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Abstract The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible

way of estimating the depth is through measurement of the effect of the winds on the planet’s gravi-

tational field. We use a self-consistent perturbation approach to study how the equatorially symmetric

zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is

that the variation of its gravitational field solely caused by the winds can be isolated and identified

because the leading-order problem accounts exactly for rotational distortion, thereby determining the

irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are

maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal

structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the

observed cloud-level winds. We calculate both the variation ∆Jn, n = 2, 4, 6 . . . of the axisymmetric

gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coeffi-

cients ∆Jnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We

consider three different cases characterized by the penetration depth 0.36 RS, 0.2 RS and 0.1 RS, where

RS is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravita-

tional coefficient (J12 + ∆J12) is dominated, in all the three cases, by the effect of the zonal flow with

|∆J12/J12| > 100% and that the size of the non-axisymmetric coefficients ∆Jmn directly reflects the

depth and scale of the flow taking place in the Saturnian interior.
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1 INTRODUCTION

The generation and maintenance of Saturnian zonal

winds remains a major scientific puzzle. They may be

maintained by thermal convection, partly powered by

internal heat, taking place within the deep interior of

the planet (Busse 1976) or confined to a very thin

top layer of a stably stratified Saturnian atmosphere

(Ingersoll & Cuzzi 1969). If they are deep, the zonal

winds would generate an externally measurable gravi-

tational signature by inducing dynamic density anoma-

lies (see, for example, Hubbard 1999). It is anticipated

that the high-precision measurements carried out by the

Cassini Grand Finale, together with accurate theoretical

modeling, would resolve this long-term scientific puz-

zle. This study is concerned with the accurate modeling

of the three-dimensional gravitational perturbation pro-

duced by the equatorially symmetric fluid motion in the

interior of Saturn.

Spherical or spheroidal geometry, which is math-

ematically simple and computationally convenient, has

been used to model the variation ∆J2n, n = 1, 2, 3, . . .

of the even zonal gravitational coefficients J2n caused

by the effect of deep zonal winds in giant planets.
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Hubbard (1999) computed ∆J2n for a spherical Jupiter

in which the cloud-level, equatorially symmetric zonal

winds extend all the way on cylinders from the north-

ern to the southern hemisphere; Kaspi et al. (2010) cal-

culated ∆J2n for a spherical Jupiter using the thermal-

wind equation by assuming that the observed cloud-level

winds extend on cylinders but decay exponentially in the

radial direction; Liu et al. (2014) investigated, based on

the thermal wind equation using the anelastic approxi-

mation, the relationship between the gravitational sig-

nals and the depth of the wind penetration for a spher-

ical Saturn; Kong et al. (2013) computed the variation

∆J2n of the gravitational coefficients caused by the ef-

fect of zonal winds confined to cylinders inside an oblate

spheroidal Jupiter.

Neither spherical nor oblate spheroidal geometries

are adequate for interpreting the gravitational signals

of Saturn produced by its equatorially symmetric zonal

winds because of the irregular shape of the 1-bar pres-

sure level. Both the wind-induced density anomaly and

the rotational distortion contribute to the even zonal

gravitational coefficients. In the measured coefficient

(J2n + ∆J2n), J2n is caused by the rotational distor-

tion in equilibrium under the balance of self-gravity, in-

ternal pressure and rotational effects while the correc-

tion ∆J2n is produced by the axially symmetric, equa-

torially symmetric zonal flow. Identifying the correc-

tion ∆J2n, which is usually small, from the measured

value (J2n + ∆J2n) represents a mathematically chal-

lenging problem and the assumption of either spherical

or oblate spheroidal geometry used in the previous stud-

ies (see, for example, Hubbard 1999; Kong et al. 2013)

must be removed from the modeling (Kong et al. 2016).

The need for isolating a small correction ∆J2n from a

measured value (J2n + ∆J2n) leads to a self-consistent

perturbation approach (Zhang et al. 2017) in which the

leading-order solution accounts for the full effect of rota-

tional distortion and determines the internal density pro-

file ρ(r), where r is the position vector, the irregular

shape of a giant planet is described by So(r) and the

gravitational coefficients are J2n in hydrostatic equilib-

rium while the next-order solution provides the correc-

tion ∆J2n that is solely caused by the effect of the zonal

winds on the rotationally distorted planet. It is referred

to as a self-consistent perturbation approach because two

different problems resulting from the approach are math-

ematically and physically coupled and must be consid-

ered in a self-consistent way.

In the first paper of this series (Kong et al. 2018) on

the gravitational field, shape and zonal winds of Saturn,

we constructed a hydrostatic Saturnian model consisting

of an ice-rock core, a metallic region, an outer molecular

envelope and a thin transition layer between the metal-

lic and molecular regions. The model, constrained by the

known Saturnian gravitational field, produces an ice-rock

core with equatorial radius 0.203 RS, where RS is the

equatorial radius of Saturn at the 1-bar pressure level,

the core density ρc = 10388.1 kgm−3 corresponding

to 13.06 Earth masses, an analytical expression describ-

ing the Saturnian irregular shape So of the 1-bar pressure

level and the internal density profile ρ(r) of Saturn. The

model also predicts the values of the higher-order grav-

itational coefficients, J8, J10 and J12 and suggests that

Saturn’s convective dynamo operates in the metallic re-

gion approximately defined by 0.2 RS < re < 0.7 RS,

where re denotes the equatorial radial distance from the

center of figure. The hydrostatic Saturnian model pro-

vides the required framework so that the effect of the

equatorially symmetric zonal winds on its gravitational

field can be understood.

In this paper, we adopt the self-consistent perturba-

tion approach for the gravitational sounding of an equato-

rially symmetric fluid motion u(r) that may occur in the

molecular envelope of Saturn. The perturbation expands

the total pressure ptotal(r), the total density anomaly

ρtotal(r), the measured 1-bar pressure surface S and the

total gravitational potential Vtotal(r) in the form

ptotal(r) = p(r) + p′(r), (1)

ρtotal(r) = ρ(r) + ρ′(r), (2)

Vtotal(r) = Vg(r) + V ′(r), (3)

Smeasured(r) = So(r) + S′(r), (4)

where the leading-order solution (p, ρ, Vg,So), which is

discussed in Kong et al. (2018), represents the hydro-

static equilibrium state (i.e., when u(r) = 0 in the ro-

tating frame of reference) while (p′, ρ′, V ′,S′) denotes

the perturbation that arises from the effect of the fluid

motion u(r) and will be identified in this study.

An important question then is what is the structure

and amplitude of the equatorially symmetric fluid motion

u(r) in the interior of Saturn about which we know very

little. Although significant progress has been made in

modeling the zonal winds on giant planets driven by ther-

mal convection (see, for example, Busse 1976; Heimpel

et al. 2005; Jones & Kuzanyan 2009; Gastine & Wicht

2012), achieving the realistic physical parameters will

probably never be possible for Saturn and extrapolating

the solutions from a numerically accessible model over

many orders of magnitude is unreliable. We therefore

have to infer the key characteristics of u(r) from the ex-

isting observations together with our theoretical under-

standing of the problem. Because of the dynamical con-
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trol by rotational effects, the flow u(r) in the Saturnian

molecular envelope is nearly geostrophic, leading to an

axially symmetric, equatorially symmetric zonal flow on

cylinders parallel to the rotation axis. It follows that the

structure and amplitude of the deep zonal flow in the

molecular region can be uniquely determined by mak-

ing use of the structure and amplitude of the observed

cloud-level zonal winds. But the zonal flow must be sus-

tained via the axially non-symmetric fluid motion in the

form of columnar rolls which are also quasi-geostrophic

(see, for example, Busse 1976; Jones & Kuzanyan 2009).

Through the effects of rapid rotation and the planet’s cur-

vature, the rolls become spiralling and highly correlated

and, hence, are capable of generating a strong zonal flow

whose amplitude can be much larger than that of the rolls

(Zhang 1992). At present, we do not know the structure

and amplitude of the convective rolls in the Saturnian

interior. Consequently, a parameterized model has to be

adopted for the non-axisymmetric component of convec-

tion. If the axially non-symmetric gravitational signals

are detected by Cassini Grand Finale, the physical pa-

rameters of the rolls, such as the dominant azimuthal

wavenumber, can be estimated using our fully three-

dimensional model. This is the first time that a gravita-

tional inverse model for giant planets includes both an

axially symmetric and equatorially symmetric zonal flow

on cylinders and an axially non-symmetric and equatori-

ally symmetric flow in the form of columnar rolls.

In what follows we begin by presenting the model of

Saturn and the mathematical formulation in Section 2,

which is followed by discussion of the results in

Section 3 with a summary and some remarks given in

Section 4.

2 MODEL AND FORMULATION

Our Saturnian model assumes that (i) Saturn with mass

MS is isolated and rotating about the z-axis with the an-

gular velocity ΩS = 1.65434 × 10−4 s−1 (Helled et al.

2015); (ii) the equation of state of the gases in the molec-

ular envelope (assumed to be polytropic) is determined

by the leading-order hydrostatic problem (Kong et al.

2018); (iii) there exists the fluid motion u(r) relative to

the rotating frame of reference expressible in the form

u(r, θ, φ) = Uφ(r, θ)φ̂ + U(r, θ, φ),

where (r, θ, φ) are spherical polar coordinates with the

corresponding unit vectors (r̂, θ̂, φ̂) and θ = 0 is at the

axis of rotation, Uφ(r, θ)φ̂ denotes the axially symmet-

ric and equatorially symmetric zonal flow and U(r, θ, φ)

represents the velocity of columnar convective rolls; (iv)

the Rossby number of the fluid motion u(r) is small and

the Ekman number is also negligibly small; and (v) the

large-scale fluid motion u(r) is in a statistically steady

state. The assumption of the steady flow is based on the

following reasons: the profile of the observed Saturnian

zonal winds has largely remained unchanged over many

decades (Garcı́a-Melendo et al. 2011) and the numeri-

cal simulations of rotating convection (see, for exam-

ple, Jones & Kuzanyan 2009) suggest that the large-scale

fluid motion such as the mean zonal flow, sustained by

the spatially small-scale and temporally fluctuating flow,

is typically in a statistically steady state. A sketch of

the axially symmetric zonal flow in the molecular enve-

lope is shown in Figure 1(a) while a sketch of the non-

axisymmetric convective rolls is depicted in Figure 1(b).

Substitution of the expansion, defined in

Equations (1)–(4), into the governing equations in

the rotating frame of reference leads to two different but

mathematically coupled problems. The leading-order

problem for the fluid region Do of Saturn is governed by

the equations

0 = − 1
ρ(r)∇p(r) −∇Vg(r) −

Ω2
S

2 ∇|ẑ × r|2, (5)

p(r) = K(r)ρ(r)
1+ 1

n( r) , (6)

∇2Vg(r) = 4πGρ(r), (7)

where K(r) and n(r) mean that they are functions of r

in the fluid region, p(r) is the pressure, ρ(r) is the den-

sity and Vg(r) is the gravitational potential. Equations

(5)–(7) are solved subject to the two boundary conditions

at the 1-bar pressure surface So

[p]|r|=So
= 1 bar, (8)

G

[
∫∫∫

Dc

ρc d3r′

|r − r′|
+

∫∫∫

Do

ρ (r′) d3r′

|r − r′|

+
Ω2

S

2
|ẑ × r|

2

]

|r|=So

= constant,

(9)

where ρc is the density of the ice-rock core, Dc repre-

sents the domain of the core, [F ]|r|=So
denotes the eval-

uation of a function F at the 1-bar pressure surface So

and
∫∫∫

D d3r′ represents the volume integration over the

domain D. The results of the leading-order hydrostatic

solution, such as the shape So and the density ρ (r), are

discussed in Kong et al. (2018).

The next-order problem arising from the self-

consistent perturbation approach, which describes the

density anomaly ρ′(r) induced by the fluid motion u(r),
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(a) (b)

Fig. 1 (a) Sketch of the Saturnian model in a meridional plane: an ice-rock core, a metallic hydrogen-helium dynamo region,

an outer molecular insulating envelope and a thin metallic–molecular transition layer. The axially symmetric and equatorially

symmetric zonal flow is confined in the molecular envelope between the irregular 1-bar-pressure surface So and an irregular

constant density surface determined by the leading-order problem. (b) Sketch of the non-axisymmetric columnar rolls with the

azimuthal wavenumber m = 2 producing the non-axisymmetric gravitational signals.

is governed by the equations

2ΩSẑ ×
[

Uφ(r, θ)φ̂ + U(r)
]

= −K

(

1 +
1

n

)

×
[1 − n

n

(

ρ
(1−2n)

n ∇ρ
)

ρ′ + ρ
(1−n)

n ∇ρ′
]

− ∇V ′(r),

(10)

∇
2V ′(r) = 4πGρ′(r), (11)

∇ ·
{[

Uφ(r, θ)φ̂ + U(r)
}

ρ(r)
]

= 0, (12)

subject to the two boundary conditions

[ρ′(r)]|r|=So
= 0 and [ρ′(r)]|r|=Sb

= 0, (13)

where So denotes the irregular 1-bar pressure surface,

K = K2 = 246678.9 Pam6 kg−2, n = n2 = 1.0725

for the polytropic law in the molecular region and

ρ(r) is the hydrostatic density, all of which are deter-

mined by the leading-order solution; Sb represents an

irregular constant density surface between Sm and So

whose equatorial radius is RH . Since n is very close to

unity, it is expected that the term with the coefficient

(1 − n)/n in Equation (10) is insignificant. The fluid

motion [Uφ(r, θ)φ̂ + U(r, θ, φ)] is assumed to be con-

fined between So and Sb, and the location of the surface

Sb, characterized by the size of its equatorial radius RH ,

will be treated as the depth parameter.

The small-shape perturbation caused by the effect

of the zonal winds is neglected at this order and, con-

sequently, the true surface S = So + S′ under the in-

fluence of u(r) is unknown at this order of the anal-

ysis. This also implies that the total mass, the solution

-90 -60 -30 0 30 60 90

0

100
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300
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Fig. 2 The latitudinal profile of the equatorially symmetric

zonal winds at the Saturnian 1-bar pressure level (Garcı́a-

Melendo et al. 2011) used in our model.

of Equations (10)–(12) subject to Equation (13), is not

conserved. In contrast to the thermal-wind-balance ap-

proach, the boundary conditions from Equation (13) for

ρ′(r) are not only necessary but also play an important

role in determining the structure of the solution.

For a prescribed three-dimensional fluid motion

u(r) together with the solution of the leading-order

Equations (5)–(7), we solve Equations (10)–(12) sub-

ject to the conditions in Equations (13), using a three-

dimensional finite element method based on a three-

dimensional tetrahedralization of the irregular solution

domain (Kong et al. 2016), to determine the density

anomaly ρ′(r) and, hence, the variation of the Saturnian

gravitational field solely produced by the effect of the

prescribed flow u(r). For the results reported in this pa-

per, the irregular solution domain of Saturn is typically

divided into about 107 tetrahedral elements. Moreover,

we have also computed our numerical solutions at differ-
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ent levels of the resolution to ensure convergence of the

solutions.

3 RESULTS AND DISCUSSIONS

The gravitational potential perturbation V ′ in the exterior

of a rotationally distorted Saturn, if its interior flow u(r)

is equatorially symmetric, can be expanded in the form

V ′(r, θ, φ) = −
GMS

r

[

1 −
∞
∑

n=2

(

RS

r

)n

∆JnPn(cos θ)

−

∞
∑

n=2

n
∑

m=1

(

RS

r

)n

Pnm(cos θ)

× (Cnm cosmφ + Snm sin mφ)] ,
(14)

where MS is Saturn’s mass and GMS = 3.7931 ×

1016 m3 s−2 (Williams 2016), n takes even integers,

∆J2, ∆J4, ∆J6, . . . , are the variation of the axisym-

metric gravitational coefficients produced by the axially

symmetric zonal winds Uφ(r, θ) while (Cnm, Snm) are

the non-axisymmetric gravitational coefficients caused

by the convective rolls U(r, θ, φ). In Equation (14), the

associated Legendre polynomials are normalized as

∫ 1

−1

Pnm(µ)Pn′m(µ)dµ =
2(n + m)!

(2n + 1)(n − m)!
δn,n′ .

(15)

For convenience of discussion, we define

Jnm =
√

C2
nm + S2

nm

which measures the strength of the non-axisymmetric

gravitational field.

For the the axially symmetric zonal flow, we extend

the observed cloud-level zonal winds, shown in Figure 2,

on cylinders parallel to the rotation axis from the 1-bar

pressure level to the constant density surface Sb with

its equatorial radius RH . In this way, both the ampli-

tude and the structure of Uφ(r, θ) in Equation (10) are

uniquely determined. For the non-axisymmetric colum-

nar rolls, we take a parameterized convection model

U = U0

[

ŝ
f(s)

s
cos(mφ) − φ̂

1

m

∂f

∂s
sin(mφ)

]

, (16)

where U0 represents the typical speed of the columnar

convective rolls confined between the constant density

surface Sb and the 1-bar pressure surface So, m is the

azimuthal wavenumber of the rolls, s = (r sin θ)/RS,

f(s) = s3 sin(2πs) and ŝ denotes the unit vector per-

pendicular to the rotation axis. This parameterized non-

axisymmetric flow approximately satisfies Equation (12)

and mimics the dynamically possible structure of thermal

convection under the strong rotational influence (Busse

1976; Zhang & Schubert 2000; Jones & Kuzanyan 2009).

In this study, we take U0 = 10 m s−1 and m = 2 for the

purpose of illustration; the parameters of the convective

flow in our model can be readily changed if the high-

precision measurements by the Cassini Grand Finale sug-

gest a different structure.

We first discuss the effect of the axially symmet-

ric zonal flow on the Saturnian gravitational field. Since

the leading-order solution has already taken account of

the full effect of rotational distortion, the variation ∆Jn,

which is related to the solution ρ′(r) of Equations (10)–

(11), is solely caused by the effect of the zonal flow.

Consider the three different cases: (i) a very deep wind

profile with RH = 0.664 RS, (ii) an intermediate deep

profile with RH = 0.8 RS and (iii) a shallow profile

with RH = 0.90 RS. Whereas the surface Sb marked by

RH = 0.6641 RS corresponds to the metallic–molecular

interface Sm determined by the leading-order solution,

the other two cases are considered because the outer layer

of the molecular region may be stably stratified or be-

cause the zonal flow in the Saturnian interior may be

blocked by the effect of its magnetic field if its electrical

conductivity becomes sufficiently high (Liu et al. 2008).

The density anomaly ρ′(r) produced by a deep zonal

flow with RH = 0.664 RS is depicted in Figure 3,

showing that the maximum amplitude of the anomaly

is about 8 kg m−3 in the equatorial region and that the

density anomalies ρ′ are primarily negative. Modified

by the boundary conditions required on both the sur-

faces Sm and So, the distribution of density anomaly

ρ′(r) largely reflects the cylindrical structure of the zonal

winds. Figure 3 also shows that the density anomaly

ρ′(r) occurs mainly in the equatorial region, which is ex-

pected since the zonal winds in Figure 2 have the largest

amplitude there. It should be highlighted that the shapes

of Sm and So in Figure 3 are non-spheroidal and irregular

but their deviations from oblate spheroids are too small

to be noticeable in the figure. After obtaining the density

anomaly ρ′(r), we can then compute the variation ∆Jn

caused by the zonal winds via the following integration

∆Jn = −
(2n + 1)RS

2MS

×

∫ π

0

[
∫∫∫

Db

ρ′ (r
′) d3

r
′

|r − r
′|

]

|r|=RS

× Pn(cos θ) sin θ dθ,

(17)

where the domain Db represents the region of the fluid

motion. The result of this case, along with the other

two cases, is presented in Table 1. Comparison between

Table 1 and table 2 in Kong et al. (2018) reveals that,
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Table 1 Variation ∆Jn of the Axisymmetric Gravitational Coefficients Jn

RH 0.6641 RS 0.8 RS 0.9 RS

∆J2 × 106 −49.42 −35.40 −8.38

∆J4 × 106 23.26 17.59 4.17

∆J6 × 106 −11.12 −7.83 −1.68

∆J8 × 106 2.74 1.70 0.21

∆J10 × 106 −0.07 0.43 0.24

∆J12 × 106 −0.39 −0.69 −0.21

|∆J2,2| × 106 3.35 1.41 0.25

|∆J4,2| × 106 0.29 0.12 0.02

|∆J6,2| × 106 0.02 0.01 –

Notes: Jn, up to n = 12, caused by the axially symmetric zonal winds for the three

depth parameters RH = 0.6641 RS, 0.8 RS and 0.90 RS on the rotationally dis-

torted Saturn; the non-axisymmetric coefficients ∆Jmn are produced by convective

columnar rolls with azimuthal wavenumber m = 2.

Fig. 3 The density anomaly ρ′(r) in a meridional plane caused by the zonal flow confined between the molecular-metallic interface

Sm and the 1-bar pressure surface So with RH = 0.6641 RS.

(a) (b)

Fig. 4 The density anomaly ρ′(r) in a meridional plane caused by the zonal winds confined between the constant density surface

Sb and the 1-bar pressure surface So for two different cases: (a) RH = 0.8 RS and (b) RH = 0.9 RS.

while the effect of the zonal winds on the low-order co-

efficients is weak with |∆Jn/Jn| < O(1)% for n = 2, 4,

it becomes substantial for the higher-order zonal coef-

ficients. In particular, the coefficient at n = 12 with

|∆J12/J12| > 100% is dominated by the redistribution

of mass produced by the deep zonal winds.

The density anomalies ρ′(r) for the other two cases

RH = 0.80 RS and RH = 0.90 RS are presented in

Figure 4(a,b). Compared to the density anomaly with

RH = 0.664 RS, the amplitude of the density anomaly

ρ′(r) reduces to the maximum value of about 6 kg m−3

for the case RH = 0.80 RS and, then, further to 2 kg m−3

for the case RH = 0.90 RS, but the cylindrical structure
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still remains in the domain of the flow. Figure 4(a,b) also

shows that the solution ρ′(r) of Equations (10)–(11) is

significantly influenced by the location of the interface

Sb where the boundary conditions from Equation (13)

must be satisfied. Comparing Table 1 to Table 2 in Kong

et al. (2018) reveals again that the variation of ∆Jn for

n = 2, 4 in the cases RH = 0.80 RS and RH = 0.90 RS

is insignificantly small, but it becomes substantial at

n = 12 with |∆J12/J12| > 100%. This implies that

determining the depth of the Saturnian equatorially sym-

metric zonal flow via the axisymmetric gravitational field

requires highly accurate modeling.

We now discuss the effect of the non-axisymmetric

convective rolls on the Saturnian gravitational field.

Since the gravitational signature of the non-axisymmetric

flow is not directly affected by rotational distortion, the

size of the coefficients ∆Jmn offers a clear window for

measuring the depth of the Saturnian convection in the

molecular region. In other words, the non-axisymmetric

gravitational perturbation, in contrast to the axisymmet-

ric one, can be readily discerned from the gravitational

anomalies caused by both the rotational flattening and

the axially symmetric flow. Our fully three-dimensional

computation is for the case of a large horizontal scale of

the convective rolls marked by the azimuthal wavenum-

ber m = 2 with the typical speed U0 = 10 m s−1. The

total radial gravitational anomalies – which are produced

by both the axisymmetric zonal winds Uφ(r, θ) and the

prescribed convective rolls U(r, θ, φ) in Equation (10) –

on the spherical surface of the radius r = RS,

gr = r̂ · g′ = −

(

∂V ′

∂r

)

r=RS

,

in the exterior of Saturn are presented in Figure 5 for the

case with RH = 0.664 RS. The corresponding gravita-

tional coefficients are given in Table 1. It can be seen that

the non-axisymmetric gravitational anomalies are char-

acterized by the azimuthal wavenumber m = 2, largely

dominated by the two spherical harmonics, Y 2
2 and Y 2

4 ,

and have magnitude O(0.1) gal. We also compute the two

shallow cases with RH = 0.8 RS and RH = 0.9 RS us-

ing the same pattern of the rolls, the results of which

are given in Figure 6 and Table 1. As expected, the

gravitational anomalies are still characterized by the az-

imuthal wavenumber m = 2 and dominated by the two

spherical harmonics Y 2
2 and Y 2

4 , but the amplitude of

the gravitational anomalies reduces to O(0.01) gal for

RH = 0.9 RS. The most significant feature is that the

size of the non-axisymmetric gravitational coefficients

∆Jmn directly reflects the depth of the Saturnian thermal

convection while the scale of the gravitational anomalies

is directly associated with the dominant wavenumber of

the convective flow taking place in the interior of Saturn.

4 SUMMARY AND REMARKS

In this paper, we have employed a self-consistent per-

turbation approach to study the effect of the equatori-

ally symmetric zonal winds of Saturn on its gravitational

field. Since the leading-order problem accounts exactly

for rotational distortion, this approach allows us to iden-

tify the variation of the gravitational field solely caused

by the zonal winds. We have assumed that the fluid mo-

tion u(r) in the Saturnian interior consists of the two

major components: the axially symmetric and equato-

rially symmetric zonal flow which is uniquely deter-

mined by the observed cloud-level winds and the non-

axisymmetric columnar convective rolls which are pa-

rameterized in our model. We have calculated both the

variation ∆Jn, n = 2, 4, 6 . . . caused by the axisym-

metric zonal flow and the value of ∆Jnm produced

by the columnar rolls with m = 2. We have studied

three different cases with penetration depth parameters

RH = 0.644 RS, RH = 0.8 RS and RH = 0.9 RS.

We have revealed that the high-degree coefficient J12 is

always dominated by the effect of the zonal flow with

|∆J12/J12| > 100% and, more significantly, that the

size of ∆Jmn can directly reflect the depth and scale of

the non-axisymmetric convective flow.

This paper is the second in a series on the gravita-

tional field, shape and zonal winds of Saturn. The as-

sumption that the cloud-level zonal winds extend on the

cylinders into the interior of Saturn allows us to obtain

the exact solution of Equations (10)–(11) subject to the

physical boundary condition Equation (13) on the irreg-

ular surfaces Sb and So. In this approach, we have to ex-

clude the equatorially antisymmetric component of the

Saturnian gravitational field. Since the rotational distor-

tion does not contribute to the equatorially antisymmet-

ric gravitational field (the odd zonal gravitational coef-

ficients J2n+1), this component provides a direct win-

dow into the amplitude and structure of the internal flow.

Furthermore, the effect of non-spherical geometry So be-

comes less significant for the equatorially antisymmet-

ric component. In the third paper of this series, we will

present a gravitational model of Saturn that can be used

to interpret and understand its odd gravitational coeffi-

cients when they become available.

Our fully three-dimensional model discussed in this

paper offers a unique means of not only interpreting

the signature of the non-axisymmetric gravitational field

from the measurements of the Cassini Grand Finale or

some future Saturn orbiter but also understanding the
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Fig. 5 The radial non-axisymmetric gravitational anomalies gr = r̂ · g′ in the exterior of Saturn at the spherical surface r = RS,

using an equal-area (Hammer) projection, produced by the fluid motion Uφ(r, θ)φ̂ + U (r, θ, φ) confined between the molecular-

metallic interface Sm and the 1-bar pressure surface So.

(a) (b)

Fig. 6 The radial non-axisymmetric gravitational anomalies gr = r̂ · g′ in the exterior of Saturn at the outer spherical surface

r = RS, using an equal-area (Hammer) projection, produced by the fluid motion Uφ(r, θ)φ̂ + U (r, θ, φ) confined between the

molecular-metallic interface Sb and the 1-bar pressure surface So for two different locations of Sb: (a) RH = 0.8RS and (b)

RH = 0.9 RS.

physics and dynamics of the deep Saturnian convec-

tion. Of the two key physical parameters in our convec-

tion model, the typical amplitude U0 contains informa-

tion about the sizes of the supercritical Rayleigh number

and the Ekman number in the Saturnian interior while

the dominant azimuthal wavenumber m reveals a key

characteristic of the deep turbulent flow. Moreover, our

model, which can be readily extended to include a wide

range of the spectrum for various azimuthal wavenum-

bers, provides an effective way of probing the three-

dimensional dynamics of Saturn’s interior as an inverse

problem by comparing the computed external gravita-

tional field such as that shown in Figure 5 to the non-

axisymmetric high-precision gravitational measurements

of Saturn.
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