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Abstract The usage of a subset of observed stars in a CCD image to find their corresponding matched

stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based

algorithms are the most widely used methods in star catalog matching. When more subgraph features

are provided, the CCD images are recognized better. However, when the navigation feature database is

large, the method requires more time to match the observing model. To solve this problem, this study

investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm

based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation

feature database into different hash buckets and reduces the search range to the bucket in which the

observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

Key words: astronomical databases: miscellaneous — methods: data analysis — techniques: image

processing

1 INTRODUCTION

Positional observations for objects in the sky are impor-

tant to astronomical research. Generally, this problem

(called the star-image-catalog matching problem in the

following) requires using a subset of observed stars in a

CCD image to find their corresponding matched stars in

a stellar catalog, and deriving the transformation between

detector coordinates and celestial coordinates, which al-

lows for the position of the observed object to be cal-

culated. The core of the matching problem is searching

for objects that correspond to each other in two coordi-

nate systems. Two main difficulties exist in solving this

problem. One is high time consumption due to a large

amount of stars listed in the stellar catalog. The other is

mismatching or failing to find any matched stars because

of uncertainty in the measurement system.

The star-image-catalog matching problem has been

studied by researchers for many years, and a few tech-

niques have been proposed in which two kinds of algo-

rithms are widely used. The first kind is related to ge-

ometric subgraph isomorphism, which regards stars as

vertices and looks for similar lines, triangles or polygons

in two catalogs by distances, ratios, area ratios and so

on. Algorithms of this kind include triangle based algo-

rithms (Groth 1986; Cole & Crassidis 2006; Tabur 2007),

the pyramid star identification technique (Mortari et al.

2004) and the decreasing redundancy matching approach

(Lu et al. 2015). The other kind is based on star distri-

bution features (i.e., star patterns) around a main star.

Methods of this kind search for the most similar stars in

two catalogs by pattern recognition, and representative

approaches include grid algorithms (Padgett & Kreutz-

Delgado 1997; Na et al. 2009; Tang et al. 2016) and the

identification method using star radial and cyclic statisti-

cal features (Zhang et al. 2008; Xie et al. 2012; Ji et al.

2013). Generally, the second kind of approach has a re-

quirement of high image quality because missing stars

or noise objects lead to false star patterns. Therefore, the

first kind of approach is more applicable.

Several improved techniques have been proposed to

solve the mismatching and time consumption problems,

and quadrilateral based methods are particularly notable.

Binary search is used in the quadrilateral matching pro-

cess (Lin et al. 2000; Qi et al. 2014). Lang et al. (2010)

presented the Astrometry.net algorithm that uses a geo-

metric hashing technique based on four stars in a quadri-

lateral. Given stars A, B, C and D, stars A and B are

located on the origin and (1; 1), respectively, of a lo-
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cal coordinate system, in which the positions of stars C

and D are computed. Coordinates (xC ; yC ; xD; yD) be-

come the hash code that describes the relative positions

of the four stars. Then, the approach organizes the hash

codes into a kd-tree (Bentley 1975) for the rapid search-

ing of quadrilaterals whose hash codes are near any given

query hash code to expedite the matching process. In this

method, although the hash code of a quadrilateral is con-

stant under translation, scaling and rotation of the four

stars, the method may not be preserved under shearing in

the general affine transformation between two coordinate

systems. Heyl (2013) studied a fast matching algorithm

to cope with shearing. The algorithm builds quadrilat-

erals from sets of four objects in each catalog and cal-

culates the ratio of areas of the triangles that span three

vertices of quadrilaterals. Two area ratios are used to rep-

resent a quadrilateral, and the kd-tree data structure is ap-

plied in accelerating the quadrilateral search. Both Lang

et al. (2010) and Heyl (2013) provided good solutions

to the star-image-catalog matching problem and utilized

quadrilaterals and a kd-tree data structure consistently,

but with different geometric feature values.

Several studies pointed out that quadrilateral match-

ing algorithms achieve better results than triangle algo-

rithms. A triangle matching algorithm may fail if posi-

tional noises exist in astronomical images. Lang et al.

(2010) highlighted that quintuples of stars are even more

distinctive than quads, but near-neighbor lookup, even

with a kd-tree, becomes more time-consuming with in-

creasing feature dimensionality. The experiments in Heyl

(2013) proved that the quadrilateral matching technique

takes a significantly longer time to execute than the trian-

gle algorithm. Obviously, more polygons are required for

searching when a large number of stars are present in an

asterism (with a set of four or more stars). However, the

possibility of finding the correct transformation between

two coordinate systems increases. Therefore, a more ef-

ficient technique for polygon matching is necessary.

The locality-sensitive hashing (LSH) (Indyk &

Motwani 1998) technique has been explored in the ap-

proximate nearest neighbor (ANN) problem, and effec-

tive results have been achieved. LSH is an indexing

method for high-dimensional similarity search, which

uses a family of locality-sensitive hash functions to hash

nearby objects in a high-dimensional space into the same

bucket. The experiments in Datar et al. (2004) showed

that the LSH technique is up to 40 times faster than the

kd-tree technique.

In our research, LSH is applied in the star-image-

catalog matching problem, in which the asterisms in a

CCD image and a stellar catalog are hashed into buckets.

According to the LSH principle, the approximate aster-

isms (e.g., quadrilaterals) in the two coordinate systems

are mapped into the same buckets with high probability,

and the candidate stars can be selected efficiently in a

stellar catalog for a given asterism in a CCD image.

The main contributions of this paper are as follows:

(1) To solve the efficiency problem for matching

approximate asterisms in two coordinate systems,

the LSH technique is first introduced into the

star-image-catalog matching problem. We approach

the problem as an ANN problem, which searches the

quadrilaterals in the stellar catalog for a matching

quadrilateral in the CCD image.

(2) An algorithm (HashQuad) is proposed based on the

LSH. This algorithm applies basic LSH (Indyk &

Motwani 1998; Datar et al. 2004). A quadrilateral

in a CCD image is only compared with the quadri-

laterals in the stellar catalog that are mapped into

the same bucket, thereby reducing the search range

significantly.

(3) Experimental results demonstrate the ability of the

LSH technique to solve time-consuming problems

for polygon matching with high accuracy.

The rest of this paper is organized as follows.

Section 2 introduces the basic principles of LSH.

Section 3 presents the algorithm that uses LSH in the

star-image-catalog matching problem. Section 4 dis-

cusses several experiments and their results. Finally,

Section 5 concludes this paper.

2 BASIC PRINCIPLES OF LSH

The concept of LSH was first introduced by Indyk and

Motwani (Indyk & Motwani 1998). The principle of LSH

is based on the simple idea that neighboring objects in the

original data space remain close together in the new data

space after projection transformation using LSH func-

tions. Then, these objects are likely to collide in the same

bucket by hash coding. In contrast, objects that are far

apart are less likely to collide in the same bucket. The

LSH technique is suitable for application in approximate

searching, that is, the objects in a data space are grouped

by distances. Hence, while retrieving the points close to

an object q, only objects in the same group with q should

be compared, thus saving search time.

Given that LSH provides a probabilistic guarantee

that it will return the correct answer, LSH functions

should satisfy several criteria that are provided in defi-

nition 1.
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Table 1 Time of Search and Comparison for M67 (ms)

Image ID Q-I Q-II HashQuad

1 1.76 1.46 3.82

2 1.55 1.15 1.55

3 1.51 1.06 1.04

4 63.12 21.6 106.57

5 13.51 1.23 2.95

6 3.38 1.42 1.52

7 1.82 1.36 1.4

8 41.57 4.42 21.85

9 5.11 1.33 1.02

10 5.23 1.17 1.57

11 1.52 3.73 0.96

12 1.53 4.34 0.99

13 1.34 4.38 0.9

14 1.29 4.16 0.87

15 2.3 3.94 0.86

16 4.73 3.73 0.92

17 1.32 3.68 0.9

18 1.27 3.47 0.91

19 2.85 1.76 0.92

20 57.84 6.75 14.93

Table 2 Time of Search and Comparison for NGC 6709 (ms)

Image ID Q-I Q-II HashQuad

1 8.82 6.01 6.59

2 31.07 23.66 22.01

3 27.35 19.78 18.55

4 15.27 6.43 5.9

5 7.64 6.97 7.77

6 13.56 7.55 7.12

7 18.56 7.13 6.4

8 9.53 8.08 6.56

9 11.09 7.44 29.61

10 98.07 65.44 79.02

11 8.47 8.73 7.54

12 10.93 9.13 8.57

13 14.65 14.96 13.3

14 16.61 10.67 9.68

15 11.47 11.63 11.15

16 10.15 10.22 9.8

17 18.5 11.9 55.84

18 14.04 9.83 100.11

19 20.03 12.94 315.12

20 14.99 11.03 10.04

Definition 1: Let S be the domain of objects and

D the distance measure between two objects. A function

family H = {h : S → U} is (d1, d2, p1, p2)-sensitive if

for any o, q ∈ S:

• if D(o, q) ≤ d1, then PrH [h(o) = h(q)] ≥ p1,

• if D(o, q) > d2, then PrH [h(o) = h(q)] ≤ p2,

where p1 > p2, d1 < d2.

Table 3 Searching Times for M67 (times)

Image ID Q-I Q-II HashQuad

1 32 270 360 217

2 32 270 194 217

3 32 270 194 217

4 18 599 860 5627 75 352

5 178 643 646 1733

6 178 643 646 1733

7 67 158 40 329

8 1 939 759 1425 12 630

9 68 471 32 1032

10 68 500 71 449

11 32 270 298 217

12 32 270 298 217

13 32 270 298 217

14 32 270 298 217

15 32 270 298 217

16 32 270 298 217

17 32 270 298 217

18 32 270 298 217

19 68 471 32 1032

20 1 939 745 1380 13 211

Table 4 Searching Times for NGC 6709 (times)

Image ID Q-I Q-II HashQuad

1 14 481 316 136

2 49 385 1295 83

3 49 385 1038 83

4 14 481 315 136

5 14 479 100 188

6 14 828 100 193

7 14 479 100 185

8 14 479 100 185

9 437 147 1122 6725

10 510 361 1436 10 559

11 14 474 525 93

12 14 823 487 94

13 4836 566 143

14 4836 566 143

15 4836 579 143

16 4836 579 143

17 514 291 1600 15 213

18 15 859 703 50 098

19 135 728 623 108 355

20 14 474 407 93

Different LSH families that comply with definition

1 can be applied in the approximate neighbor search

(Slaney & Casey 2008; Matsushita & Wada 2009). In

our matching problem, we use p-stable LSH (Datar et al.

2004), which is described by definition 3, and the con-

cept of stable distribution is given by definition 2.

Definition 2: Distribution D over the real number

set is called p-stable, if p>0 exists such that for n
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real numbers v1,..., vn and independent identically dis-

tributed variables X1,..., Xn with distribution D, the ran-

dom variable
∑

iviXi has the same distribution as vari-

able (
∑

i|vi|
p)1/pX, where X is a random variable with

distribution D.

Stable distributions exist for any p∈(0, 2] (Zolotarev

1986), such as the Gaussian distribution that is 2-stable.

Definition 3: Given a d-dimensional vector v, a p-

stable hash function is defined as

ha,b(v) = ⌊
a • v + b

W
⌋ (1)

where a is a d-dimensional random vector sampled from

a p-stable distribution. The function projects vectors onto

vector a, and the axis is quantized with interval W, i.e. W

is the width of each quantization bin. Parameter b is a

uniformly chosen real number from the range [0,W].

Datar et al. (2004) proved that a function family

given by Equation (1) is (d1, d2, p1, p2)-sensitive.

In practice, more than one hash table can be con-

structed by LSH to ensure a successful approximate

search. The procedure of constructing hash tables is de-

scribed as follows (Indyk & Motwani 1998; Datar et al.

2004):

(1) Supposing that a function family H = {h : S → U}

is locality-sensitive and a compound hash function

family is G = {g : S → UM}, where an integer

M > 0, then for g ∈ G, g(v) = (h1(v), ..., hM (v));

(2) Given an integer L, g1, g2,..., gL are selected from G

independently and uniformly at random, and gi(1 ≤

i ≤ L) is used to construct one hash table, resulting

in L hash tables.

(3) Each object in a data set is hashed into L buckets

according to g1, g2,..., gL.

Based on the constructed L hash tables, a k-nearest

neighbor search for object o is processed as follows:

(1) The hash value gi(o) is computed and all the objects

in bucket gi(o) for i = 1,..., L are considered as can-

didates.

(2) The candidates are ranked according to their dis-

tances to object o, and k-nearest neighbors are found.

In the basic LSH technique above, increasing the

number of hash tables L will increase the probability

of finding all the nearest neighbors. However, this step

entails space and more candidates. To solve these prob-

lems, the multi-probe LSH method (Lv et al. 2007; Dong

et al. 2008) was proposed by Lv et al. The main idea of

the multi-probe LSH is to probe multiple buckets in each

hash table such that fewer hash tables are required than in

the basic LSH method. This step is based on the fact that

if an object is close to a query object q, but not hashed to

the same bucket as q, it is likely in an adjacent bucket to

the hash bucket of q.

The LSH technique is still evolving (Liu et al. 2014;

Zhou et al. 2016), widely used, and suitable for solving

ANN, retrieval, classification and other problems (Rao &

Zhu 2016; Liu et al. 2015; Liao et al. 2016; Kraus et al.

2016).

3 STAR-IMAGE-CATALOG MATCHING

PROCEDURE USING LSH

Before star-image-catalog matching, the CCD images

should be processed for star coordinate extraction.

Usually, the positional measurement of a star in a CCD

frame has good precision, depending on its signal to

noise ratio and the algorithm used. For our test stars, a

bright star possesses a positional precision as good as

0.02–0.05 pixel but a faint star has slightly poorer pre-

cision, like 0.2–0.5 pixel (Li et al. 2009). On the other

hand, a star catalog also usually has a very good ac-

curacy in position. For example, the recently released

catalog Gaia DR1 (Gaia Collaboration et al. 2016) has

very good accuracy for its primary astrometric data, as

good as 0.3 mas for the position and parallax uncertainty.

However, these high precisions cannot be displayed in

our raw pixel positions. Some systematic errors obvi-

ously exist in these raw pixel positions, such as geometric

distortion (Peng et al. 2012). Sometimes, this systematic

error will reach as great as 1–3 pixels (Zhang et al. 2012).

Therefore, we have to resort to some algorithm to over-

come these uncertainties.

In the study, supposing that the coordinates and mea-

sured magnitudes of all stars in an image have been ob-

tained, we focus on matching stars in the image with stars

in a stellar catalog.

3.1 Feature Representation of a Quadrilateral in a

Stellar Catalog and an Image

In our research, we employ the quadrilateral matching

technique, where six features are mainly used for rep-

resenting a quadrilateral. The more features (except star

identifiers) that are present means there are more distinc-

tive quadrilaterals of stars.

Definition 4: A quadrilateral of four stars is defined

as (ID1, ID2, ID3, ID4, L1, L2, L3, L4, L5, L6), where

ID1, ID2, ID3 and ID4 are the identifiers of the four stars,

and L1, L2, L3, L4, L5 and L6, are the lengths of four

sides and two diagonals of a quadrilateral.
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3.2 Matching Based on Basic LSH

The procedure of matching based on LSH is as follows:

(1) Reference stars are selected from a star catalog ac-

cording to the telescope pointing direction, field of

view and limiting magnitude. These stars are used to

build the navigation database, Guide DB.

(2) A quadrilateral feature database Quad DB is created

based on the stars in Guide DB, and each quadrilat-

eral is represented as the features given in definition

4.

(3) The background stars are sorted from the CCD im-

age based on measured magnitudes.

(4) The four stars are selected from the CCD image ac-

cording to brightness to construct quadrilateral q and

create its feature vector o, which consists of the fea-

tures defined in definition 4.

(5) A set of locality-sensitive function families H is

generated according to Equation (1), and compound

hash function family G is defined.

(6) g1, g2,..., gL (L ≥ 1) are selected at random from G

independently and uniformly, and L hash tables are

constructed.

(7) For each quadrilateral in Quad DB, its feature vector

is hashed into L buckets according to g1, g2,..., gL.

(8) g1, g2,..., gL are used to map o into L buckets, and all

objects (except o) are retrieved from the L buckets

and their corresponding quadrilaterals are gathered

into a candidate set C. Duplicate quadrilaterals in C

are removed. If C is empty, go to step (4).

(9) For each quadrilateral in C, the distance to q is com-

puted, and quadrilaterals in C are sorted by their dis-

tances.

(10) One quadrilateral in C is selected according to dis-

tance (starting from the nearest). To verify whether

similar asterisms (q and the quadrilateral selected

from C) are really matched, the transformation re-

lationship between the coordinate systems of the im-

age and the star catalog is computed by the six-plate

constant model introduced in Zhao (1987). If the

transformed coordinates of most stars (above 70%

in our experiments) in the CCD image correspond to

star coordinates in the star catalog, then the verifi-

cation is successful; otherwise, the verification fails,

and the next quadrilateral in C is selected.

(11) If the verification in step (10) is not successful, the

above steps from step (4) are repeated until one veri-

fication is successful or all quadrilaterals in the CCD

image have been used.

Figure 1 presents an example of matching based on

basic LSH, where L = 3, and ⋆ and • represent either

quadrilaterals or feature vectors in two coordinate sys-

tems. A range of objects in a stellar catalog D is inserted

into three hash tables corresponding to hash functions g1,

g2 and g3. Given object o in image I, to find its matching

star from D, buckets g1(o), g1(o) and g1(o) are searched

in three hash tables, and candidate set C = {a, b, c, e}

is obtained. Then the issue of whether o and one of the

objects in C are really matched is verified.

3.3 Time Consumption Analysis

The following parameters and identifiers are given:

• N1: number of bright stars in the CCD image used

to construct quadrilaterals;

• N2: number of selected reference stars in Guide

DB;

•B: non-redundant object number in several buckets

that a quadrilateral from the image is mapped into, that

is, the size of candidate set C in HashQuad;

• V : number of times needed to verify whether the

transformation of the two coordinate systems (i.e., image

coordinates and celestial coordinates in the catalog) is

correct.

The matching process consists of three main time-

consuming steps: constructing quadrilaterals, searching

similar candidate quadrilaterals from Guide DB and

comparing with quadrilaterals from the image (called

search and comparison below), and conducting transfor-

mation verification (called verification below).

(1) Analysis of construction time. The maximal num-

ber of constructed quadrilaterals from stars in

Guide DB is N2(N2 − 1)(N2 − 2)(N2 − 3)/24,

and the maximal number of constructed quadrilater-

als from stars on the CCD image is N1(N1−1)(N1−

2)(N1 − 3)/24. Therefore, the construction time is

O(N4

1
+ N4

2
).

(2) Analysis of search and comparison time. If the

quadrilaterals from the CCD image are directly com-

pared with all quadrilaterals from Guide DB (called

Q-I below), the time required for searching and

comparing is O(N4

1
N4

2
). The quadrilateral method

based on the kd-tree (called Q-II below) dramatically

accelerates searching and comparing to O((N4

1
+

N4
2 ) log N2). By contrast, the searching time for

HashQuad is O((N4
1 +N4

2 ) log B). Generally, B ≪

N2, and thus HashQuad has higher searching and

comparing efficiency than Q-I and Q-II.

(3) Analysis of verification time. To verify whether the

coordinates of most objects on the CCD image cor-

respond to star coordinates in the catalog, the maxi-

mum comparison times for any approach is V N1N2,
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Fig. 1 Basic LSH and searching of star neighbors.

and the verification time is O(V N1N2). Compared

to construction and search time, complexity of veri-

fication is much lower.

From the above analysis, we present the time con-

sumption of the three quadrilateral-based algorithms in

Table 5. HashQuad has the lowest time consumption

among the methods. The experimental results in Section

5 similarly demonstrate that HashQuad is the most effi-

cient in most cases.

4 EXPERIMENTAL RESULTS AND ANALYSIS

We conduct several experiments to test the performance

of the matching approaches. CCD images are selected

from the images of NGC 6709 and M67 star clusters

taken by the 1-meter telescope administered by Yunnan

Observatories. The images are firstly processed for get-

ting the coordinates and magnitudes of observed stars in

the image coordinate system, which are used for comput-

ing features of the selected quadrilaterals on the images.

For example, Figure 2 includes one captured image of

star cluster M67. After processing it, each star in the im-

age yields information, namely identifier, X-coordinate,

Y-coordinate and magnitude, which is then saved in a ta-

ble.

Navigation database Guide DB extracts data from

the GAIA catalog (http://gaia.esac.esa.int/documenta

tion/GDR1/Miscellaneous/seccreditandcitationinstruc

tions.html), which includes information about a star,

namely identifier, right ascension, declination and mag-

nitude. These are used for computing features of the

quadrilaterals built from Guide DB. Hundreds or thou-

sands of bright stars are chosen from the GAIA catalog

for creating the navigation database Guide DB accord-

ing to the region of each star cluster with a one degree

field of view. The numbers of quadrilaterals built from

Guide DB are 2 302 786 for M67 and 1 361 992 for NGC

6709.

Three algorithms (Q-I, Q-II, HashQuad) were imple-

mented in Java, and the experiments were conducted us-
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Table 5 Time Complexity of Three Quadrilateral Based Algorithms

Q-I Q-II HashQuad

Construction time O(N4

1
+ N4

2
) O(N4

1
+ N4

2
) O(N4

1
+ N4

2
)

Search and comparison time O(N4

1
N4

2
) O((N4

1
+ N4

2
) log N2) O((N4

1
+ N4

2
) log B)

Verification time O(V N1N2) O(V N1N2) O(V N1N2)

Fig. 2 One captured image of star cluster M67.

ing an Intel(R) Core(TM) i7-6700 CPU @ 3.4 GHz com-

puter running Microsoft Windows 10.

Q-I, Q-II and HashQuad are all based on quadrilat-

erals. The indexing and searching approaches of their

quadrilateral feature database are different. In Q-I, the

feature database is sorted and binary search is used in the

quadrilateral matching process (Lin et al. 2000). In Q-

II, a kd tree is built as the index of the feature database

(Heyl 2013), and the nearest search based on the kd tree

is applied in matching quadrilaterals.

Each record in the quadrilateral feature databases for

M67 and NGC 6709 is mapped into a bucket using LSH.

2-stable hash functions are applied in constructing one

hash table. In the hash function given by Equation (1),

we set: W = 300, b = 56.

The number of buckets produced and the size of the

buckets (average number of star objects in a bucket) for

the two star clusters are shown in Figures 3 and 4, re-

spectively. The selected objects in the M67 star cluster

are organized into 410 buckets, and the selected objects

in the NGC 6709 star cluster are placed in 405 buckets.

The number of objects in each bucket is obviously differ-

ent. HashQuad maps a selected quadrilateral on the CCD

image into one bucket, and the search range is only in this

one bucket, instead of searching the entire quadrilateral

feature database like Q-I.

We evaluate the performance of three algorithms ac-

cording to the quadrilateral feature database construction

time, search and comparison time, and searching times

(number of searching quadrilaterals from Guide DB for

matching with the quadrilaterals in the CCD image). In

addition, a selected quadrilateral in the CCD image may

fail to match with the quadrilaterals from Guide DB, and

one or more quadrilaterals in the CCD image will be cho-

sen. We analyze the number of selected quadrilaterals

in the CCD image till the validation succeeds. The ex-

perimental results for 20 images of each star cluster are

shown in Tables 1 to 9.

From Tables 1 to 9, the following conclusions can be

drawn:

(1) In terms of search and comparison time, although

HashQuad is not always less than Q-I or Q-II, the

best performance is obtained for most of the im-

ages, and its total average time (validation time is

ignored), including the feature database construction

time, is the least among the three algorithms.

(2) The search times of HashQuad are less than those

of Q-I, because Q-I searches similar quadrilaterals

in the whole feature database, whereas HashQuad

searches similar quadrilaterals in one bucket. For

some images, HashQuad needs many more search

times than Q-II, because the size of their hashing

buckets is big.

(3) HashQuad requires minimal time to build the feature

database because it only performs simple mappings

using the LSH. Comparatively, Q-II needs to build a

kd tree for the feature database and takes the most

time.

(4) All images are matched successfully, but the num-

ber of selected quadrilaterals in each CCD image

may be different. Except for image No.18 and No.19

of NGC 6709, Q-I and HashQuad have almost the

same number of quadrilaterals selected in a CCD im-

age. Theoretically, the LSH method is based on the

p-stable hash function defined in Equation (1), and

although it has a high probability to hash similar ob-

jects into the same bucket, similar objects may also

be assigned to different buckets. The experimental

results demonstrate that although the search range
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Fig. 3 Hash buckets produced by LSH for M67.
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Fig. 4 Hash buckets produced by LSH for NGC 6709.

Table 6 Average Performance of Three Algorithms for M67

Q-I Q-II HashQuad

Average time of constructing the feature database (ms) 1067 29 729 702

Average time of search and comparison (ms) 10.73 3.81 8.32

Total (ms) 1077.73 29732.81 710.32

is small, in most cases, HashQuad does not require

more quadrilaterals to successfully make a CCD im-

age match.

5 CONCLUSIONS

The position and brightness of stars are important infor-

mation for astronomical research. The information ex-

tracted from CCD images of a dense star field is usually

matched to the corresponding information from a stellar

catalog. Various catalog matching algorithms have been

developed. Given the big navigation feature database

based on quadrilaterals, this paper presents an LSH-

based algorithm to solve the star-image-catalog matching

problem. The efficiency of the quadrilateral algorithm

is improved by the proposed algorithm through hashing

quadrilateral models in the navigation feature database to

different hash buckets to reduce the search range. In the

future, we plan to investigate further research on LSH-

based methods. More parameters will be tested, and the

application of multi-LSH techniques in the star-image-

catalog matching problem will be explored to address

missing matches.



B. Liu et al.: Matching CCD Images to a Stellar Catalog 22–9

Table 7 Average Performance of Three Algorithms for NGC 6709

Q-I Q-II HashQuad

Average time of constructing the feature database (ms) 1870 12 352 1511

Average time of search and comparison (ms) 19.04 13.48 36.53

Total (ms) 1889.04 12365.48 1547.53

Table 8 The Number of Selected Quadrilaterals in the CCD Images of M67

Image ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q-I 1 1 1 154 2 2 1 18 1 1 1 1 1 1 1 1 1 1 1 18

Q-II 3 2 2 154 2 2 1 18 1 1 3 3 3 3 3 3 3 3 1 18

HashQuad 1 1 1 154 3 3 1 18 1 1 1 1 1 1 1 1 1 1 1 19

Table 9 The Number of Selected Quadrilaterals in the CCD Images of NGC 6709

Image ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q-I 3 2 2 3 3 3 3 3 9 13 3 3 2 2 2 2 10 2 4 3

Q-II 4 12 10 4 3 3 3 3 10 13 4 4 5 5 6 6 12 11 22 4

HashQuad 4 2 2 4 5 5 5 5 9 13 3 3 4 4 4 4 10 35 114 3
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