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Abstract In this work, we study a direction dependent power spectrum in anisotropic Finsler space-

time. We use this direction dependent power spectrum to address the low-l power observed in WMAP

and PLANCK data. The angular power spectrum of the temperature fluctuations has a lower amplitude

in comparison to the ΛCDM model in the multipole range l = 2 − 40. Our theoretical model gives

a correction to the isotropic angular power spectrum CTT
l due to the breaking of rotational invariance

of the primordial power spectrum. We estimate best-fit model parameters along with the six ΛCDM

cosmological parameters using the PLANCK likelihood code in CosmoMC software. We find that this

modified angular power spectrum fits the CMB temperature data in the multipole range l = 2 − 10 to a

good extent but fails for the whole multipole range l = 2 − 40.
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1 INTRODUCTION

The standard Lambda cold dark matter (ΛCDM) cos-

mological model predicted by the inflationary scenario

in the very early Universe is impressively successful in

explaining the observed Cosmic Microwave Background

(CMB) data. However, a set of CMB observations which

is not statistically consistent with the ΛCDM model

has been observed in both WMAP and PLANCK CMB

data. These observations include alignment of CMB

quadrupole and octopole (de Oliveira-Costa et al. 2004;

Copi et al. 2004; Ralston & Jain 2004; Land & Magueijo

2005; Abramo et al. 2006b,a; Copi et al. 2015b), lack

of power at large scale up to l ≤ 40 (Jing & Fang

1994; Bennett et al. 2011; Planck Collaboration et al.

2014a; Iqbal et al. 2015), the lack of large angular cor-

relations on angular scales larger than 60◦ (Spergel et al.

2003; Copi et al. 2009, 2015a) and hemispherical power

asymmetry (Eriksen et al. 2004, 2007; Erickcek et al.

2008b,a; Hansen et al. 2009; Hanson & Lewis 2009;

Groeneboom et al. 2010; Hoftuft et al. 2009; Planck

Collaboration et al. 2016b; Rath & Jain 2013; Rath et al.

2015; Jain & Rath 2015). The CMB observations also

suggest parity asymmetry (Kim & Naselsky 2010a,b;

Gruppuso et al. 2011; Kim & Naselsky 2011; Aluri &

Jain 2012; Ben-David et al. 2012; Zhao 2014; Shiraishi

et al. 2015; Aluri et al. 2017) and a cold spot in the south-

ern hemisphere (Cruz et al. 2005, 2006, 2008; Vielva

2010; Lim & Simon 2012). The significance of these

observations has motivated many theorists to study dif-

ferent theoretical models. Hence there exists a number

of theoretical models based on anisotropic space-times

(Berera et al. 2004; Kahniashvili et al. 2008; Ackerman

et al. 2007; Chang & Wang 2013) and an inhomoge-

neous Universe (Moffat 2005). The theoretical models

violating rotational invariance lead to a direction depen-

dency in the primordial power spectrum (Ackerman et al.

2007; Goldwirth & Piran 1990; Emir Gümrükçüoglu

et al. 2007; Pontzen & Challinor 2007; Pereira et al.

2007; Pullen & Kamionkowski 2007; Campanelli 2009;
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Donoghue et al. 2009; Watanabe et al. 2009; Chang &

Wang 2013).

The primordial power spectrum P (k), defined as the

two-point correlation function of the primordial density

perturbation δ(k), can be written as

〈δ(k)δ∗(k′)〉 = (2π)3δ3(k − k
′)P (k) . (1)

The Dirac delta function in Equation (1) ensures that

the modes with different wave numbers are not coupled

with each other, which is the consequence of transla-

tional invariance. In the standard ΛCDM model which

refers to the homogeneous and isotropic Friedmann-

Robertson-Walker (FRW) metric, fluctuations are statis-

tically isotropic and the primordial power spectrum P (k)

depends only on the magnitude of the wave vector k.

Hence the primordial power spectrum is rotationally in-

variant and one can write the primordial power spectrum

P (k) as

P (k) = As

(

k

kc

)ns−1

, (2)

where ns is the spectral index, As is the spectral ampli-

tude and kc is the scalar pivot. In this case, the spherical

harmonic coefficient aT
lm of the temperature fluctuation

obeys statistical isotropy and hence the two-point corre-

lation of aT
lm can be written as

〈

aT
lmaT∗

l′m′

〉

= CTT
l δll′δmm′ , (3)

where CTT
l is the angular power spectrum encoding all

the information about CMB temperature fluctuations.

But in case of an anisotropic space-time which

breaks rotational invariance of the power spectrum, the

spherical harmonic coefficient aT
lm no longer follows sta-

tistical isotropy and the two-point correlation function of

aT
lm gives rise to off-diagonal correlation between multi-

pole moments. The off-diagonal correlations encode all

the crucial information regarding the anisotropic model.

Hence one can write

〈

aT
lmaT∗

l′m′

〉

≡ CTT
ll′mm′ . (4)

In WMAP and PLANCK data, it has been observed

that the temperature angular power spectrum, CTT
l , at

low-l (l ≤ 40) has a lower amplitude than the ΛCDM

model (Bennett et al. 2011; Planck Collaboration et al.

2014b,a, 2016a). In Hazra et al. (2014), the authors

also studied consistency of the ΛCDM model with the

PLANCK data and claimed that the data have a lack

of power at both high and low l multipoles. This issue

has been studied extensively by many theorists in the in-

flationary framework (Contaldi et al. 2003; Boyanovsky

et al. 2006; Cicoli et al. 2014; Das & Souradeep 2014). In

this paper, we try to relate the direction dependent power

spectrum with the lack of power at large scale and find

the best-fit model parameters.

The paper is organized as follows. In Section 2,

we review briefly Finsler space-time and a direction de-

pendent power spectrum in this space-time. Then, in

Section 3, we implement this power spectrum to study

the lack of power at large scale. To study its effect on

the angular power spectrum CTT
l , we perform Markov

Chain Monte Carlo (MCMC) analysis using PLANCK

data. In Section 4, we present results of the MCMC anal-

ysis. In Section 5, we summarize our work.

2 ANISOTROPIC MODEL

Here we briefly review an anisotropic space-time in

the framework of Finsler geometry (Chang & Li 2009;

Chang et al. 2013; Chang & Wang 2013; Li et al.

2015b). Chang & Wang (2013); Li et al. (2015b) stud-

ied anisotropic inflation taking Finslerian background

spacetime. Finsler spacetime has fewer symmetries than

Riemann symmetry and hence is a suitable candidate to

study the anisotropy observations. The counterparts of

special relativity (Gibbons et al. 2007; Chang & Li 2008;

Chang & Wang 2012), commonly known as very spe-

cial relativity (Coleman & Glashow 1997, 1999; Cohen

& Glashow 2006), have connections with Finsler geome-

try (Bao et al. 2012), which is generalized from Riemann

geometry by removing the quadratic restriction. In or-

der to investigate these counterparts, one should study

the inertial frames and symmetry in Finsler spacetime.

The symmetry of spacetime is described by investigating

the Killing vectors (Li & Chang 2012). Finsler geometry

is defined on the tangent bundle with proper length, s, as

s =

∫ b

a

F (x, y)ds , (5)

where x and y ≡ dx/ds are the position and velocity re-

spectively. The integrand F (x, y), which is known as the

Finsler structure, is the basis of Finsler geometry. This is

a smooth and positive function on the tangent bundle of

a manifold M . For any λ > 0, Finsler structure F obeys

F (x, λy) = λF (x, y) . (6)
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The Finsler metric is given by the second derivative of

F 2 with respect to velocity y as

gµν =
∂

∂yµ

∂

∂yν

(

1

2
F 2

)

, (7)

where the spatial indices of µ and ν run from 1 to 3 and

the temporal index is 0. A Finsler metric is said to be

locally Minkowskian if at every point there exists a lo-

cal coordinate system in which the Finsler structure F

is independent of the position x, i.e, F = F (y). This

is known as flat Finsler space-time. Flat Finsler space-

time can be used to test Lorentz invariance through the

modified dispersion relation. The geodesic equations in

Finsler space-time can be given by the first order varia-

tion of Finslerian length as (Li & Lin 2017)

d2xµ

dτ2
+ 2Gµ = 0, (8)

where the geodesic spray coefficient Gµ is defined as

Gµ =
1

4
gµν

(

∂2F 2

∂xλ∂yν
yλ − ∂F 2

∂xν

)

. (9)

The coefficient Gµ vanishes in the local Minkowski

space.

The observed CMB anomalies may be related to a

special case of Finsler space-time known as Randers-

Finsler space-time. Randers space (Randers 1941) in-

volves a vector field which may influence the anisotropic

evolution of the early Universe. The structure is given by

F 2 = ytyt − a2(t)F 2
Ra . (10)

Here F 2
Ra is the structure of Randers space, and

F 2
Ra(x, y) = α(x, y) + β(x, y) , (11)

where α(x, y) =
√

ãµν(x)yµyν is a Riemann struc-

ture with metric ãµν , and β(x, y) = b̃µ(x)yµ is a 1-

form. This vector induces the anisotropic properties in

the Randers space. Here, ãµν can be taken as the flat

FRW metric, and b̃µ has only the temporal component,

i.e., b̃µ = (B(z), 0, 0, 0), where B(z) depends on the

third spatial coordinate z. The Finsler metric will be re-

duced to the FRW metric if B(z) → 0. The 1-form

β(x, y) is relevant to a vector field, which will give a

privileged axis in the space-time.

To investigate the Killing vector, one should discuss

the isometric transformation under an infinitesimal coor-

dinate transformation. The isometric transformations for

x and y are defined by

x̄µ = xµ + ǫV µ, (12)

ȳµ = yµ + ǫ
∂V µ

∂xν
yν . (13)

In the first order of ǫ, the Finsler structure is

F̄ (x̄, ȳ) = F̄ (x, y) + ǫV µ ∂F

∂xµ
+ ǫyν ∂V µ

∂xν

∂F

∂yµ
. (14)

The Finsler structure is called isometric if and only if

F (x, y) = F̄ (x, y). Hence one can obtain the Killing

equation in Finsler space as

KV (F ) ≡ V µ ∂F

∂xµ
+ yν ∂V µ

∂xν

∂F

∂xµ
= 0 . (15)

Using Equation (11), one can see that the number of in-

dependent Killing vectors in Randers-Finsler space-time

is less than that in Riemannian space-time.

The speed of light is direction dependent in Finsler

space-time. Along the radial direction, it can be derived

as (Li & Chang 2010, 2014; Li et al. 2015a)

cr =
1

1 + Bcosθ
, (16)

where θ is the angle along the z-axis. Hence the redshift

in Finsler space-time is

1 + z =
1 + Bcosθ

a
. (17)

The variation in speed of light from Equation (16) yields

a variation of the fine-structure constant, which is a dipo-

lar distribution. This dipolar distribution of the fine struc-

ture constant agrees with observations of quasar absorp-

tion spectra (Webb et al. 2011; King et al. 2012; Chang

et al. 2012). Using Equation (17), the luminosity distance

in a Finslerian Universe is stated as

dL = (1 + z)r =
1 + z

H0
∫ z

0

dz
√

Ωm0(1 + z)3(1 − 3B cos θ) + 1 − Ωm0

, (18)

where the radial distance r =
√

x2 + y2 + z2.

In the standard cosmological model, the power spec-

trum is derived in isotropic space-time. However, if there

exists a privileged direction in space-time, the early evo-

lution of the Universe will have different behaviors.

This anisotropic space-time at the early stage of infla-

tion breaks the rotational invariance of the primordial

power spectrum and leads to a direction dependent power

spectrum. Taking Randers space-time with a weak vector

field, i.e., |b̃µ| ≪ 1, as the background space-time of in-

flation and solving the equation of motion of the inflaton

field, one can obtain a direction dependent power spec-

trum of the form

P ′(k) = Piso(k)

(

1+iA(k)
(

k̂ · n̂
)

+B(k)
(

k̂ · n̂
)2

)

,

(19)
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where Piso(k) denotes the isotropic power spectrum, and

A(k) and B(k) are some arbitrary functions of wave

number k. The functions A(k) and B(k) encode the

amplitude of dipolar and quadrupolar modulation to the

isotropic power spectrum respectively. We restrict our-

selves to the second order correction of the isotropic pri-

mordial power spectrum as the next higher order terms

in (k̂ · n̂) will be suppressed by the magnitude of the

small vector. The breaking of rotational invariance of the

primordial power spectrum leads to non-vanishing corre-

lations between different multipole moments that would

normally vanish. The same type of direction dependent

power spectrum in the leading order of (k̂ · n̂) was ob-

tained in Rath et al. (2015); Jain & Rath (2015); Kothari

et al. (2016); Ghosh et al. (2016); Zibin & Contreras

(2017); Chang & Wang (2013); Li et al. (2015b) to ad-

dress the hemispherical power asymmetry successfully.

Rath et al. (2015); Jain & Rath (2015); Kothari et al.

(2016); Ghosh et al. (2016) constrained the amplitude in

the multipole range l = 2−64 with a 3σ confidence level

using PLANCK data. The amplitude for the quadrupo-

lar modulation B(k) has been constrained by Kim &

Komatsu (2013); Planck Collaboration et al. (2016c) and

they found it to be an order of 10−2. Here we do not give

any remark on the quadrupolar modulation constraint and

focus only on the correction to the isotropic power spec-

trum due to the quadrupolar modulation in the power

spectrum.

3 APPLICATION TO CMB DATA

The temperature fluctuation in terms of primordial den-

sity fluctuations δ(k) can be written as

∆T

T0

(n̂) =

∫

d3k
∑

l

2l + 1

4π
(−i)lPl(k̂ · n̂)δ(k)∆T

l (k) ,

(20)

where Pl and ∆T
l (k) are the Legendre polynomial and

the transfer function of order l respectively. The trans-

fer function helps in understanding the change in ampli-

tude of the perturbation from an initial time to the current

time. Now using Equation (20) one can write the spheri-

cal harmonic coefficients aT
lm as

aT
lm =

∫

dΩY ∗

lm(n̂)∆T (n̂) , (21)

and the two-point correlation function of aT
lm as

〈aT
lmaT∗

l′m′〉 = 〈aT
lmaT∗

l′m′〉iso + 〈aT
lmaT∗

l′m′〉aniso , (22)

where the first term gives the isotropic angular power

spectrum CTT
l

CTT
l =

∫

∞

0

k2dkPiso(k)(∆T
l (k))2 , (23)

and the second term contains all the anisotropic terms.

Following Equation (4), one can write the anisotropic

term as

CTT
ll′mm′ = 〈alma∗

l′m′〉dm + 〈alma∗

l′m′〉qm , (24)

where the dipole modulation term is given as

〈alma∗

l′m′〉dm = (−i)l−l′ξdm
lm;l′m′

∫

∞

0

k2dk

Piso(k)A(k)∆T
l (k)∆T

l′ (k) , (25)

and the quadrupolar modulation term is given as

〈alma∗

l′m′〉qm = (−i)l−l′ξqm
lm;l′m′

∫

∞

0

k2dk

Piso(k)B(k)∆T
l (k)∆T

l′ (k) . (26)

Following Ackerman et al. (2007); Rath et al. (2013), we

use the spherical components of the unit vector n as

n+ = −
(

nx − iny√
2

)

,

n− =

(

nx + iny√
2

)

,

n0 = nz . (27)

The geometrical factor ξdm
lm;l′m′ of the dipolar modulation

term is defined as

ξdm
lm;l′m′ = n+ξdm+

lm;l′m′ +n−ξdm−

lm;l′m′ +n0ξ
dm0
lm;l′m′ , (28)

which gives the correlation between multipole moments

that differ by ∆l = 1 and it has no effect on the isotropic

angular power spectrum CTT
l . Hence by making the pre-

ferred axis the z-axis, the coefficients of ξdm
lm;l′m′ can be

given as

ξdm0
lm;l′m′ = δm′,m

[
√

(l − m + 1)(l + m + 1)

(2l + 1)(2l + 3)
δl′,l+1

+

√

(l − m)(l + m)

(2l + 1)(2l − 1)
δl′,l−1

]

. (29)

This term successfully explains the observed hemispher-

ical power asymmetry (Rath et al. 2015; Kothari et al.

2016; Ghosh et al. 2016; Chang & Wang 2013; Li et al.

2015b).
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Fig. 1 Points with error bars represent the PLANCK 2015 temperature power spectrum for l = 2 − 50. The red solid line stands

for the ΛCDM power spectrum and the green-dotted line traces the theoretical power spectrum for the power law case with best-fit

parameters (B0, α) = (0.04, 0.4556 ± 0.2158). The blue-dotted line presents the theoretical power spectrum for the exponential

form with best-fit parameters (B0, α) = (0.4229 ± 0.1134, 4.2889 ± 1.2173).

Next, we will discuss the quadrupolar modulation

term in the power spectrum. The geometrical factor

ξqm
lm;l′m′ of the quadrupolar modulation term is given as

ξqm
lm;l′m′ = n2

+ξqm++

lm;l′m′ + n2
−

ξqm−−

lm;l′m′

+2n+n−ξqm+−

lm;l′m′ + 2n+n0ξ
qm+0

lm;l′m′

+2n−n0ξ
qm−0

lm;l′m′ + n2
0ξ

qm00

lm;l′m′ . (30)

This term contains all the correlations between multi-

poles that differ by ∆l = 2 and ∆l = 0. Hence the

isotropic angular power spectrum CTT
l changes if we

consider the coefficients with ∆l = 0. The coefficients

of ξqm
lm;l′m′ for l′ = l and m′ = m are

ξqm+−

lm;l′m′ = −δm′,m

(l2 + m2 + l − 1)

(2l − 1)(2l + 3)
, (31)

ξqm00

lm;l′m′ = δm,m′

(2l2 + 2l − 2m2 − 1)

(2l − 1)(2l + 3)
. (32)

By setting the preferred direction along the z-axis, only

ξqm00

lm;l′m′ will contribute to CTT
l . This correction de-

pends on the anisotropic power spectrum B(k). Hence

to estimate its effect on CTT
l , we parameterize the

anisotropic power spectrum B(k). We try two forms of

the anisotropic power spectrum B(k); the first one is a

power law form and the second one is an exponential

form. The power law form of the anisotropic power spec-

trum is given as

B(k) = −B0

(

k

kc

)

−α

(33)

and the exponential form of the anisotropic power spec-

trum is expressed as

B(k) = B0 exp

[

−
(

k

kc

)α]

, (34)

where B0 and α are the amplitude and spectral index of

the anisotropic term respectively. In the next section, we

will use both forms of B(k) and estimate the theoretical

model parameters B0 and α in addition to six cosmolog-

ical parameters using CosmoMC software.

4 ANALYSIS AND RESULTS

For our analysis, we use the publicly available

CosmoMC software (Lewis & Challinor 2002) which

consists of Fortran and Python codes. CosmoMC uses

the CAMB (Lewis et al. 2000) code to compute the the-

oretical angular power spectrum and relies on MCMC

to generate the best-fit cosmological parameters. To ob-

tain the best-fit parameters using likelihood, we use
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Fig. 2 The parameter plot for the power-law form of the anisotropic term in the power spectrum.

the PLANCK likelihood code (PLC/clik) provided by

the PLANCK team with CosmoMC software (Planck

Collaboration et al. 2014a). The PLANCK likelihood

code uses COMMANDER at low-l (l = 2 − 49) and

CamSpec code at high-l (l = 50 − 2500). The inputs

to CosmoMC are the central values and the flat priors of

the various model parameters. We execute CosmoMC’s

Python scripts and getdist to analyze the generated chains

from the MCMC analysis and to produce the required

plots.

We modify the required CAMB and CosmoMC

code using Equation (19) for our analysis. We uti-

lize Equations (33) and (34) for the anisotropic part of

Equation (19). We apply flat priors for the model param-

eters B0 and α in addition to the six ΛCDM parameters

as input to the MCMC analysis. The parameters and their

prior ranges are listed in Tables 1 and 2. We first check

for the power law case of the anisotropic power spec-

trum in Equation (33) and then move to the exponential

form in Equation (34). For the power law case, we first

run for both the parameters and get a negative Cl error

in the CosmoMC for some range of B0 and α. The rea-

son for getting negative Cl for those parameters is due to

the larger value of the anisotropic term compared to the

isotropic power spectrum. This is not acceptable at all.

Hence we try by fixing one of these two parameters. We

first fix α to different values and search for the best-fit

value of B0. In particular, by fixing α to 0.5, we find that

the best-fit value of B0 is 0.0342±0.0396 which can ex-

plain the lack of power in low-l. But as we see the error

in B0 is larger than the best-fit value, we cannot use this

result. So, we next try by fixing B0 and allowing α to

run in the range [0, 0.8]. We find that for B0 = 0.04 and

α = 0.4556 ± 0.2158, the theoretical model is able to

explain the lack of power up to l = 10 to a good extent.

This fitting is not as good as we want. Nonetheless, we

list all the best-fit parameters in Table 3.

Next, we consider the exponential form of the

anisotropic power spectrum. In this case, we allow both

the model parameters to vary. We choose to run the pa-

rameters in the range α = [0, 8] and B0 = [−1, 1]. By

searching for the best-fit value in the chosen wide range,
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Fig. 3 The parameter plot for the exponential form of the anisotropic term in the power spectrum.

Table 1 Prior Range Used in Parameter Estimation Analysis for the Power Law Form

Parameter Name Symbol Prior Range

Baryon Density Ωbh2 [0.005, 0.1]

Cold Dark Matter Density Ωch2 [0.001, 0.99]

Angular Size of Acoustic Horizon 100θMC [0.5, 10.0]

Optical Depth τ [0.01, 0.8]

Scalar Spectral Index ns [0.8, 1.2]

Scalar Amplitude ln(1010As) [2, 4]

Anisotropic Spectral Index α [0, 0.8]

Anisotropic Amplitude B0 0.04

we find the best-fit values as α = 4.2889 ± 1.2173 and

B0 = 0.4229 ± 0.1134. The best-fit parameter values

from the MCMC analysis are given in Table 3.

In Figure 1, we plot the PLANCK 2015 tempera-

ture power spectrum along with the best-fit theoretical

power spectrum obtained from ΛCDM and from our the-

oretical model. In this figure, the power law and expo-
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Table 2 Prior Range Used in Parameter Estimation Analysis for the Exponential Form

Parameter Name Symbol Prior Range

Baryon Density Ωbh2 [0.005, 0.1]

Cold Dark Matter Density Ωch2 [0.001, 0.99]

Angular Size of Acoustic Horizon 100θMC [0.5, 10.0]

Optical Depth τ [0.01, 0.8]

Scalar Spectral Index ns [0.8, 1.2]

Scalar Amplitude ln(1010As) [2, 4]

Anisotropic Spectral Index α [0, 8]

Anisotropic Amplitude B0 [-1, 1]

Table 3 The Best-fit Parameter Values with 1σ Error Obtained from MCMC Analysis

Parameter Best-fit (ΛCDM) Best-fit (with power law form) Best-fit (with exponential form)

Ωbh
2 0.02222 ± 0.00023 0.02037 ± 0.00021 0.01938 ± 0.00031

Ωch2 0.1197 ± 0.0022 0.1255± 0.0025 0.1430 ± 0.0053

100θMC 1.04085 ± 0.00047 1.03934 ± 0.00046 1.03789 ± 0.00059

τ 0.078 ± 0.019 0.057± 0.022 0.053 ± 0.020

ns 0.9655 ± 0.0062 0.9365± 0.0081 0.9794 ± 0.0144

ln(1010As) 3.098 ± 0.036 3.067± 0.046 3.042 ± 0.037

α(model parameter) 0.4556± 0.2158 4.2889 ± 1.2173

B0(model parameter) 0.04 0.4229 ± 0.1134

Notes: The first column presents the PLANCK 2015 best-fit ΛCDM parameter values, and the second and third columns list

the parameter values for our theoretical model having power law and exponential forms of the anisotropic power spectrum

respectively.

nential forms of the anisotropic power spectrum take

(B0, α) = (0.04, 0.4556 ± 0.2185) and (B0, α) =

(0.4229± 0.1134, 4.2889± 1.2173) respectively. As we

see from this figure, both forms of the anisotropic power

spectrum are able to explain the lack of power for the

multipole range l = 2 − 10. For the multipole range

l = 10− 40, our model fails to explain the observed lack

of power. The power spectrum in our theoretical model

also has some disagreement with the observed data at

high-l which we neglect for the time being. The contour

plots for both forms of the anisotropic power spectrum

are shown in Figures 2 and 3 respectively.

Figures 2 and 3 show that our theoretical parameters

have a very poor correlation with each other. If we check

the best-fit parameters given in Table 3, then the correc-

tion to the isotropic primordial power spectrum due to

the anisotropic power spectrum affects all the six ΛCDM

parameters themselves. Out of these six ΛCDM param-

eters, five parameters differ by a small quantity from the

PLANCK 2015 best-fit result whereas the τ parameter

differs a lot. Hence to explain the lack of power spectrum

throughout the observed multipole range l = 2− 40, our

theoretical model is not so efficient.

5 CONCLUSIONS

In this work, we have analyzed the direction dependent

power spectrum obtained from Finsler space-time. Here

we have considered up to the second order correction of

the primordial power spectrum. The first order correc-

tion of the power spectrum produced the correlation be-

tween the multipoles that differs by ∆l = 1, whereas

the second order correction produced the correlation be-

tween the multipoles that differs by ∆l = 2 in addition

to the multipoles differing by ∆l = 0. We found that the

correlation between the multipoles differing by ∆l = 0

has a contribution to the isotropic angular power spec-

trum CTT
l . Here we are only interested in this correction

term of the isotropic angular power spectrum and studied

its effect on the observed low-l anomalies in the CMB

data. We have explicitly studied the lack of power in

the low multipole range l ≤ 40. We have parameterized

the anisotropic power spectrum B(k) of the quadrupolar

modulation term and applied the CosmoMC software to

determine best-fit model parameters using the PLANCK

likelihood code. We considered the power law as well as

an exponential form of the anisotropic power spectrum.
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For the power law form of the anisotropic spectrum, we

found that for B0 = 0.04 and α = 0.4556 ± 0.2158,

our model is able to explain the lack of power in the

multipole range l = 2 − 10. Whereas to explain the

lack of power in the same multipole range, the exponen-

tial form of the anisotropic power spectrum took α =

4.2889 ± 1.2173 and B0 = 0.4229 ± 0.1134. But for

the multipole range l = 10 − 40, our theoretical model

approaches the ΛCDM result. Hence we found that our

theoretical model could not explain the lack of power for

the observed range of multipoles (l = 2 − 40) signif-

icantly. This may indicate a more complex form of the

anisotropic model which could be able to explain all the

low-l anomalies successfully.
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