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Abstract In this work, we study a direction dependent power spectrum in anisotropic Finsler space-

time. We use this direction dependent power spectrum to address the low-/ power observed in WMAP
and PLANCK data. The angular power spectrum of the temperature fluctuations has a lower amplitude
in comparison to the ACDM model in the multipole range [ = 2 — 40. Our theoretical model gives
a correction to the isotropic angular power spectrum C{/ 7 due to the breaking of rotational invariance
of the primordial power spectrum. We estimate best-fit model parameters along with the six ACDM

cosmological parameters using the PLANCK likelihood code in CosmoMC software. We find that this

modified angular power spectrum fits the CMB temperature data in the multipole range [ = 2 — 10 to a

good extent but fails for the whole multipole range [ = 2 — 40.
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1 INTRODUCTION

The standard Lambda cold dark matter (ACDM) cos-
mological model predicted by the inflationary scenario
in the very early Universe is impressively successful in
explaining the observed Cosmic Microwave Background
(CMB) data. However, a set of CMB observations which
is not statistically consistent with the ACDM model
has been observed in both WMAP and PLANCK CMB
data. These observations include alignment of CMB
quadrupole and octopole (de Oliveira-Costa et al. 2004;
Copi et al. 2004; Ralston & Jain 2004; Land & Magueijo
2005; Abramo et al. 2006b,a; Copi et al. 2015b), lack
of power at large scale up to | < 40 (Jing & Fang
1994; Bennett et al. 2011; Planck Collaboration et al.
2014a; Igbal et al. 2015), the lack of large angular cor-
relations on angular scales larger than 60° (Spergel et al.
2003; Copi et al. 2009, 2015a) and hemispherical power
asymmetry (Eriksen et al. 2004, 2007; Erickcek et al.
2008b,a; Hansen et al. 2009; Hanson & Lewis 2009;

Groeneboom et al. 2010; Hoftuft et al. 2009; Planck
Collaboration et al. 2016b; Rath & Jain 2013; Rath et al.
2015; Jain & Rath 2015). The CMB observations also
suggest parity asymmetry (Kim & Naselsky 2010a,b;
Gruppuso et al. 2011; Kim & Naselsky 2011; Aluri &
Jain 2012; Ben-David et al. 2012; Zhao 2014; Shiraishi
etal. 2015; Aluri et al. 2017) and a cold spot in the south-
ern hemisphere (Cruz et al. 2005, 2006, 2008; Vielva
2010; Lim & Simon 2012). The significance of these
observations has motivated many theorists to study dif-
ferent theoretical models. Hence there exists a number
of theoretical models based on anisotropic space-times
(Berera et al. 2004; Kahniashvili et al. 2008; Ackerman
et al. 2007; Chang & Wang 2013) and an inhomoge-
neous Universe (Moffat 2005). The theoretical models
violating rotational invariance lead to a direction depen-
dency in the primordial power spectrum (Ackerman et al.
2007; Goldwirth & Piran 1990; Emir Giimriikciioglu
et al. 2007; Pontzen & Challinor 2007; Pereira et al.
2007; Pullen & Kamionkowski 2007; Campanelli 2009;
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Donoghue et al. 2009; Watanabe et al. 2009; Chang &
Wang 2013).

The primordial power spectrum P(k), defined as the
two-point correlation function of the primordial density
perturbation (k), can be written as

(0(k)o* (k")) = (2m)*6°(k — K')P(k). (1)

The Dirac delta function in Equation (1) ensures that
the modes with different wave numbers are not coupled
with each other, which is the consequence of transla-
tional invariance. In the standard ACDM model which
refers to the homogeneous and isotropic Friedmann-
Robertson-Walker (FRW) metric, fluctuations are statis-
tically isotropic and the primordial power spectrum P (k)
depends only on the magnitude of the wave vector k.
Hence the primordial power spectrum is rotationally in-
variant and one can write the primordial power spectrum

P(k) as
i ns—1
Pk) = A, <k—> , )

where n; is the spectral index, A; is the spectral ampli-
tude and k. is the scalar pivot. In this case, the spherical
harmonic coefficient a] = of the temperature fluctuation
obeys statistical isotropy and hence the two-point corre-
lation of ] can be written as

<aT alj;;l/> = ClTTéll/(Smm/, (3)

lm

where C'7" is the angular power spectrum encoding all
the information about CMB temperature fluctuations.
But in case of an anisotropic space-time which
breaks rotational invariance of the power spectrum, the
spherical harmonic coefficient a],, no longer follows sta-
tistical isotropy and the two-point correlation function of
aﬁn gives rise to off-diagonal correlation between multi-
pole moments. The off-diagonal correlations encode all
the crucial information regarding the anisotropic model.
Hence one can write
<aT alT,,*n,> =cir “)

lm wmm'-

In WMAP and PLANCK data, it has been observed
that the temperature angular power spectrum, C/'7, at
low-l (I < 40) has a lower amplitude than the ACDM
model (Bennett et al. 2011; Planck Collaboration et al.
2014b,a, 2016a). In Hazra et al. (2014), the authors
also studied consistency of the ACDM model with the
PLANCK data and claimed that the data have a lack
of power at both high and low ! multipoles. This issue
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has been studied extensively by many theorists in the in-
flationary framework (Contaldi et al. 2003; Boyanovsky
et al. 2006; Cicoli et al. 2014; Das & Souradeep 2014). In
this paper, we try to relate the direction dependent power
spectrum with the lack of power at large scale and find
the best-fit model parameters.

The paper is organized as follows. In Section 2,
we review briefly Finsler space-time and a direction de-
pendent power spectrum in this space-time. Then, in
Section 3, we implement this power spectrum to study
the lack of power at large scale. To study its effect on
the angular power spectrum C/7', we perform Markov
Chain Monte Carlo (MCMC) analysis using PLANCK
data. In Section 4, we present results of the MCMC anal-
ysis. In Section 5, we summarize our work.

2 ANISOTROPIC MODEL

Here we briefly review an anisotropic space-time in
the framework of Finsler geometry (Chang & Li 2009;
Chang et al. 2013; Chang & Wang 2013; Li et al.
2015b). Chang & Wang (2013); Li et al. (2015b) stud-
ied anisotropic inflation taking Finslerian background
spacetime. Finsler spacetime has fewer symmetries than
Riemann symmetry and hence is a suitable candidate to
study the anisotropy observations. The counterparts of
special relativity (Gibbons et al. 2007; Chang & Li 2008;
Chang & Wang 2012), commonly known as very spe-
cial relativity (Coleman & Glashow 1997, 1999; Cohen
& Glashow 2006), have connections with Finsler geome-
try (Bao et al. 2012), which is generalized from Riemann
geometry by removing the quadratic restriction. In or-
der to investigate these counterparts, one should study
the inertial frames and symmetry in Finsler spacetime.
The symmetry of spacetime is described by investigating
the Killing vectors (Li & Chang 2012). Finsler geometry
is defined on the tangent bundle with proper length, s, as

b
SZ/ F(xz,y)ds, (5)

where x and y = dx/ds are the position and velocity re-
spectively. The integrand F'(z, y), which is known as the
Finsler structure, is the basis of Finsler geometry. This is
a smooth and positive function on the tangent bundle of
a manifold M. For any A > 0, Finsler structure F obeys

F(z,\y) = \F(z,y). (6)
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The Finsler metric is given by the second derivative of
F?2 with respect to velocity y as

0 0 (1,
Gor = 5 T (2F) : @)

where the spatial indices of ;2 and v run from 1 to 3 and
the temporal index is 0. A Finsler metric is said to be
locally Minkowskian if at every point there exists a lo-
cal coordinate system in which the Finsler structure F
is independent of the position z, i.e, FF = F(y). This

is known as flat Finsler space-time. Flat Finsler space-

time can be used to test Lorentz invariance through the

modified dispersion relation. The geodesic equations in

Finsler space-time can be given by the first order varia-
tion of Finslerian length as (Li & Lin 2017)

>zt

dr?

where the geodesic spray coefficient G* is defined as

1, [ O°F? OF?

o= Zg# ((’“)x’\(’“)y”y B 6$”> ' ©)

The coefficient G* vanishes in the local Minkowski

+2GH =0, ®)

space.

The observed CMB anomalies may be related to a
special case of Finsler space-time known as Randers-
Finsler space-time. Randers space (Randers 1941) in-
volves a vector field which may influence the anisotropic
evolution of the early Universe. The structure is given by

F? = yly' —d*(t)F3, . (10)
Here F'3, is the structure of Randers space, and

Fio(z,y) = a(z,y) + Blz,y), (11)

where a(z,y) = +/au.(z)y*y” is a Riemann struc-
ture with metric @, and B(z,y) = b,(x)y" is a 1-
form. This vector induces the anisotropic properties in
the Randers space. Here, a,, can be taken as the flat
FRW metric, and lN)“ has only the temporal component,
ie., b, = (B(2),0,0,0), where B(z) depends on the
third spatial coordinate z. The Finsler metric will be re-
duced to the FRW metric if B(z) — 0. The 1-form
B(x,y) is relevant to a vector field, which will give a
privileged axis in the space-time.

To investigate the Killing vector, one should discuss
the isometric transformation under an infinitesimal coor-
dinate transformation. The isometric transformations for
x and y are defined by

Th = ot 4 eVH (12)
oVH
5y (13)

y' +e

17#
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In the first order of ¢, the Finsler structure is
_ _ oF oVHF OF
5o — w v 2
F@.g)=Floy) + Vo mt e’ g0 ggn - (19

The Finsler structure is called isometric if and only if

F(z,y) = F(x,y). Hence one can obtain the Killing
equation in Finsler space as

o
Ky(F) = V“% +y”%¥y%=o. (15)
Using Equation (11), one can see that the number of in-
dependent Killing vectors in Randers-Finsler space-time
is less than that in Riemannian space-time.

The speed of light is direction dependent in Finsler

space-time. Along the radial direction, it can be derived
as (Li & Chang 2010, 2014; Li et al. 2015a)
B 1

14 Bcosh’
where 6 is the angle along the z-axis. Hence the redshift
in Finsler space-time is

(16)

Cr

1 + Bcost

a

1+2z= A7)

The variation in speed of light from Equation (16) yields
a variation of the fine-structure constant, which is a dipo-
lar distribution. This dipolar distribution of the fine struc-
ture constant agrees with observations of quasar absorp-
tion spectra (Webb et al. 2011; King et al. 2012; Chang
etal. 2012). Using Equation (17), the luminosity distance
in a Finslerian Universe is stated as
142
0

dr, =1+ 2)r=

z dz
/0 VS Qmo(1+ 2)3(1 = 3Bcosf) + 1 — Qo

where the radial distance r = /22 + y2 + 22.

In the standard cosmological model, the power spec-
trum is derived in isotropic space-time. However, if there
exists a privileged direction in space-time, the early evo-
lution of the Universe will have different behaviors.

, (18)

This anisotropic space-time at the early stage of infla-
tion breaks the rotational invariance of the primordial
power spectrum and leads to a direction dependent power
spectrum. Taking Randers space-time with a weak vector
field, i.e., |l~7u| < 1, as the background space-time of in-
flation and solving the equation of motion of the inflaton
field, one can obtain a direction dependent power spec-
trum of the form

P/(k) = Pro() (HiA(k) (k) 480 (a)" ).
(19)
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where P, (k) denotes the isotropic power spectrum, and
A(k) and B(k) are some arbitrary functions of wave
number k. The functions A(k) and B(k) encode the
amplitude of dipolar and quadrupolar modulation to the
isotropic power spectrum respectively. We restrict our-
selves to the second order correction of the isotropic pri-
mordial power spectrum as the next higher order terms
in (k - 7) will be suppressed by the magnitude of the
small vector. The breaking of rotational invariance of the
primordial power spectrum leads to non-vanishing corre-
lations between different multipole moments that would
normally vanish. The same type of direction dependent
power spectrum in the leading order of (l% - 1) was ob-
tained in Rath et al. (2015); Jain & Rath (2015); Kothari
et al. (2016); Ghosh et al. (2016); Zibin & Contreras
(2017); Chang & Wang (2013); Li et al. (2015b) to ad-
dress the hemispherical power asymmetry successfully.
Rath et al. (2015); Jain & Rath (2015); Kothari et al.
(2016); Ghosh et al. (2016) constrained the amplitude in
the multipole range [ = 2 — 64 with a 30 confidence level
using PLANCK data. The amplitude for the quadrupo-
lar modulation B(k) has been constrained by Kim &
Komatsu (2013); Planck Collaboration et al. (2016¢) and
they found it to be an order of 10~2. Here we do not give
any remark on the quadrupolar modulation constraint and
focus only on the correction to the isotropic power spec-
trum due to the quadrupolar modulation in the power
spectrum.

3 APPLICATION TO CMB DATA

The temperature fluctuation in terms of primordial den-
sity fluctuations §(k) can be written as

7 0= [ PR T ot T (),

(20)
where P, and A/ (k) are the Legendre polynomial and
the transfer function of order [ respectively. The trans-
fer function helps in understanding the change in ampli-
tude of the perturbation from an initial time to the current
time. Now using Equation (20) one can write the spheri-
cal harmonic coefficients a/, as

Gy, = / Yy, (W)AT (1), @1
and the two-point correlation function of alj;n as

<a,iz;nag;:n’> = <ag;71a?:;1’>iso + <a,iz;71a,l1:;kn’>aniso ’ (22)
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where the first term gives the isotropic angular power
spectrum Cf'T

ot = / k2 dkPeo (k) (Al (K)?,  (23)
0

and the second term contains all the anisotropic terms.

Following Equation (4), one can write the anisotropic

term as

OTT

Wmm! — <alma/?/m/>dm + <alma;m,>qm y (24)

where the dipole modulation term is given as

o0
@) = (0 e [ R
0

Piso (k) A(K)AT (k)AL (k) (25)

and the quadrupolar modulation term is given as

<alma7’m’>qm = (_i)l_l/glq;zl/m/‘/o kzdk
Pio(k)B(R)A] (k)AL (k). (26)

Following Ackerman et al. (2007); Rath et al. (2013), we
use the spherical components of the unit vector n as

Ty — 1My
ny = — T )
<nm+iny)
n. = (—— ——=1»,
V2

ng = n, . 27

The geometrical factor £

e Of the dipolar modulation

term is defined as
dm _ dm—+ dm— dm0
glmﬂlm’ - n"'glm;l’m’ +n_§lm;l/m/+n0§lm;l’m’ , (28)

which gives the correlation between multipole moments
that differ by Al = 1 and it has no effect on the isotropic
angular power spectrum ClT T Hence by making the pre-
ferred axis the z-axis, the coefficients of §ld$l,m, can be
given as

amo  _ s (l—m+1)(l+m—|—1)5
tmilim! = Sml,m Qi+ 12 +3) O

_|_

(1 —m)(l+m) . H] 29)

@20+ 1)2 1)

This term successfully explains the observed hemispher-
ical power asymmetry (Rath et al. 2015; Kothari et al.
2016; Ghosh et al. 2016; Chang & Wang 2013; Li et al.
2015b).
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Fig.1 Points with error bars represent the PLANCK 2015 temperature power spectrum for [ = 2 — 50. The red solid line stands
for the ACDM power spectrum and the green-dotted line traces the theoretical power spectrum for the power law case with best-fit
parameters (Bo, o) = (0.04, 0.4556 £ 0.2158). The blue-dotted line presents the theoretical power spectrum for the exponential
form with best-fit parameters (Bo, o) = (0.4229 + 0.1134, 4.2889 £+ 1.2173).

Next, we will discuss the quadrupolar modulation
term in the power spectrum. The geometrical factor
& .., of the quadrupolar modulation term is given as

qgm 2 fqmt+ 2 ggm——
Im;l!m’ — "'+SIm;l'm/ +n*§lm;l’m’
qm—+— qm~+0
+2n+n*€lm;l’m’ + 2n+n0€lm;l’m’
gm—0 2 ~qmO00
+2n,n0§lm;l,m, + noglm;l/m/ . (30)

This term contains all the correlations between multi-
poles that differ by Al = 2 and Al = 0. Hence the
isotropic angular power spectrum C/'”" changes if we
consider the coefficients with Al = 0. The coefficients
of i, for ! = land m’ = m are

(P+m?+1-1)

= G 31

tmstrm T2l —=1)(20+3) G
224921 —2m?% -1

T S sk L) )

(2l —1)(20+3)

By setting the preferred direction along the z-axis, only
qm00
lm;l'm

pends on the anisotropic power spectrum B(k). Hence

, will contribute to C’lTT. This correction de-

to estimate its effect on ClT T, we parameterize the
anisotropic power spectrum B(k). We try two forms of
the anisotropic power spectrum B(k); the first one is a
power law form and the second one is an exponential

form. The power law form of the anisotropic power spec-
trum is given as

k —Q
B(k) = —Bo <k—> (33)

and the exponential form of the anisotropic power spec-
trum is expressed as

B(k) = Bpexp [— (I?) 1 ; (34)

where By and « are the amplitude and spectral index of
the anisotropic term respectively. In the next section, we
will use both forms of B(k) and estimate the theoretical
model parameters By and « in addition to six cosmolog-
ical parameters using CosmoMC software.

4 ANALYSIS AND RESULTS

For our analysis, we use the publicly available
CosmoMC software (Lewis & Challinor 2002) which
consists of Fortran and Python codes. CosmoMC uses
the CAMB (Lewis et al. 2000) code to compute the the-
oretical angular power spectrum and relies on MCMC
to generate the best-fit cosmological parameters. To ob-
tain the best-fit parameters using likelihood, we use
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Fig.2 The parameter plot for the power-law form of the anisotropic term in the power spectrum.

the PLANCK likelihood code (PLC/clik) provided by
the PLANCK team with CosmoMC software (Planck
Collaboration et al. 2014a). The PLANCK likelihood
code uses COMMANDER at low-l (I = 2 — 49) and
CamSpec code at high-l (I = 50 — 2500). The inputs
to CosmoMC are the central values and the flat priors of
the various model parameters. We execute CosmoMC’s
Python scripts and getdist to analyze the generated chains
from the MCMC analysis and to produce the required
plots.

We modify the required CAMB and CosmoMC
code using Equation (19) for our analysis. We uti-
lize Equations (33) and (34) for the anisotropic part of
Equation (19). We apply flat priors for the model param-
eters By and « in addition to the six ACDM parameters
as input to the MCMC analysis. The parameters and their
prior ranges are listed in Tables 1 and 2. We first check
for the power law case of the anisotropic power spec-
trum in Equation (33) and then move to the exponential
form in Equation (34). For the power law case, we first
run for both the parameters and get a negative C; error

in the CosmoMC for some range of By and a. The rea-
son for getting negative C; for those parameters is due to
the larger value of the anisotropic term compared to the
isotropic power spectrum. This is not acceptable at all.
Hence we try by fixing one of these two parameters. We
first fix « to different values and search for the best-fit
value of By. In particular, by fixing a to 0.5, we find that
the best-fit value of By is 0.0342 + 0.0396 which can ex-
plain the lack of power in low-/. But as we see the error
in By is larger than the best-fit value, we cannot use this
result. So, we next try by fixing By and allowing « to
run in the range [0, 0.8]. We find that for By = 0.04 and
a = 0.4556 4+ 0.2158, the theoretical model is able to
explain the lack of power up to [ = 10 to a good extent.
This fitting is not as good as we want. Nonetheless, we
list all the best-fit parameters in Table 3.

Next, we consider the exponential form of the
anisotropic power spectrum. In this case, we allow both
the model parameters to vary. We choose to run the pa-
rameters in the range o = [0,8] and By = [—1, 1]. By
searching for the best-fit value in the chosen wide range,
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Fig.3 The parameter plot for the exponential form of the anisotropic term in the power spectrum.

Table 1 Prior Range Used in Parameter Estimation Analysis for the Power Law Form

Parameter Name Symbol Prior Range
Baryon Density Quh? [0.005, 0.1]
Cold Dark Matter Density Qch? [0.001, 0.99]
Angular Size of Acoustic Horizon 1000z [0.5, 10.0]
Optical Depth T [0.01, 0.8]
Scalar Spectral Index N [0.8, 1.2]
Scalar Amplitude In(1010 Ay) [2,4]
Anisotropic Spectral Index « [0, 0.8]
Anisotropic Amplitude Bo 0.04

we find the best-fit values as o = 4.2889 + 1.2173 and
By = 0.4229 £ 0.1134. The best-fit parameter values
from the MCMC analysis are given in Table 3.

In Figure 1, we plot the PLANCK 2015 tempera-
ture power spectrum along with the best-fit theoretical
power spectrum obtained from ACDM and from our the-
oretical model. In this figure, the power law and expo-
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Table 2 Prior Range Used in Parameter Estimation Analysis for the Exponential Form

Parameter Name Symbol Prior Range

Baryon Density Qph? [0.005, 0.1]

Cold Dark Matter Density Qch? [0.001, 0.99]

Angular Size of Acoustic Horizon 1000y [0.5, 10.0]

Optical Depth T [0.01, 0.8]

Scalar Spectral Index N [0.8, 1.2]

Scalar Amplitude In(1010 Ay) [2, 4]

Anisotropic Spectral Index « [0, 8]

Anisotropic Amplitude Bo [-1, 1]

Table 3 The Best-fit Parameter Values with 1o Error Obtained from MCMC Analysis
Parameter Best-fit (ACDM) Best-fit (with power law form) Best-fit (with exponential form)
Qph? 0.02222 + 0.00023 0.02037 £ 0.00021 0.01938 £ 0.00031
Qch? 0.1197 £+ 0.0022 0.1255 £ 0.0025 0.1430 £ 0.0053
1000ymc 1.04085 £ 0.00047 1.03934 £ 0.00046 1.03789 £ 0.00059
T 0.078 £0.019 0.057 + 0.022 0.053 £ 0.020
ns 0.9655 £ 0.0062 0.9365 £ 0.0081 0.9794 £ 0.0144
In(101° A5) 3.098 £ 0.036 3.067 + 0.046 3.042 £0.037
a(model parameter) 0.4556 4 0.2158 4.2889 + 1.2173
Bo(model parameter) 0.04 0.4229 +0.1134

Notes: The first column presents the PLANCK 2015 best-fit ACDM parameter values, and the second and third columns list
the parameter values for our theoretical model having power law and exponential forms of the anisotropic power spectrum

respectively.

nential forms of the anisotropic power spectrum take
(Bo,) = (0.04,0.4556 4+ 0.2185) and (Bp,) =
(0.4229 £ 0.1134, 4.2889 £ 1.2173) respectively. As we
see from this figure, both forms of the anisotropic power
spectrum are able to explain the lack of power for the
multipole range [ = 2 — 10. For the multipole range
I = 10 — 40, our model fails to explain the observed lack
of power. The power spectrum in our theoretical model
also has some disagreement with the observed data at
high-/ which we neglect for the time being. The contour
plots for both forms of the anisotropic power spectrum
are shown in Figures 2 and 3 respectively.

Figures 2 and 3 show that our theoretical parameters
have a very poor correlation with each other. If we check
the best-fit parameters given in Table 3, then the correc-
tion to the isotropic primordial power spectrum due to
the anisotropic power spectrum affects all the six ACDM
parameters themselves. Out of these six ACDM param-
eters, five parameters differ by a small quantity from the
PLANCK 2015 best-fit result whereas the 7 parameter
differs a lot. Hence to explain the lack of power spectrum
throughout the observed multipole range | = 2 — 40, our
theoretical model is not so efficient.

5 CONCLUSIONS

In this work, we have analyzed the direction dependent
power spectrum obtained from Finsler space-time. Here
we have considered up to the second order correction of
the primordial power spectrum. The first order correc-
tion of the power spectrum produced the correlation be-
tween the multipoles that differs by Al = 1, whereas
the second order correction produced the correlation be-
tween the multipoles that differs by Al = 2 in addition
to the multipoles differing by Al = 0. We found that the
correlation between the multipoles differing by Al = 0
has a contribution to the isotropic angular power spec-
trum C'ZTT. Here we are only interested in this correction
term of the isotropic angular power spectrum and studied
its effect on the observed low-/ anomalies in the CMB
data. We have explicitly studied the lack of power in
the low multipole range [ < 40. We have parameterized
the anisotropic power spectrum B(k) of the quadrupolar
modulation term and applied the CosmoMC software to
determine best-fit model parameters using the PLANCK
likelihood code. We considered the power law as well as
an exponential form of the anisotropic power spectrum.
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For the power law form of the anisotropic spectrum, we
found that for By = 0.04 and o = 0.4556 £ 0.2158,
our model is able to explain the lack of power in the
multipole range | = 2 — 10. Whereas to explain the
lack of power in the same multipole range, the exponen-
tial form of the anisotropic power spectrum took @ =
4.2889 £+ 1.2173 and By = 0.4229 £ 0.1134. But for
the multipole range [ = 10 — 40, our theoretical model
approaches the ACDM result. Hence we found that our
theoretical model could not explain the lack of power for
the observed range of multipoles (I = 2 — 40) signif-
icantly. This may indicate a more complex form of the
anisotropic model which could be able to explain all the
low-/ anomalies successfully.
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