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Abstract We present an interior model of Saturn with an ice-rock core, a metallic region, an outer

molecular envelope and a thin transition layer between the metallic and molecular regions. The shape

of Saturn’s 1 bar surface is irregular and determined fully self-consistently by the required equilibrium

condition. While the ice-rock core is assumed to have a uniform density, three different equations of

state are adopted for the metallic, molecular and transition regions. The Saturnian model is constrained

by its known mass, its known equatorial and polar radii, and its known zonal gravitational coefficients,

J2n, n = 1, 2, 3. The model produces an ice-rock core with equatorial radius 0.203 RS, where RS is

the equatorial radius of Saturn at the 1-bar pressure surface; the core density ρc = 10388.1 kgm−3

corresponding to 13.06 Earth masses; and an analytical expression describing the Saturnian irregular

shape of the 1-bar pressure level. The model also predicts the values of the higher-order gravitational

coefficients, J8, J10 and J12, for the hydrostatic Saturn and suggests that Saturn’s convective dynamo

operates in the metallic region approximately defined by 0.2 RS < re < 0.7 RS, where re denotes the

equatorial radial distance from the Saturnian center of figure.
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1 INTRODUCTION

The existing interior models of Saturn (see, for exam-

ple, Hubbard 1973; Stevenson 1982; Guillot 2005) sug-

gest that its interior consists mainly of a central ice-rock

core, a metallic electrically conducting dynamo region,

an outer molecular envelope where its fast zonal winds

might originate and an abrupt or a gradual transition be-

tween the metallic and molecular regions. However, the

size of the inner core, the location of the Saturnian dy-

namo and the depth of the zonal winds are unknown.

The high-precision gravitational field measurements an-

ticipated from the Cassini Grand Finale offer a means

of probing the internal structure of Saturn. However,

the construction of an accurate Saturnian model en-

abling that interpretation represents a major challenge.

This paper presents the first self-consistent, four-layer

Saturn model that, constrained by its known mass, its

known equatorial/polar radii and its known low-order

zonal gravitational coefficients J2n, n = 1, 2, 3, provides

the irregular shapes of its 1-bar surface and all its inter-

nal interfaces, the size and density of its ice-rock core,

the location of its convective dynamo and the values of

its higher-order gravitational coefficients J8, J10, J12.

There are at least two uncertainties in constructing

any interior model of Saturn: its rotation period and its

equation of state (EOS), i.e., the relationship between

pressure p and density ρ, denoted by p = f(ρ). Since

Saturn’s rotation axis almost aligns with its magnetic

pole, its internal rotation rate cannot be accurately deter-
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mined from the observed magnetic data. The radio mea-

surements from the Voyager spacecraft estimated a pe-

riod of 10 h 39 min 22.4 s (Smith et al. 1982); Anderson

& Schubert (2007), using the Cassini spacecraft data to-

gether with Pioneer and Voyager data, suggested a pe-

riod of 10 h 32 min 35±13 s; Helled et al. (2015), based

on an optimization approach using the gravitational field

and shape of Saturn, obtained a period of 10 h 32 min

45±46 s; and Read et al. (2009) derived a period of 10 h

34 min 13±20 s based on the analysis of Saturn’s atmo-

spheric potential vorticity. The rotation period of Helled

et al. (2015) will be adopted in our Saturnian model.

Three different types of EOS have been employed

in previous studies: a physical EOS (see, for example,

Saumon et al. 1995; Militzer 2013), an empirical EOS

(see, for example, Anderson & Schubert 2007; Helled

et al. 2015) and the classic polytropic EOS (see, for

example, Chandrasekhar 1933; Hubbard 1999; Horedt

2004; Cao & Stevenson 2017). In the polytropic EOS,

the density of a compressible barotropic fluid is a func-

tion only of the pressure p described by the polytropic

law, p = f(ρ) = K ρ1+1/n, where n is an integer and K

is assumed to be a constant. While the polytropic index

of unity with n = 1 is believed to provide a reasonably

good approximation for Jupiter’s interior (see, for exam-

ple, Hubbard 1999; Kong et al. 2013), the value of the

index for Saturn is thought to be slightly different from

unity (see, for example, Horedt 2004). We shall adopt

the polytropic EOS in this study although the method

and approach can be readily extended to other forms of

the EOS. There are also significant uncertainties in the

physical EOS for Saturn which may result from the lo-

cation of the helium-poor to helium-rich region and the

unknown helium to hydrogen ratio (see, for example,

Guillot 2005). We shall regard the mass MS, the rotation

rate ΩS, the equatorial radius RS and the polar radius

Rp of Saturn as the known parameters in our Saturnian

model.

The Saturnian gravitational field is intimately con-

nected with its shape, described by its irregular surface

So at the 1-bar pressure level and its interior density dis-

tribution ρ(r), where r is the position vector with the ori-

gin at the center of figure of the planet. The external grav-

itational field of Saturn can be conveniently described by

the potential Vg(r)

Vg(r) = −
GMS

r

{
1 −

∞∑

n=1

J2n

(
RS

r

)2n

P2n(cos θ)

}
,

(1)

where (r, θ, φ) are spherical polar coordinates with the

corresponding unit vectors (r̂, θ̂, φ̂) and θ = 0 being at

the axis of rotation, |r| = r > RS, P2n(cos θ) denotes

the Legendre functions, G is the universal gravitational

constant (G = 6.673848× 10−11 m3 kg−1 s−2), n takes

integer values and J2n are the zonal gravitational coef-

ficients. While the first three zonal gravitational coeffi-

cients J2, J4, J6 are already accurately measured (see,

for example, Helled et al. 2015), the high-precision mea-

surements carried out by the Cassini Grand Finale are

likely to determine the higher-order gravitational coeffi-

cients with n ≥ 8.

Saturn departs more substantially from spherical ge-

ometry than Jupiter: the eccentricity at the one-bar sur-

face is EJ = 0.3543 for Jupiter while it is ES = 0.4316

for Saturn (Seidelmann et al. 2007). Classical perturba-

tion theories (Zharkov & Trubitsyn 1978) are based on a

perturbation expansion around spherical geometry using

a small rotation parameter q = Ω2
SR̄

3
S/(GMS), where

R̄S denotes the mean radius of Saturn. In the perturbation

analysis, for instance, the widely used third-order theory

(see, for example, Anderson & Schubert 2007) expands

J2 in terms of the small parameter q in the form

J2 = C1q + C2q
2 + C3q

3,

where the expansion coefficients C1, C2 and C3 are de-

termined by the internal density ρ(r̄) described by the

hydrostatic equilibrium equation

1

ρ(r̄)

dp(r̄)

dr̄
= −

GMS(r̄)

r̄2
+

2

3
Ω2

Sr̄, (2)

where r̄ denotes the mean radius distance and MS(r̄) is

the mass enclosed by the spherical surface with radius r̄.

Although classical perturbation theories are mathemat-

ically simple, they require an unpractically large num-

ber of terms in the expansion to reach the high precision

needed for the anticipated observations of Saturn’s grav-

itational field by Cassini. It is therefore necessary to take

a more accurate approach – computing the exact solution

of Saturn without making any geometrical approxima-

tions – in order to interpret the high-precision gravita-

tional measurements for Saturn.

We shall present a geometrically exact, physically

realistic and computationally accurate model of Saturn.

In this model, the spheroidal-shape approximation (Kong

et al. 2013) – which assumes the outer bounding surface

of a giant planet is in the shape of an oblate spheroid –

is completely removed; Saturn’s shape is irregular and
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determined fully self-consistently by the required equi-

librium condition; an ice-rock core is introduced and its

non-spherical shape and its density are determined self-

consistently as part of the coupled, multi-layered sys-

tem; and a thin transition layer between the metallic and

molecular regions is also introduced. Constrained by the

known mass MS, the known equatorial radius RS and

the known polar radius Rp, and the known zonal gravita-

tional coefficients, J2n, n = 1, 2, 3 of Saturn, our study

is able to determine the shape and size of the ice-rock

core, the irregular shape of Saturn at the 1-bar pressure

level, to predict the values of higher-order gravitational

coefficients, J8, J10, J12; and to suggest the region where

Saturn’s convective dynamo is operating.

In what follows we begin by presenting the ex-

act model of Saturn and the governing equations in

Section 2, followed by discussion of the results in

Section 3 with a summary and some remarks given in

Section 4.

2 MODEL AND METHOD

Similar to existing Saturnian models (see, for example,

Stevenson 1982; Guillot 2005), our multi-layer model

of Saturn consists of three major parts: an ice-rock in-

ner core, a metallic region where the Saturnian mag-

netic field is generated by its convective dynamo and

an outer molecular insulating envelope where the ob-

served cloud-level zonal winds might originate. A sketch

of the multi-layered Saturnian model is given in Figure 1.

Our Saturnian model is geometrically marked by the

four irregular but axially symmetric surfaces: the core–

metallic interface Sc, the metallic–transition interface St,

the transition–molecular interface Sm and the outer 1-

bar-pressure surface So, all depicted in Figure 1. All four

surfaces are geometrically irregular and determined fully

self-consistently as a coupled hydrostatic system. For the

convenience of discussion, the region surrounded by Sc

is denoted by Dc, the domain enclosed between Sm and

So is denoted by Dm and the domain enclosed between

Sc and So is denoted by Do.

In our Saturnian model, the density ρ1(r) of the fully

compressible fluid exterior to the ice-rock core in the

metallic region is assumed to be a function only of the

pressure p1(r) obeying the polytropic law

p1(r) = K1

[
ρ1(r)

]1+1/n1

, (3)

where both K1 and n1 are constant; the density ρ2 of

the fluid in the outer molecular region is also assumed to

obey a similar polytropic law,

p2(r) = K2

[
ρ2(r)

]1+1/n2

, (4)

but K2 and n2 are different constants; between the metal-

lic and molecular regions the values of K and n are

assumed to vary across the transition layer. In other

words, three different polytropic laws are employed for

the metallic region, the transition layer and the molecular

region respectively which are marked by different physi-

cal properties (see, for example, Stevenson 1982).

Our Saturnian model further assumes that contribu-

tions from the mass beyond the 1-bar pressure surface So

are negligibly small and that Saturn is isolated and ro-

tating rapidly with a uniform angular velocity ẑΩS. The

above assumptions lead to the following governing equa-

tions for the fluid region Do of Saturn

0 = − 1
ρ(r)∇p(r) −∇Vg(r) −

Ω2
S

2 ∇|ẑ × r|2, (5)

p(r) = K(r)ρ(r)
1+ 1

n( r) , (6)

∇2Vg(r) = 4πGρ(r), (7)

where K(r) and n(r) mean that they are functions of

r in the fluid region Do, p(r) is the pressure and ρ(r)

is the density, and Vg(r) is the gravitational potential.

Equations (5)–(7) are solved subject to the two boundary

conditions at the 1-bar pressure surface So

[p]|r|=So
= 1 bar, (8)

G

[∫∫∫

Dc

ρc d3r′

|r − r′|

+

∫∫∫

Do

ρ (r′) d3r′

|r − r′|
+

Ω2
S

2
|ẑ × r|

2

]

|r|=So

= cons.,

(9)

where [F ]|r|=So
denotes the evaluation of a function F

at the 1-bar pressure surface So that is not only irregular

but also a priori unknown, Equation (9) requires the sur-

face So to be equipotential and
∫∫∫

D d3r′ represents the

volume integration over the domain D.

The governing Equations (5)–(7), subject to the hy-

drostatic equilibrium conditions (8)–(9), are solved using

a three-dimensional finite element method by making a

three-dimensional tetrahedralization of the irregular so-

lution domain that produces a finite element mesh with-

out pole or central numerical singularities (Kong et al.

2016). For the results reported in this paper, the irreg-

ular solution domain of Saturn is typically divided into

about 107 tetrahedral elements to ensure the accuracy of

the numerical solutions.
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Fig. 1 Sketch of the four-layer Saturnian model in a meridional plane: an ice-rock core, a metallic hydrogen-helium dynamo

region, an outer molecular insulating envelope and a thin metallic–molecular transition layer. Four geometrically irregular surfaces

characterize the model: the core-metallic interface Sc, the metallic-transition interface St, the transition-molecular interface Sm

and the outer 1-bar-pressure surface So.

Fig. 2 The Saturnian interior structure in the equatorial plane resulting from our exact model. In addition to the location of the three

interfaces Sc, St and Sm, it also gives an ice-rock core with the equatorial radius 0.2031 RS and density ρc = 10388.1 kg m−3

corresponding to 13.06 Earth masses.

3 RESULTS AND DISCUSSIONS

The values of mass MS, equatorial radius RS, polar ra-

dius Rp and angular velocity ΩS used in our Saturnian

model are listed in Table 1. With these four known pa-

rameters of Saturn, together with an initial guess for the

core properties, for the three polytropic laws, for the lo-

cation of the 1-bar-pressure surface So, and for the loca-

tion of the three interfaces Sc, St and Sm, Equations (5)–

(7) can be solved via an iterative scheme on a massively

parallel computer. The final hydrostatic equilibrium solu-

tion – which satisfies both Equations (5)–(7) and bound-

ary conditions (8)–(9) and is constrained by the three

gravitational coefficients, J2n, n = 1, 2, 3 – results in

the core density ρc, the shape Sc of the ice-rock core,

the location and shape of the interfaces Sc, St and Sm,
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the properties of the thin metallic–molecular transition

layer, the shape of the 1-bar pressure surface So and the

internal density and pressure distribution, ρ(r) and p(r)

respectively, in the fluid region Do.

The interior structure of Saturn resulting from our

self-consistent model is summarized in Figure 2. It is

found that the shape of the core-metallic interface Sc can

be accurately approximated by the oblate spheroid

x2 + y2

R2
c

+
z2

R2
c(1 − E2

c )
= 1,

where the eccentricity Ec = 0.2113 and the core equato-

rial radius Rc = 0.2031 RS. Our exact Saturnian model

yields the core density ρc = 10388.1 kgm−3 corre-

sponding to the core mass Mc = 13.06 Earth masses,

which is largely consistent with existing interior models

of Saturn (Stevenson 1982; Guillot 2005). Furthermore,

our model reveals that the 1-bar pressure surface So of

Saturn, when the effect of its zonal winds is neglected,

can be described by the following equation

ξ1-bar surface =2.076130× [1 + 4.956× 10−4P̃2(η)

+ 1.8678× 10−3P̃4(η)

− 1.372 × 10−4P̃6(η)

+ 1.18 × 10−5P̃8(η) + · · · ],
(10)

where η denotes the spheroidal radius in oblate

spheroidal coordinates (ξ, η, φ) defined by

x = 26 139
√

(1 + ξ2)(1 − η2) cosφ (km), (11)

y = 26 139
√

(1 + ξ2)(1 − η2) sin φ (km), (12)

z = 26 139ξη (km), (13)

with −1 ≤ η ≤ 1, 0 ≤ φ < 2π, and P̃l(η) denoting the

Legendre polynomials normalized by

∫ 1

−1

|P̃l(η)|2 dη = 1.

For instance, we have

P̃2(η) =

√
5

8
(3η2 − 1),

P̃4(η) =

√
9

128
(35η4 − 30η2 + 3).

Using Equation (10) together with Equations (11)–(13),

we obtain the equatorial radius at the 1-bar pressure level,

evaluated by letting η = 0, (RS)model = 60 268 km

while the polar radius, evaluated by letting η = 1, is

(Rp)model = 54 364 km, in agreement with the observed

values given in Table 1. It should be reiterated that our

model does not make the spheroidal-shape approxima-

tion and that the shape of the 1-bar pressure surface So

given in Equations (10) is non-spheroidal and irregular

(because the coefficients for P̃2n(η), n = 1, 2, 3, · · · are

non-zero). However, all the coefficients for P̃n(η) with

n ≥ 2 in the expression in Equation (10) are O(10−3) or

smaller. It follows that, although the shape of Saturn is

irregular, its deviation from a perfect oblate spheroid is

too small to be noticeable in any reasonable plots. This

small deviation is consistent with other rapidly rotating

giant planets (Kong et al. 2015).

Our Saturnian model also reveals that (i) the

metallic–molecular transition takes place at re =

0.6139 RS, where re denotes the radial distance in the

equatorial plane; (ii) the values of K and n change

slightly across the metallic–molecular transition layer:

while K1 = 240274.5 Pam6kg−2 and n1 = 1.0572

in the metallic region 0.2031RS < re < 0.6139 RS,

they increase to K2 = 240332.9 Pam6 kg−2 and n2 =

1.0673 in the molecular region where 0.6641RS <

re < RS, with its variation ∆K = 58.4 Pa m6 kg−2

and ∆n = 0.0101 across the transition layer whose

thickness is about 0.05 RS ≈ 3000 km (the variation of

K as a function of r in the equatorial plane is shown

in Fig. 3); (iii) the density at the bottom of the metal-

lic region is 2.5593 × 103 kg m−3, which decreases to

0.9303 × 103 kg m−3 at the surface St and then fur-

ther to 0.8016 × 103 kg m−3 at the surface Sm across

the transition layer; (iv) the density on the 1-bar pres-

sure level at the surface So is 0.63591 kgm−3; (v) the

Saturnian convective dynamo is likely to operate in the

metallic region approximately defined by the equatorial

radius 0.2 RS < re < 0.7 RS; and (vi) the total mass of

Saturn in our model can be computed according to the

formula

(MS)model =

∫∫∫

Dc

ρc d3r′

+

∫∫∫

Do

ρ (r′) d3r′,

(MS)model denotes Saturn’s mass enclosed by the 1-bar

pressure surface So, which gives (MS)model = 5.6836×

1026 kg, in agreement with the known mass of Saturn

listed in Table 1.

Figure 4 shows the density ρ (r) and pressure p (r)

as a function of r in the equatorial plane in the interior

of Saturn computed from our model. The small varia-

tions of K and n across the metallic–molecular regions
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Table 1 The Four Parameters of Saturn that are Regarded as Accurately
Determined by Existing Measurements

GMS 3.7931 × 1016 m3 s−2 (Williams 2016)

Equatorial Radius (RS) 60 268 km (Williams 2016)

Polar Radius (Rp) 54 364 km (Williams 2016)

ΩS 1.65434 × 10−4 s−1 (Helled et al. 2015)

Notes: GMS, equatorial radius RS, polar radius Rp and angular velocity ΩS.

0 0.2 0.4 0.6 0.8 1

240270

240283

240295

240308

240320

240333

Fig. 3 The value of K for the polytropic law in the Saturnian fluid region Do as a function of r in the equatorial plane, where the

thickness of the transition layer is about ∆r = 0.05 RS ≈ 3000 km.

shown in Figure 3 and the non-discontinuous profiles

of the density and pressure shown in Figure 4 indicate

that one simple polytropic EOS (Chandrasekhar 1933;

Hubbard 1999; Horedt 2004) can be employed to model,

to leading-order approximation, both the metallic and

molecular regions of Saturn.

Our model yields the three known gravitational co-

efficients J2, J4, J6 and predicts the three higher coef-

ficients J8, J10, J12 for Saturn in its hydrostatic state.

After determining the core density ρc in Dc, the shape of

the core-metallic interfaceSc, the shape of the 1-bar pres-

sure surface So and the density profile ρ(r) in the fluid

region Do, we can compute the external gravitational po-

tential Vg(r) according to

Vg(r) = −G

[∫∫∫

Dc

ρcd
3
r
′

|r − r
′|

+

∫∫∫

Do

ρ (r′) d3
r
′

|r − r
′|

]
,

where |r| ≥ RS, which is then further expanded in terms

of the zonal gravitational coefficients J2n

Vg(r) = −
GMS

r

[
1 −

∞∑

n=2

J2n

(
RS

r

)2n

P2n(cos θ)

]
,

r > RS,
(14)

where the coefficients J2n are computed as

Jn = −
(4n + 1)RS

2MS
×

∫ π

0

[∫∫∫

Dc

ρcd
3
r
′

|r − r
′|

+

∫∫∫

Do

ρ (r′) d3
r
′

|r − r
′|

]

|r|=RS

× sin θP2n(cos θ) dθ.

(15)

Values of the zonal gravitational coefficients Jn, up to

n = 12, computed from the exact solution through

Equations (15), are listed in the second column of

Table 2. It can be seen that the low-order gravitational

coefficients J2, J4 and J6 from our model agree with the

three known coefficients (the third column of Table 2) of

Saturn (Helled et al. 2015) within their error bars. Table 2

also provides the predicted values of the higher-order co-

efficients, J8, J10 and J12, based on our Saturnian model.

4 SUMMARY AND REMARKS

We have presented the first self-consistent, exact inte-

rior model of Saturn that consists of an ice-rock core,

a metallic region, an outer molecular envelope and a thin

transition layer between the metallic and molecular re-

gions. Constrained by the known mass, the known equa-

torial and polar radii, and the known low-order gravita-

tional coefficients, J2n, n = 1, 2, 3, of Saturn, the model

determines an ice-rock core with the equatorial radius
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0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

(a)

0 0.2 0.4 0.6 0.8 1

-4

-2

0

2

(b)

Fig. 4 The interior structure of Saturn resulting from the fully self-consistent model: (a) the density ρ as a function of r/RS in the

equatorial plane and (b) the pressure p as a function of r in the equatorial plane.

Table 2 The Lower-order Gravitational Zonal Coefficients

Exact model Observation (Helled et al. 2015)

J2 × 106 +16290.76 +16290.71 ± 0.27

J4 × 106 −935.67 −935.83 ± 2.77

J6 × 106 +83.22 +86.14 ± 9.64

J8 × 106
−9.40 –

J10 × 106 +1.23 –

J12 × 106
−0.18 –

Notes: J2, J4, J6 in the expansion in Eq. (14) obtained from our exact Saturnian model

compared with the observed values (Helled et al. 2015) and the predicted values of the

higher-order coefficients, J8, J10 and J12 based on our exact model.

0.203 RS corresponding to 13.06 Earth masses, produces

the hydrostatic shape of Saturn at the 1-bar pressure

given by expression Equation (10), predicts the values

of the higher-order gravitational coefficients J8, J10, J12

presented in Table 2, and suggests that the Saturnian dy-

namo operates in the metallic region approximately de-

fined by 0.2 RS < r < 0.7 RS. Note that the Saturnian

shape at the 1-bar pressure level given by Equation (10) is

geometrically irregular and determined self-consistently

and exactly by the required equilibrium conditions.

This paper is the first in a series on the gravitational

field, shape and zonal winds of Saturn. We have avoided

an important question in the present study: if the zonal

winds on Saturn are sufficiently deep and strong, the den-

sity anomaly in the deep interior of the planet induced by

the winds can slightly alter the zonal gravitational co-

efficients in Table 2, particularly the values of higher-

order coefficients such as J10 and J12 (see, for exam-

ple, Hubbard 1999; Kong et al. 2015). This is because

both the rotational distortion and the equatorially sym-

metric zonal winds can make contributions to the even

coefficients J2n. In the second paper of this series (Kong

et al. 2018), we will study how the structure and ampli-

tude of the equatorially symmetric fluid motion in the

deep interior of Saturn can affect its gravitational field

and we will adopt a self-consistent perturbation approach

(Zhang et al. 2017) in that the variation of the gravita-

tional field is caused solely by the effect of the equa-

torially symmetric zonal winds on the rotationally dis-

torted non-spheroidal Saturn. In other words, variations

in the high-order gravitational coefficients provide a way

of probing or constraining the internal structure of the

zonal winds on Saturn.

The irregular hydrostatic shape of the 1-bar pressure

surface So described by Equation (10) may be slightly

different from the actually measured shape of Saturn.

This is because the zonal winds with a typical speed

O(100)m s−1 on a giant planet, if they are sufficiently

deep, would alter the hydrostatic shape about O(10) km

(for example, Kong et al. 2012). This implies that some

uncertainties might exist in the size of the equatorial

radius RS adopted in our Saturnian model, but uncer-
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tainties in the polar radius Rp would be much smaller.

Finally, we note that possible tidal effects in connec-

tion with the moons of a giant planet (see, for example,

Ogilvie 2013; Chen 2003) are completely neglected in

the present model.
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