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Abstract We focus on a series of f(R) gravity theories in Palatini formalism to investigate the prob-

abilities of producing late-time acceleration for the flat Friedmann-Robertson-Walker (FRW) universe.

We apply a statefinder diagnostic to these cosmological models for chosen series of parameters to see

if they can be distinguished from one another. The diagnostic involves the statefinder pair {r, s}, where

r is derived from the scale factor a and its higher derivatives with respect to the cosmic time t, and s

is expressed by r and the deceleration parameter q. In conclusion, we find that although two types of

f(R) theories: (i) f(R) = R + αRm − βR−n and (ii) f(R) = R + α lnR − β can lead to late-time

acceleration, their evolutionary trajectories in the r − s and r − q planes reveal different evolutionary

properties, which certainly justify the merits of the statefinder diagnostic. Additionally, we utilize the

observational Hubble parameter data (OHD) to constrain these models of f(R) gravity. As a result,

except for m = n = 1/2 in case (i), α = 0 in case (i) and case (ii) allow the ΛCDM model to exist

in the 1σ confidence region. After applying the statefinder diagnostic to the best-fit models, we find

that all the best-fit models are capable of going through the deceleration/acceleration transition stage

with a late-time acceleration epoch, and all these models turn to the de Sitter point ({r, s} = {1, 0}) in

the future. Also, the evolutionary differences between these models are distinct, especially in the r − s

plane, which makes the statefinder diagnostic more reliable in discriminating cosmological models.
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1 INTRODUCTION

Observations of type Ia supernovae (SNeIa) (Perlmutter

et al. 1999; Riess et al. 1998) suggest that the universe

is currently at an accelerated expansion epoch that is at-

tributed to the dominant component of the universe, dark

energy, which not only has a large negative pressure, but

also does not cluster as ordinary matters do. In fact, there

is no justification for assuming that dark energy resem-

bles known forms of matter or energy, since it has not

been detected directly. Up until now, the physical origin

of dark energy as well as its nature remains enigmatic.

The simplest model of dark energy is the cosmolog-

ical constant Λ (Sahni & Starobinsky 2000; Copeland

et al. 2006), whose energy density remains constant with

time, ρΛ = Λ/8πG (natural units c = ~ = 1 are

used throughout the paper), and whose equation of state

(defined as the ratio of pressure to energy density) re-

mains w = 1 as the universe evolves. Unfortunately,

the model is burdened with the well known cosmologi-

cal constant problems, namely the fine-tuning problem:

why is the energy of the vacuum so much smaller than

we estimate it should be? It also faces the cosmic co-

incidence problem: why is the dark energy density ap-

proximately equal to the matter density today? These
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problems have led many researchers to try different ap-

proaches for the dark energy issue. Furthermore, recent

analysis of SNIa data indicates that time dependent dark

energy gives a better fit than the cosmological constant.

Instead of assuming the equation of state w is a con-

stant, some authors investigate the dynamical scenarios

of dark energy. The most popular model among them

is dubbed quintessence (Ratra & Peebles 1988; Peebles

& Ratra 1988; Ostriker & Steinhardt 1995), which in-

vokes an evolving scalar field φ with a self-interaction

potential V (φ) minimally coupled to gravity. Recently,

Zhao et al. (2017) found that the dynamical dark energy

model is preferred at a 3.5σ significance level based on

the latest observations. Moreover, other scalar-field dark

energy models have been studied, including phantom

(Caldwell et al. 2003; Singh et al. 2003), tachyon (Sen

2002; Padmanabhan 2002), quintom (Guo et al. 2005;

Feng et al. 2005) and ghost condensates (Arkani-Hamed

et al. 2004; Piazza & Tsujikawa 2004). Also, there are

other candidates, for example, Chaplygin gas which at-

tempts to unify dark energy and dark matter (Bento et al.

2002, 2004), braneworld models which interpret the ac-

celeration through the fact that general relativity (GR) is

formulated in five dimensions instead of the usual four

(Csáki et al. 2000), backreaction models that consider

dark energy as a backreaction effect of inhomogeneities

on the average expansion of the universe (Buchert 2000;

Räsänen 2004; Kolb et al. 2006) and so forth.

On the other hand, more and more researchers

have made a great deal of effort to consider modifying

Einstein’s GR in order to interpret accelerated expan-

sion of the universe without the existence of dark en-

ergy. As is well known, there are numerous ways to gen-

eralize Einstein’s theory, in which the most famous al-

ternative to GR is scalar-tensor theory (Brans & Dicke

1961; Wagoner 1970). There are still various propos-

als, for example, Dvali-Gabadadze-Porrati (DGP) gravity

(Dvali et al. 2000; Deffayet et al. 2002) and f(R) grav-

ity (Kerner 1982; Allemandi et al. 2004). The so-called

f(R) gravity is a straightforward generalization of the

Einstein-Hilbert action by including nonlinear terms in

the scalar curvature. It has been shown that some of these

additional terms can give accelerating expansion without

dark energy (Carroll et al. 2004).

Generally, in deriving the Einstein field equations

there are two different variational principles that one can

apply to the Einstein-Hilbert action, viz., the metric and

the Palatini approach. The choice of the variational prin-

ciple is usually referred to as a formalism, so one can use

the metric formalism and the Palatini formalism. In the

metric formalism, the connection is assumed to be the

Christoffel symbol defined in terms of the metric and the

action is only varied with respect to the metric. While in

the latter, the metric and the connection are both treated

as independent variables, and one varies the action with

respect to both of them. In fact, for an action which is

linear with Ricci scalar R, both approaches are equiva-

lent, and the theory reduces to GR. However, when the

action includes nonlinear functions of R, different field

equations are derived from the two methods.

It was pointed out by Dolgov and Kawasaki that the

fourth order equations in the metric formalism suffer a

serious instability problem (Dolgov & Kawasaki 2003;

Soussa & Woodard 2004; Woodard 2007), however, the

Palatini formalism provides second order field equa-

tions, which are free from the instability problem men-

tioned above (Meng & Wang 2003, 2004). Additionally,

for the metric approach, the models of type f(R) =

R − β/Rn are incompatible with solar system experi-

ments (Chiba 2003) and the fact that they have the cor-

rect Newtonian limit seemed to be a controversial issue

(Sotiriou 2006b,a). Another important point is that these

models cannot produce a standard matter-dominated era

followed by an accelerating expansion (Amendola et al.

2007a,b). However, for the Palatini approach the mod-

els satisfy the solar system tests but also have the cor-

rect Newtonian limit (Sotiriou 2006a). Furthermore, it

has been shown that the above type can produce the

sequence of radiation-dominated, matter-dominated and

late accelerating phases in Fay et al. (2007). Thus, as

already mentioned, the Palatini approach seems appeal-

ing though some issues are controversial, such as the

instability problems (Sotiriou 2006a; Cembranos 2006).

Anyhow, we concentrate on the Palatini formalism.

In addition, since more and more cosmological mod-

els have been proposed, the problem of discriminating

different models is emergent. In order to tackle this issue,

a sensitive and robust diagnosis for dark energy models

is required. It is well known that the equation of statew is

able to discriminate some of the dark energy models, for

example, the cosmological constant Λ with w = −1, the

quintessence with w > −1, the phantom with w < −1

and so on. However, for some geometrical models arising

from modifications to the gravitational part of Einstein’s

theory, the equation of state w no longer plays the essen-

tial role and its ambit becomes ambiguous. Therefore,
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a new diagnosis is requisite to distinguish all classes of

cosmological models. In order to achieve this goal, Sahni

et al. (2003) introduce the statefinder pair {r, s}, where

r is derived from the scale factor a and its higher deriva-

tives with respect to cosmic time t, and s is expressed

by r and the deceleration parameter q ≡ −aä/ȧ2. Thus,

the statefinder is a “geometrical” diagnostic in the sense

that it depends upon the scale factor and hence upon the

metric describing spacetime. Based on different cosmo-

logical models, distinctions of the evolutionary trajecto-

ries in the r − s plane are vivid, which means that the

statefinder diagnostic is possibly valid for discriminating

different cosmological models. In recent works (Alam

et al. 2003; Zhang 2005; Setare et al. 2007; Yi & Zhang

2007), the statefinder diagnostic has been successfully

demonstrated to be able to differentiate a series of cos-

mological models, including the cosmological constant,

quintessence, phantom, Chaplygin gas, holographic dark

energy, interacting dark energy and so forth.

In this paper, we focus on a flat Friedmann-

Robertson-Walker (FRW) universe of the f(R) theory in

Palatini formalism and consider a number of f(R) the-

ories recently proposed in the literature. In the mean-

time, we apply the statefinder diagnostic to these f(R)

theories. Two types of f(R) theories: (i) f(R) = R +

αRm − βR−n and (ii) f(R) = R + α lnR − β are

taken into account. Consequently, we find that the mod-

els in the Palatini f(R) gravity can be distinguished

from one another, as well as the ΛCDM model. In ad-

dition, we employ the observational Hubble parame-

ter data (OHD), which are obtained by the differen-

tial galactic age method and the radial Baryon Acoustic

Oscillation (BAO) method, to make a combinational con-

straint. Thereafter, with the best-fit results, we procure

the evolutionary trajectories through statefinder diagnos-

tic. Eventually, the results indicate that not only can they

demonstrate the possibilities of late-time acceleration,

but also they can demonstrate the limpid distinctions be-

tween models.

This paper is organized as follows: In Section 2, we

briefly review the f(R) gravity in Palatini formalism and

study the cosmological dynamical behavior of Palatini

f(R) theories. In Section 3, we apply the statefinder di-

agnostic to a series of f(R) gravity models. In Section 4,

we illustrate the results obtained from the observational

constraints and apply statefinder diagnosis to the best-

fits. Finally, the conclusions and discussions are pre-

sented in Section 5.

2 THE PALATINI F (R) GRAVITY AND ITS

COSMOLOGICAL DYNAMICS

2.1 A Brief Overview of f(R) Gravity in Palatini

Formalism

We firstly review the Palatini formalism from the gener-

alized Einstein-Hilbert action

S =
1

2κ

∫

d4x
√−gf(R) + Sm(gµν , ψ), (1)

where κ ≡ 8πG, G is the gravitational constant, g is

the determinant of the metric gµν (Greek indices such

as µ, ν run through 0...3 throughout the paper), f(R)

is the general function of the generalized Ricci scalar

R ≡ gµνRµν(Γλ
µν), and Sm is the matter action which

depends only upon the metric gµν and the matter fields

ψ and not upon the independent connection Γλ
µν that is

differentiated from the Levi-Civita connection {λ
µν}. It

should be noted that when f(R) = R, GR will come

about.

Varying the action with respect to the metric gµν and

the connection Γλ
µν respectively yields

f ′(R)Rµν − 1

2
f(R)gµν = κTµν , (2)

and

∇λ(
√−gf ′(R)gµν) = 0, (3)

where f ′(R) ≡ df/dR, ∇λ denotes the covariant deriva-

tive associated with the independent connection Γλ
µν and

Tµν is the energy-momentum tensor given by

Tµν =
−2√−g

δSm

δgµν
. (4)

If we consider a perfect fluid case, then T µν = (ρ +

p)uµuν + pgµν , where ρ, p and uµ denote the energy

density, pressure and four-velocity of the fluid, respec-

tively. Note that T ≡ gµνTµν = −ρ + 3p. Based on

Equation (3), we can define a metric conformal to gµν as

hµν ≡ f ′(R)gµν . (5)

Then, we can deduce the connection Γλ
µν in terms of the

conformal metric hµν

Γλ
µν =

1

2
hλσ(∂µhνσ + ∂νhµσ − ∂σhµν), (6)

or, equivalently, in regard to gµν

Γλ
µν =

1

2f ′(R)
gλσ[∂µ(f ′(R)gνσ) + ∂ν(f ′(R)gµσ)

− ∂σ(f ′(R)gµν)].
(7)
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The corresponding Ricci tensor under the conformal

transformation reads

Rµν = ∂λΓλ
µν − ∂νΓλ

µλ + Γλ
λσΓσ

µν − Γλ
µσΓσ

λν , (8)

which can be represented by the Ricci tensor Rµν(g) as-

sociated with gµν as

Rµν =Rµν(g) +
3

2(f ′(R))2
(∇µf

′(R))(∇νf
′(R))

− 1

f ′(R)
(∇µ∇ν +

1

2
gµν∇σ∇σ)f ′(R),

(9)

where ∇µ is the covariant derivative with respect to the

Levi-Civita connection {λ
µν} of the metric gµν .

2.2 FRW Cosmology of the Palatini f(R) Gravity

and Numerical Results

Since measurements of Cosmic Microwave Background

(CMB) suggest that our universe is spatially flat

(Halverson et al. 2002; Netterfield et al. 2002) at late

times, we start with a flat FRW universe with metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (10)

where a(t) and t are the scale factor and cosmic time,

respectively.

According to Equations (2) and (9), the modified

Friedmann equation can be derived as

(

H +
ḟ ′(R)

2f ′(R)

)2

=
κ(ρ+ 3p) + f(R)

6f ′(R)
, (11)

where H ≡ ȧ/a is the Hubble parameter, and the dot

denotes differentiation with respect to the cosmic time t.

In addition, taking the trace of Equation (2) gives

f ′(R)R − 2f(R) = κT. (12)

If we assume that the universe only contains dust-like

(pressureless) matter at late times, then T = −ρm, where

ρm represents the energy density of matter. Furthermore,

combining Equation (12) with the energy conservation

equation of matter ρ̇m + 3Hρm = 0, we can express Ṙ

as

Ṙ = −
3H
[

f ′(R)R − 2f(R)
]

f ′′(R)R − f ′(R)
, (13)

where f ′′(R) ≡ d2f/dR2. Substituting Equation (13)

into Equation (11), we can obtain

H2 =
1

6f ′

3f − f ′R
[

1 − 3f ′′(f ′R−2f)
2f ′(f ′′R−f ′)

]2 . (14)

Since the redshift z can be expressed through 1 + z =

a0/a and conventionally the present scale factor a0 = 1

is chosen (subscript 0 denotes the present time value

throughout the paper), we can get the expressions ρm =

ρm0(1 + z)3 and dz/dt = −H(1 + z). Therefore,

Equations (12) and (13) can be rewritten as

f ′(R)R − 2f(R) = −3H2
0Ωm0(1 + z)3, (15)

and
dR

dz
= −9H2

0Ωm0(1 + z)2

f ′′(R)R− f ′(R)
, (16)

where Ωm0 ≡ κρm0/3H
2
0 . As a result, Equation (14) can

also be expressed as

H2

H2
0

=
1

6f ′

3Ωm0(1 + z)3 + f/H2
0

[

1 +
9H2

0
Ωm0(1+z)3f ′′)

2f ′(f ′′R−f ′)

]2 . (17)

In order to study the cosmological evolution by using

Equations (15)–(17), it is prerequisite to obtain the ini-

tial conditions: (R0, H0,Ωm0). With Equations (15) and

(17), choosing units so that H0 = 1 (Amarzguioui et al.

2006), once the explicit expression of f(R) is given, one

can solve for R0 with fixed value of Ωm0. On the other

hand, in order to understand the cosmological evolution

behavior, it is useful to define the effective equation of

state

weff = −1 +
2

3
(1 + z)

H ′

H
, (18)

where H ′ ≡ dH/dz. Since the deceleration parameter q

is related as follows

q = −1 + (1 + z)
H ′

H
=

1

2
(1 + 3weff), (19)

one can certainly explore the cosmological dynamics

through the evolutions of weff with different models of

Palatini f(R) gravity.

2.2.1 f(R) theories with power-law terms

We consider the following general form for f(R)

f(R) = R+ αRm − βR−n, (20)

where m and n are real constants with the same sign.

Such theories have been investigated to explain the early

and late accelerated expansion of our universe (Sotiriou

2006b; Meng & Wang 2004). Note that not all combina-

tions of m and n are in agreement with a flat universe

with the early matter dominated era followed by an ac-

celerated expansion at late times. At the early times of

matter-dominated era, the universe is better described by
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GR in order to avoid confliction with early-time physics

such as Big Bang Nucleosynthesis (BBN) and CMB. It

implies that the modified Lagrangian should recover the

standard GR Lagrangian for large R, and hence it re-

quires m < 1 and n > −1. Then, we consider two spe-

cific types of theories in this regime.

(i) The α = 0 case In this case, the form of f(R) reads

f(R) = R− βR−n. (21)

Based on Equations (16)–(18), by adopting H0 = 1

and Ωm0 = 0.27, we can obtain the evolutions of the

scalar curvatureR and the effective equation of state weff

that are shown in Figure 1. Note that the special case

of (β, n) = (4.38, 0) corresponds to the ΛCDM model.

From Figure 1, one can easily see that for any choice of

n (n > −1), the curvature R and the effective equation

of state weff decrease with the evolution of the universe.

Moreover, the smaller n is, the faster R decreases, and

the larger the present values of weff are. Also, the expan-

sion of the universe can turn from a decelerated phase

into an accelerated phase, and the universe approaches

de Sitter phase in the future. Interestingly, one can see

from Figure 1 that there is an intermediate convergence

zone where the redshift is around 1.2, and the evolution-

ary trajectories are upsidedown through the convergence

zone. From the perspective of mathematics, the conver-

gence zone must be caused by the slope change of the

effective equation of state weff , since they all have the

same constraints but for different expressions of f(R).

From Equation (20), one can certainly see that the value

of f(R) is sensitive as the power n varies, including its

derivatives with respect to R. The variances embodied

in Figure 1 are clear: As the redshift grows, at first, the

slopes of the curves are slowly increased, and then they

become steady, and at last, the slopes slowly decrease to

zero in the future. Therefore, the different dropping rates

of weff lead to the convergence. Also, it is worth noticing

that in the n = 0.4 case, the slope changes from negative

to positive.

(ii) The m = n = −1/2 case

In this case, Equation (20) becomes

f(R) = R+ αR1/2 − βR−1/2. (22)

Figure 2 is plotted by going through the same proce-

dure as the above case. One can ascertain that the curva-

ture R and the effective equation of state weff decrease

with evolution for different choices of β. Furthermore,

the smaller β results in the faster decrease of R, and

larger weff at the present time. It is also obvious that the

universe evolves from deceleration to acceleration, and

enters de Sitter acceleration in the future.

2.2.2 f(R) theories with a logarithmic term

Finally we exploit f(R) theories of the type

f(R) = R+ α lnR− β, (23)

which have been studied in Nojiri & Odintsov (2004);

Meng & Wang (2004), and it has been claimed that

such theories have a well-defined Newtonian limit (Nojiri

& Odintsov 2004). Note that the asymptotic behavior

limR→∞f(R) → R is obtained for any choice of α and

β, and thus, the arbitrary α and β can satisfy the assump-

tion that the universe can be described by GR at the early

times. However, not all combinations of α and β can ex-

plain a late-time accelerated expansion of the universe.

Therefore, for the sake of compatibility with the observa-

tional constraints obtained in Section 4, we select a series

of values of β which can well represent the evolvement

of the universe from an early-time deceleration to a late-

time acceleration (see also Fig. 3).

Substituting Equation (23) into Equations (16)–(18),

with H0 = 1 and Ωm0 = 0.27, the evolvements of

the curvature R and the effective equation of state weff

with respect to the redshift z are illustrated in Figure 3.

Consequently,R and weff decrease with the evolution of

the universe for the set of β. Also, the larger β gets, the

slower the decrease of R and the smaller the weff at the

present time appear to be. Similarly to the results of the

above types of theories, the universe evolves from de-

celeration to acceleration, and gets close to a de Sitter

universe in the future.

3 STATEFINDER DIAGNOSTIC FOR THE

PALATINI F (R) GRAVITY

In this section, we pay attention to the statefinder diag-

nosis. As is well known, two famous geometrical vari-

ables characterizing the expansion history of the uni-

verse are the Hubble parameter H representing the ex-

pansion rate of the universe and the deceleration param-

eter q ≡ −aä/ȧ2 characterizing the rate of accelera-

tion/deceleration of the expanding universe. Obviously,

they only depend on the scale factor a and its first and

second derivatives in terms of t, i.e., ȧ and ä. However,
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Fig. 1 The evolutions of the scalar curvature R and the effective equation of state weff versus redshift z for f(R) = R − βR−n.

Different values of n are chosen, along with H0 = 1 and Ωm0 = 0.27.
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H0 = 1 and Ωm0 = 0.27.
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Fig. 3 Same as Fig. 1, except for theories of type f(R) = R + α ln R − β.
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with the increasing amount of cosmological models and

the remarkable increase in the accuracies of cosmo-

logical observational data, these two parameters are no

longer sensitive enough for distinguishing different mod-

els, which can be revealed from the fact that many cos-

mological models correspond to the same current value

of q. As a result, the so-called statefinder diagnosis was

introduced in order to discriminate more and more cos-

mological models involving dark energy. It can be con-

structed using both the second and third derivatives of the

scale factor a.

In addition to H and q, two new parameters are de-

fined as the statefinder pair {r, s}

r ≡
...
a

aH3
, s ≡ r − 1

3(q − 1/2)
. (24)

Since different cosmological models exhibit distinct evo-

lutionary trajectories in the r − s plane, the statefinder

diagnostic is probably a fine tool to distinguish cosmo-

logical models. The remarkable property is that {r, s} =

{1, 0} corresponds to the ΛCDM model. So, one can

clearly identify the “distance” from a given cosmological

model to the ΛCDM model in the r−s plane, such as the

quintessence, phantom, Chaplygin gas, holographic dark

energy and interacting dark energy models, which have

been studied in the literatures (Alam et al. 2003; Zhang

2005; Setare et al. 2007; Yi & Zhang 2007). In particular,

the current values of parameters s and r in these diagrams

can provide a useful way to measure the “distance” from

a given model to the ΛCDM model.

According to Equation (19), the statefinder pair

{r, s} can be rewritten as

r = 1 − 2(1 + z)
H ′

H
+ (1 + z)2

(

H ′2

H2
+
H ′′

H

)

, (25)

s =
−2(1 + z)H ′/H + (1 + z)2(H ′2/H2 +H ′′/H)

3[−3/2 + (1 + z)H ′/H ]
,

(26)

where H ′′ ≡ d2H/dz2.

In what follows, we apply the statefinder diagnostic

to the f(R) theories mentioned in Section 2. However,

due to the fact that a singularity comes when the denom-

inator of s tends to zero (i.e., q = 0.5 case), which can

be seen from Figure 5(b), the values of parameters we

deliberately select in such theories are not all the same as

those in the previous section. Comparing Figure 5 with

Figure 4(c), one can palpably find that not all combina-

tions of α and β are suitable for statefinder diagnosis.

Next, we will show that r − s planes display the distinct

evolutionary trajectories for these Palatini f(R) theories,

and hence one can discriminate various types of Palatini

f(R) theories from one another, not to mention other

dark energy models.

Table 1 The currently available OHD dataset. Method I is the

differential galactic age method, and II represents the radial

BAO method. H(z) is in units of kms−1 Mpc−1 here.

z H(z) Method Reference

0.0708 69.0± 19.68 I Zhang et al. (2014)

0.09 69.0± 12.0 I Jimenez et al. (2003)

0.12 68.6± 26.2 I Zhang et al. (2014)

0.17 83.0± 8.0 I Simon et al. (2005)

0.179 75.0± 4.0 I Moresco et al. (2012)

0.199 75.0± 5.0 I Moresco et al. (2012)

0.20 72.9± 29.6 I Zhang et al. (2014)

0.240 79.69 ± 2.65 II Gaztañaga et al. (2009)

0.27 77.0± 14.0 I Simon et al. (2005)

0.28 88.8± 36.6 I Zhang et al. (2014)

0.35 84.4± 7.0 II Xu et al. (2013)

0.352 83.0± 14.0 I Moresco et al. (2012)

0.3802 83.0± 13.5 I Moresco et al. (2016)

0.4 95± 17.0 I Simon et al. (2005)

0.4004 77.0± 10.2 I Moresco et al. (2016)

0.4247 87.1± 11.2 I Moresco et al. (2016)

0.43 86.45 ± 3.68 II Gaztañaga et al. (2009)

0.44 82.6± 7.8 II Blake et al. (2012)

0.4497 92.8± 12.9 I Moresco et al. (2016)

0.4783 80.9± 9.0 I Moresco et al. (2016)

0.48 97.0± 62.0 I Stern et al. (2010)

0.57 92.4± 4.5 II Samushia et al. (2013)

0.593 104.0 ± 13.0 I Moresco et al. (2012)

0.6 87.9± 6.1 II Blake et al. (2012)

0.68 92.0± 8.0 I Moresco et al. (2012)

0.73 97.3± 7.0 II Blake et al. (2012)

0.781 105.0 ± 12.0 I Moresco et al. (2012)

0.875 125.0 ± 17.0 I Moresco et al. (2012)

0.88 90.0± 40.0 I Stern et al. (2010)

0.9 117.0 ± 23.0 I Simon et al. (2005)

1.037 154.0 ± 20.0 I Moresco et al. (2012)

1.3 168.0 ± 17.0 I Simon et al. (2005)

1.363 160.0 ± 33.6 I Moresco (2015)

1.43 177.0 ± 18.0 I Simon et al. (2005)

1.53 140.0 ± 14.0 I Simon et al. (2005)

1.75 202.0 ± 40.0 I Simon et al. (2005)

1.965 186.5 ± 50.4 I Moresco (2015)

2.34 222.0 ± 7.0 II Delubac et al. (2015)

Figure 4 demonstrates the evolutions of r and s with

respect to redshift z for f(R) theories mentioned above.

It can be shown that different features are exhibited as

follows:

(1) For the model f(R) = R − βR−n (see also

Fig. 4(a)), the curves stay at one side of the ΛCDM
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line (r = 1 and s = 0). Specifically, for the n > 0

case, the evolutionary curves lie in the region r >

1, s < 0, and for the n < 0 case, inversely, they

remain in the region r < 1, s > 0. Moreover, the tra-

jectories of evolution are all first moving away from

the ΛCDM line and then towards it. This could ev-

idently be revealed from r − s planes as shown in

Figure 6(a). In addition, the larger the absolute val-

ues of n become, the further the traces of evolve-

ment move from the ΛCDM line. Eventually, they

both tend to evolve like a ΛCDM universe (de Sitter

point, i.e., {r, s} = {1, 0}, or {q, r} = {−1, 1}) in

the future.

(2) As for the theories of type f(R) = R + αR1/2 −
βR−1/2 in Figure 4(b), we can easily find that for

any choices of β, the evolutionary curves cross the

ΛCDM line sooner or later, and the larger β gets, the

bigger the fluctuations of r and s turn. Also, they all

will come to an end like the ΛCDM universe in the

future.

(3) The models of type f(R) = R+α lnR−β explored

in Figure 4 are all the cases for which α and β have

opposite sign (note that only for the β > 0 case),

and in comparison with Figure 5(a) where α, β > 0

holds, one can realize that evolutions of r depend on

the sign of α and β. In the former case, r lies in the

region r < 1 and also s > 0. It is worth mentioning

that the “distance” between the evolutionary trajec-

tories and the ΛCDM line grows smaller along with

larger values of β. In the latter case, inversely, r lies

in the region r > 1, and the larger β is, the farther

r moves away from the r = 1 line. However, both

cases turn towards the ΛCDM case in the future.

Anyhow, it is evidently seen from the above features

that the trajectories of evolutions vary from different

choices of parameters and from model to model. Finally,

r− s and r− q planes are plotted in Figure 6. Observing

the r − s plane is clearer than just looking at the sepa-

rate evolutions of r and s, especially when it comes to

comparing between cosmological models. After all, this

aspect is more palpable for r−s planes with distinct evo-

lutionary trajectories and explicit evolutionary directions

to tell the differences. r−s and r−q planes significantly

exhibit deviations between the Palatini f(R) theories,

and also show that the deceleration/acceleration transi-

tion occurs in these models. Therefore, the statefinder

diagnostic is a fair way to differentiate various cosmo-

logical models.

4 CONSTRAINTS WITH OHD

In order to determine if these f(R) models are compat-

ible with cosmological observations, here we intend to

constrain the parameters in the above types of f(R) mod-

els with OHD. The currently available OHD dataset is

listed in Table 1. With this dataset, we can adopt these

f(R) theories in Equation (17), and for the goodness of

fit we employ the standard χ2 minimization, defined by

χ2 =
∑

i

[Hth(zi|p) −Hobs(zi)]
2

σ2(zi)
, (27)

where Hth(zi|p) is the theoretical Hubble parameter at

redshift zi given by Equation (17), and p depends on the

f(R) models; Hobs(zi) are the OHD, and σ(zi) is the

uncertainty of each Hobs(zi). Note that the covariance

matrix of data is not necessarily diagonal, as discussed in

Yu et al. (2013), and if not, the case will become com-

plicated and should be treated by means of the method

mentioned by Yu et al. (2013). Here we assume that each

measurement in {Hobs(zi)} is independent.

In what follows we will proceed to constrain the

models studied in the previous section. When calculat-

ing χ2, we first exploit H0 = 1 in Equations (15)–(17),

and then multiply the resulting Hth(zi) by iterated val-

ues of H0. Subsequently, we marginalize the parameters

to plot contour figures. Meanwhile, with the best-fits of

each model, we apply the statefinder diagnostic to them.

4.1 Theories of the Type f(R) = R− βR−n

In this context, the set of parameters is selected with

p = (H0,Ωm0, n). Figure 7 shows the constraints in

the 1σ, 2σ and 3σ confidence regions, in which con-

tour plots showing two out of three parameters are pre-

sented by marginalizing the third parameter. The best-fit

values of p are H0 = 70 km s−1 Mpc−1, Ωm0 = 0.24,

and n = −0.11, along with the corresponding value of

β = 3.65. In the combined analysis of Amarzguioui

et al. (2006), the best-fit model is found to be β = 3.6

and n = −0.09, which is consistent with our best fits.

After marginalizing over H0, Ωm0 and n, the 1σ con-

straint values are (Ωm0 = 0.24+0.06
−0.13, n = −0.11+0.49

−0.58),

(H0 = 70+3.6
−4.5 km s−1 Mpc−1, n = −0.09+0.47

−0.60) and

(Ωm0 = 0.25+0.055
−0.084, H0 = 70+4.3

−3.7 km s−1 Mpc−1), re-

spectively. Note that the ΛCDM model lies in the 1σ
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Fig. 4 Evolutions of r(z) and s(z) for the theories of type f(R) = R − βR−n (a), f(R) = R + αR1/2 − βR−1/2 (b) and

f(R) = R + α lnR − β (c) with H0 = 1 and Ωm0 = 0.27.
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Fig. 5 Same as Fig. 4(c), but for different values of β. Note that the β = 6 and β = 8 cases indicate that at times of q around 0.5,

s tends to infinity as expected.

confidence level, which corresponds to Ωm0 = 0.27 and

n = 0, marked by a cross in Figure 7.

Since we have the best-fit model of this type, the

statefinder diagnostic can be exploited to study its real

evolutionary process. As shown in Figure 10, the evolu-

tionary trajectories are indeed compatible with the fea-

tures described in the previous section for the n < 0

case (see also Fig. 6(a)). Evidently, one can find the best-

fit model of this type is capable of producing late-time

acceleration of the universe and includes the decelera-

tion/acceleration transition stage.

4.2 Theories of the Type

f(R) = R+ αR1/2 − βR−1/2

In this circumstance, by choosing p = (H0,Ωm0, β),

we plot the contour figures with the same methods as

the previous model in Figure 8. The best-fits of p are

H0 = 70 km s−1 Mpc−1, Ωm0 = 0.18 and β = 2.1

associated with α = −1.53. By marginalizing over H0,

Ωm0 and β separately, we obtain the corresponding 1σ

constraints of (Ωm0 = 0.18+0.073
−0.039, β = 2.2+6.60

−2.72),

(H0 = 70+3.96
−4.34 km s−1 Mpc−1, β = 2.6+7.23

−3.12) and

(Ωm0 = 0.19+0.082
−0.045, H0 = 71+3.28

−4.64 km s−1 Mpc−1), re-

spectively. This shows an example where the two non-

linear terms of Equation (20) are comparable and neces-

sary to produce the acceleration at late times as Fay et al.

(2007) stated. However, our best fits vary from them in

the m = n = 1/2 case, which may be caused by the

different set of parameters being constrained.

In Figure 10, r − s and r − q planes indicate that

they fit the characteristics explored in Section 3, and the

trajectories of evolvement clearly differ from the other

two types of f(R) theories in Palatini formalism. Also,

the best-fit model of this type is able to evolve from de-

celerated expansion to the late-time acceleration of the

universe.

4.3 Theories of the Type f(R) = R+ α lnR− β

In this situation, we set p to be (H0,Ωm0, α). Same as

the above methods, the confidence regions are demon-

strated in Figure 9, where the best-fit constraints are

H0 = 70 km s−1 Mpc−1, Ωm0 = 0.24 and α = −0.48

coupled with β = 3.58. Consequently, they are not

compatible with the best-fit model of Fay et al. (2007)

which corresponds to α = 0.11 and β = 4.62, and

excludes the β = 0 case. Although our constraints in-

clude the β = 0 case (when α is around –2.3) in the

2σ region, it means that the assertion made by Fay et al.

(2007), that the lnR term alone cannot drive the late-

time acceleration without a cosmological constant, is

not tenable, let alone the fact that the ΛCDM model

(α = 0 and Ωm0 = 0.27, marked in Fig. 9) is well

contained in the 1σ region. The marginalized 1σ con-

straints are (Ωm0 = 0.24+0.076
−0.050, α = −0.48+2.67

−1.26),

(H0 = 70+3.7
−4.6 km s−1 Mpc−1, α = −0.3+2.80

−1.44) and

(Ωm0 = 0.25+0.082
−0.055, H0 = 71+4.0

−3.8 km s−1 Mpc−1)

As shown in Figure 10, as a common feature of

the type f(R) = R − βR−n and the type f(R) =
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Fig. 6 Statefinder diagnostic r−s and r−q planes for the theories of type f(R) = R−βR−n (a), f(R) = R+αR1/2−βR−1/2

(b) and f(R) = R + α ln R − β (c) with H0 = 1 and Ωm0 = 0.27.
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represent the best-fit values of H0 = 70 kms−1 Mpc−1, Ωm0 = 0.24 and n = −0.11. The cross mark represents the ΛCDM

model.
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Fig. 8 Same as Fig. 7, but for the theory f(R) = R + αR1/2 − βR−1/2. The dashed lines and dots show the best-fit values of

H0 = 70 kms−1 Mpc−1, Ωm0 = 0.18 and β = 2.1.

R + αR1/2 − βR−1/2 that we missed in Section 3, the

evolutionary trajectories of the best-fit models are almost

indistinguishable in the r − q plane, but still distinct in

the r − s plane. Therefore, this characteristic further fa-

vors the statefinder pair {r, s} in the direction of discrim-

inating different cosmological models. Also, the r − q

plane shows that the best-fit model of this type can ex-

plain the transition of phase from decelerated expansion

to the late-time acceleration of the universe.

5 CONCLUSIONS AND DISCUSSION

In previous sections, we have systematically studied the

cosmological dynamics of a series of types of f(R)

theories within the Palatini approach and applied the

statefinder diagnostic to these models, and then placed

observational constraints on the parameters of the mod-

els.

First, we find that different features of evolutionary

trails of the Ricci curvature R and the effective equation
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Fig. 10 Statefinder pairs r − s and r − q planes for the best-fit models of the Palatini f(R) theories of type f(R) = R − βR−n,

f(R) = R + αR1/2 − βR−1/2 and f(R) = R + α ln R − β.

of state weff with respect to redshift z are revealed. For

all the models of Palatini f(R) theory, the values of order

index n (n > −1) for R in Equation (21), the parameter

β in Equation (22) and the parameter β in Equation (23)

all have negative correlations with the decreased rate of

R, and positive correlations with the fluctuations of weff .

Second, since more and more theories have been

proposed to account for the late-time accelerated expan-

sion of the universe, the well-known parameters, such

as the Hubble parameter H , the deceleration parameter

q and equation of state w, are not enough to discrimi-

nate these models. In particular, for the case of modified

gravity theories such as string/M-theory, extended scalar-

tensor models and braneworld models of dark energy,

the equation of state w is not a fundamental physical en-

tity. The more general and sensitive diagnosis known as

statefinder diagnostic emerges as required. However, it

makes one wonder if this diagnosis can stand the trial at

all times. Therefore we employ it in the f(R) theories

of types described by Equations (21), (22) and (23), to

see if it can still hold well for the sake of discrimination.

Eventually, one can draw conclusions that the trajectories
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of evolutions vary from model to model and with a dif-

ferent set of values for the given parameters, and also the

r − s and r − q planes further exhibit clear differences

among the models. As a result, the f(R) theories with

chosen series of parameters not only display distinct tra-

jectories of evolvement, but also present evident deceler-

ation/acceleration transition along with late-time accel-

eration and tendency towards the ΛCDM model in the

future. Thus, the statefinder diagnostic holds for this lit-

erature as an efficient way to distinguish between cosmo-

logical models. We believe that further explorations into

its validity will be made in future researches for more and

more cosmological models, and even if it somewhat fails,

more advanced diagnosis would be proposed. In some

sense, now that ȧ, ä and
...
a are involved, the fourth and

even fifth order derivatives of the scale factor a are more

probable to be included to enhance the accuracy of the

diagnostic.

Third, we exploit OHD to obtain observational con-

straints on the models in Equations (21), (22) and (23).

On one hand, the best-fits of Equation (21) are com-

patible with the combined constraints of Amarzguioui

et al. (2006), but not consistent with the constraints of

Fay et al. (2007). Also, the goodness of fit is sepa-

rated from Fay et al. (2007) for both models described

by Equations (22) and (23). On the other hand, for the

first model in Equation (21), the ΛCDM model lies in

the 1σ confidence region, as well as the type given by

Equation (23). The second model, Equation (22), shows

an example where the two nonlinear terms of (20) are

comparable and necessary to produce the acceleration at

late times. As for the third model in Equation (23), the

constraints include the β = 0 case in the 2σ confidence

region, which means that the lnR term alone can possi-

bly drive the late-time acceleration without a cosmologi-

cal constant.

Ultimately, we employ the statefinder diagnostic in

the three best-fit models. As a consequence, for one

thing, we find that the evolutionary trajectories have the

same properties as described in Section 3. For another

thing, it is worth noticing the common features between

best-fit models of Equations (22) and (23). On the r − q

plane, one can almost not discriminate their trails, but

considering the r − s plane as a complement, obviously,

the differences between them are certain. This further ad-

mits the merits of the statefinder pair {r, s}. In addition,

all the best-fit models of the Palatini f(R) theory have

the same properties as follows: (i) They both carry out an

earlier-time deceleration and late-time acceleration phase

in the matter-dominated universe; (ii) They both tend to

turn into ΛCDM cosmology in the future. Notice that

in the paper we only consider the flat late-time matter-

dominated FRW universe, which is perfectly suitable for

OHD for the low redshift range of 0.0708 < z < 2.34.
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Appendix A: RELEVANT DERIVATIVES

In what follows, we give some derivatives in terms of the

generalized Ricci curvature R and the redshift z, which

can facilitate plotting the statefinder diagnostic.

According to Equation (15), we define parameter A

as follows

A ≡
[

1 − 3f ′′(f ′R− 2f)

2f ′(f ′′r − f ′)

]2

=

[

1 +
9f ′′Ωm0H

2
0 (1 + z)3

2f ′(f ′′r − f ′)

]2

,

(A.1)

and then the Hubble parameter H becomes

H =

√

3f − f ′R

6f ′A
=

√

3Ωm0H2
0 (1 + z)3 + f

6f ′A
.

(A.2)

The first derivative of A in terms of R reads

A′ ≡ dA

dR
= − 3

√
A

{

f ′R− 2f

f ′′R− f ′

[f ′′′

f ′
− f ′′2

f ′2

− f ′′f ′′′R

f ′(f ′′R− f ′)

]

+
f ′′

f ′

}

.

(A.3)

The second derivative of A is written as

A
′′ ≡d2A

dR2
=

A′2

2A
− 3

√
A
{(

f ′′′′

f ′
− f ′R − 2f

f ′′R − f ′

3f ′′f ′′′

f ′2

+
2f ′′3

f ′3

)

+ 2
( f ′′′

f ′
− f ′′2

f ′2

)[

1 − f ′′′R(f ′R − 2f)

(f ′′R − f ′)2

]

+
f ′′

f ′(f ′′R − f ′)

[2f ′′′2R2(f ′R − 2f)

(f ′′R − f ′)2

− (f ′′′ + f ′′′′R)(f ′R − 2f)

f ′′R − f ′

]

− f
′′′

R
}

.

(A.4)
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The first derivative of R with respect to redshift z is

shown in Equation (16), and the first derivative of H in

terms of R is given as

dH

dR
=

1

2HA

[1

3
+
A′

2A

(R

3
− f

f ′

)

− ff ′′

2f ′2

]

. (A.5)

Thus H ′ relates to dH/dR as follows

H ′ =
dH

dR

dR

dz
= −dH

dR

9Ωm0H
2
0 (1 + z)2

f ′′R − f ′
. (A.6)

The second derivative of H with respect to R is ex-

pressed as

d2H

dR2
= − (dH/dR)2

H
+

1

2HA

{

A′

A

[A′

A

( f

f ′
− R

3

)

+
ff ′′

f ′2
− 2

3

]

− 1

2

[f ′′

f ′
+
f

f ′

+
f

f ′

(A′′

A
+
f ′′′

f ′

)]

+
ff ′′2

f ′3
+
A′′R

6A

}

,

(A.7)

which corresponds to H ′′ as follows

H ′′ =
dH

dR

d2R

dz2
+
d2H

dR2

(

dR

dz

)2

, (A.8)

where the second derivative of R relating to z is

d2R

dz2
=
dR

dz

(

2

1 + z
− f ′′′R

f ′′R− f ′

dR

dz

)

. (A.9)
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