation analysis and outlier detection.

By using the Mahalanobis distance as a metric for mea-

surement, we do not need to consider the scale difference

associated with line indices and it is easy to find spectra

with small differences in features. In addition, for obvi-

ous outliers in a high dimensional space, the LOF factor

with any distance measure could be quantitatively used

for rare object detection.

3.1 K-means

K-means is a simple unsupervised learning algorithm

that can solve classification problems as described by

MacQueen et al. (1967). The given data are classified by

finding the clusters and their related centers. Then each

set of line indexes is assigned to the nearest center that



73–4 S.-X. Chen et al.: Clustering Analysis of Line Indices for LAMOST Spectra with AstroStat

Fig. 2 A spectrum of an A0III-type star from the LAMOST survey data read and drawn by R.

is closest in a least squares sense. After all spectra are

loaded, each point is replaced by the respective cluster

center. Firstly, the algorithm initializes the cluster centers

and normalizes the data. Theoretically, the initial clus-

ter centers are found in the remaining data sets by using

the maximum distance between every two pairs, exclud-

ing isolated points. Practically, the number of isolated

points is often unpredictable, and the distances are cal-

culated without excluding isolated points. Then, the two

points with the largest distance are selected as the cluster

centers for two classes. When the cluster centers are se-

lected, multiple iterations are carried out, excluding the

isolated points by checking if they exceed the threshold

of a certain class. Finally, k-means assigns all the spectra

to one of the clusters. The threshold range should be set

to keep most data inside the two classes. The cluster cen-

ters of the k-means algorithm guarantee that objects in

the same cluster are similar, while the objects in different

clusters are not similar according to the specified metric.

The data in Figure 3 are from the LAMOST sec-

ond data release (DR2) (http://dr2.lamost.org). Different

line indices are clustered by the k-means algorithm using

AstroStat, and Figure 3 illustrates that most A type stars

are distributed in a small local area in the plane of kp12

vs. Hδ12. The clustering processing software platform in

AstroStat is based on efficient, open source R language

programming, and Figure 3 shows the result of clustering

in the line index plane kp12 and Hδ12.

3.2 Intra-cluster Correlation Analysis with

Mahalanobis Distance

In astronomical spectroscopy, similarity measures can be

used to assess the closeness between the eigenvalues of

arbitrary spectral lines. The k-means clustering algorithm

in Figure 3 uses Euclidean distance to calculate the dis-

tance between two points. Mahalanobis distance uses the

sample covariance method to measure the similarity of

two unknown samples more effectively. Indian mathe-

matician P.C. Mahalanobis first proposed Mahalanobis

distance using sample covariance to calculate the dis-

tance between two points. For the set of m-dimensional

points in Euclidean space defined by Equation (1), the

Mahalanobis distance is dm(x, y), where T is the trans-

pose and S is the covariance matrix.

dm(x, y) =

√

(x − y)
T
S−1(x − y). (1)

Our experiment uses Mahalanobis (data, center =

Avg, cov = S) provided by R language, where Avg is

the mean of the center and S is the sample covariance

matrix. The function represents the Mahalanobis dis-
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Fig. 3 These pictures show feature clustering in the dimension of kp12 and Hδ12 by AstroStat.

tance between each piece of data and the global library.

The transformation of Mahalanobis distance is similar

to that of the principal component analysis (PCA) solu-

tion, i.e., the PCA method rotates the principal compo-

nent of the data to the x-axis in two-dimensional space,

and scales it again to achieve the same measure of simi-

larity. However, the Mahalanobis distance has no rotation

transformation, and the similarity measure is scaled only

in the x and y directions of the lower triangular inverse

matrix. The Mahalanobis distance can take into account

the relationships among various properties independently

of the measurement scale. The definition of covariance

matrix satisfies the four basic axioms of the spectral tem-

plate distance: non-negativity, reflexivity, symmetry and

trigonometric inequality. If the covariance matrix is a unit

matrix, it is reduced to the Euclidean distance. We cal-

culated Mahalanobis distance for each A-subtype of the

dataset used in Figure 3, and the distances of median,

maximum and minimum of each subtype are shown in

Table 1.

In our process of experimental data processing, the

Mahalanobis distance does not need to be normalized,

but the Euclidean distance must be normalized first and

then used to calculate the distance between points, oth-

erwise the distance value is meaningless. Although the

Euclidean distance is more commonly used, the extracted

values of each spectrum represent different characteris-

tics. Mahalanobis distance can better reflect the impor-

tance of different eigenvectors.

3.3 Outlier Measurement with Distance

LOF is used for outlier detection (Breunig et al. 2000),

which can be applied to describe the singularity of nor-

mal A type spectra. For any positive integer k, the k-

distance of object d, denoted as k-distance(d), is de-

fined as the distance d(d,o) between d and an object

o ∈ D such that Equation (2) is satisfied. LOF follows

the definition of local reachable density; if a data point

is far away from the distance between other points, it is

clear that its local reachable density is small. A statis-

tical anomaly detection algorithm usually needs to as-

sume that the data follow a specific probability distri-

bution. However, a clustering method usually only pro-

vides a judgment about whether or not the point is ab-

normal and cannot quantify the degree of abnormality for

each point. In contrast, density-based LOF algorithms are

simpler and more intuitive. The analysis does not require

very much data that are part of a distribution to quantify

outlierness. However, the LOF algorithm measures the

degree to which a data point is anomalous not by looking

at its absolute local density, but rather at the relative den-

sity of nearby data points. The benefit is that data can be

distributed unevenly and with different densities. A local

anomaly is defined by the relative local density. The lo-
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Table 1 Analysis with Mahalanobis Distance for A Type Stars in Our Sample

Subclass Count Mean Min Max

A0 608 22.08346 6.217810 627.5468

A0III 951 35.60493 1.879113 380.4221

A1IV 18312 14.56612 2.270596 1452.920

A1V 18060 15.48386 4.545271 964.2106

A2IV 10970 14.91356 2.63847 966.1267

A2V 14195 17.20922 0.215421 3149.108

A3IV 2969 13.1970 0.839388 329.3868

A3V 596 21.61400 1.061798 1073.728

A5 16 960.2729 9.715015 10666.24

A5V 24421 11.00233 0.696124 5200.643

A6IV 14392 9.649854 0.671972 706.7618

A6V 1172 16.97445 1.513118 194.7997

A7III 1709 11.68790 0.226586 2560.394

A7IV 4873 9.291063 0.078180 894.8001

A7V 25159 7.853723 0.098206 2087.251

A8III 1882 6.725759 0.39664 116.1464

A9 33 178.6711 3.275037 5084.600

A9V 4022 10.0574 0.223409 1686.467

Fig. 4 An example of a spectrum with emission lines.

cal relative density of a data point d is the ratio of the

average local reachable density of the neighboring point

d to the local reachable density of data point d. Using the

definition in Equation (2), we can calculate the distance

of each model in D and the k-local outlier factor for each

object d.

lrdk(d) = 1/

∑

o∈Nk(d) nearestk(d, o)

| Nk(d) |
. (2)

The LOF algorithm needs to calculate the distance be-

tween two data points, resulting in a time complexity of

O(n2) for the entire algorithm. The LOF value is calcu-

lated for each subset. LOF values with abnormal score

less than or equal to a preset threshold are removed from

the data set, and the rest are used to find a more suitable

nearest neighbor, and then the LOF values are updated.

For each data point, its distance from all other points is
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Fig. 5 An example of a spectrum with bad flux calibration.

calculated and the distances are sorted from near to far,

as shown in Equation (2), its k-nearest-neighbors are lo-

cated and finally LOF for the data are generated as shown

in Equation (3).

LOFk(d) =

∑

o∈Nk(d)
lrdk(o)
lrdk(d)

| Nk(d) |
. (3)

4 OUTLIER ANALYSIS

Data mining is the process of acquiring knowledge

from vast amounts of data. With the continuation of the

LAMOST survey (the first year pilot survey and several

years of general survey), astronomers are devoted to ex-

tracting valuable information from observational data to

separate peculiar A-type stars from the normal identifi-

cations of objects. Classification of peculiar A-type stars

mainly relies on the associated photometric and spec-

troscopic observations. Based on experiments that ana-

lyze subsets of data extracted from big data, and gener-

ate knowledge by analyzing the line indices of 144 340

A-type stellar spectra, including a total of 18 subclasses

from A0 to A9, the distribution of Mahalanobis distance

is calculated by considering the interdependencies of dif-

ferent subclasses. The results are consistent with what

AstroStat provides via clustering analysis.

Table 2 displays example calculations of the main

parameters associated with the outlier data including the

Mahalanobis distances and spectral filenames.

The outliers can belong to small or sparse clusters,

or might not belong to any clusters. We notice some out-

liers from Figure 3. After clustering the star data, we

can consider whether the physical characteristics of the

spectra in the cluster are obvious and consistent, and a

mean value spectrum is introduced to help analyze the

outlier data. There are two aspects involved in exploring

the spectral information, one is the wavelength informa-

tion, the other is the flux information. These two pieces

of information correspond to the coordinates of the X-

axis and the Y -axis, used in the process of plotting the

function, and each wavelength value is associated with

the flux value. To check for outliers, we read the spectra

with R language and visually check them.

4.1 Spectral Data from an Emission Line Star

In the spectrum of an A-type star, there are strong emis-

sion lines, and their line indices are negative. It is easy to

identify emission line stars as outliers. Generally, emis-

sion lines of a single star are produced by nearby thin

gas, but these gases extend a very small range and the

observer cannot separate them from the stars. Figure 4 is

an example of an emission line star.

4.2 Broken-Spectrum Data

The process of acquiring data in the LAMOST survey

causes instabilities to exist. Due to a split between spec-
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Table 2 Outlier Spectral Data Based on Line Indices

Obsid S/N Subclass kp12 hδ12 hγ12 hβ12 Mahalanobis distance Spectral filename

106608008 12.31 A5V 6.79 12.84 17.64 36.07 5200.643808 spec-56306-GAC080N33M1 sp08-008.fits

100914163 341.02 A9 56.14 19.55 5.6 5.41 5084.600964 spec-56295-VB056N24V1 sp14-163.fits

105810249 11.67 A5 33.21 –17.09 –1.16 3.33 3920.594197 spec-56304-GAC094N27M1 sp10-249.fits

36710084 34.04 A2V 51.43 11.35 0.7 5.12 3149.108782 spec-55960-F5596001 sp10-084.fits

149409102 33.51 A7III 9.38 11.42 15.61 28.06 2560.394258 spec-56414-HD122456N425117M01 sp09-102.fits

72905248 10.92 A7IV –9.7 1.55 3.57 5.58 349.672845 spec-56225-GAC100N32M1 sp05-248.fits

37110225 15.72 A1IV –0.94 –1.18 1.96 3.85 317.2299728 spec-55960-GAC 101N09 V2 sp10-225.fits

15514122 10.48 A5 15.75 –0.51 2.9 5.28 249.4960056 spec-55910-GAC 078N28 B1 sp14-122.fits

75415148 35.71 A1IV 11.8 12.01 8.94 8.85 208.1938896 spec-56232-EG011815N023302V01 sp15-148.fits

15515102 15.59 A1IV 16.65 2.52 3.63 5.39 81.53144007 spec-55910-GAC 078N28 B1 sp15-102.fits

trometers in LAMOST, the two wavelength ranges can

be used to locate errors in the spectrum. These data are

often referred to as broken-spectrum data, which arise

from a sudden loss of flow from the survey or instability

in the data flow. Broken-spectrum data are caused by in-

stability in the acquisition equipment or spectral errors,

and are defined as “dirty data.” We need to identify “dirty

data” cases from survey data which introduce errors into

a spectrum.

Although our mining works use the line index to

avoid the effect of continuum fitting, which is a complex

process in spectral analysis, some bad spectra with line

indices may still be present. Figure 5 is an example of

a bad spectrum that results from calculation of the line

index.

5 SUMMARY

In this paper, k-means is employed for data mining spec-

tra from the LAMOST survey by implementing cluster-

ing and outlier analysis. The AstroStat statistical tool

is successfully applied to the LAMOST DR2 dataset

and the Lick line index of the survey data is taken

as the feature and clustered by the k-means algorithm.

Mahalanobis distance analysis combines spectral data

distance statistics and similarity measures. More than

140 000 spectra of A type stars are clustered to help iden-

tify spectra which do not follow the distribution of most

A-type spectra. The line index plays an important role in

the clustering process and can fully preserve the physical

characteristics of the spectral data. AstroStat is an effi-

cient tool for data mining and identifying bad data in or-

der to separate rare and anomalous spectra from normal

ones.

Acknowledgements We are very grateful to the anony-

mous referee for many useful comments and sugges-

tions. This work is supported by the Joint Research Fund

in Astronomy (U1631239) under cooperative agree-

ment between the National Natural Science Foundation

of China (NSFC) and Chinese Academy of Sciences

(CAS). It is also supported by the International

Science and Technology Cooperation Program of China

(2014DFE10030) and the Basic Science and Engineering

Special Project of Heilongjiang Province Education

Department (135109219).

References

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. 2000,

in ACM DIGMOD International Conference, 29, 93

Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, RAA

(Research in Astronomy and Astrophysics), 12, 1197

Ihaka, R., & Gentleman, R. 1996, Journal of computational and

graphical statistics, 5, 299

Kembhavi, A. K., Mahabal, A. A., Kale, T., et al. 2015,

Astronomy and Computing, 11, 126

Liu, C., Cui, W.-Y., Zhang, B., et al. 2015, RAA (Research in

Astronomy and Astrophysics), 15, 1137

Luo, A.-L., Zhang, H.-T., Zhao, Y.-H., et al. 2012, RAA

(Research in Astronomy and Astrophysics), 12, 1243

Luo, A.-L., Zhao, Y.-H., Zhao, G., et al. 2015, RAA (Research

in Astronomy and Astrophysics), 15, 1095

Macqueen, J. 1967, Some Methods for Classification

and Analysis of MultiVariate Observations[C], Proc. of,

Berkeley Symposium on Mathematical Statistics and

Probability, 281

Wei, P., Luo, A., Li, Y., et al. 2014, AJ, 147, 101


