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Abstract Motivated by the desire to understand the rich dynamics of precessionally driven flow in a

liquid planetary core, we investigate, through numerical simulations, the precessing fluid motion in a ro-

tating cylindrical annulus, which simultaneously possesses slow precession. The same problem has been

studied extensively in cylinders, where the precessing flow is characterized by three key parameters: the

Ekman number E, the Poincaré number Po and the radius-height aspect ratio Γ. While in an annulus,

there is another parameter, the inner-radius-height aspect ratio Υ, which also plays an important role

in controlling the structure and evolution of the flow. By decomposing the nonlinear solution into a set

of inertial modes, we demonstrate the properties of both weakly and moderately precessing flows. It is

found that, when the precessional force is weak, the flow is stable with a constant amplitude of kinetic

energy. As the precessional force increases, our simulation suggests that the nonlinear interaction be-

tween the boundary effects and the inertial modes can trigger more turbulence, introducing a transitional

regime of rich dynamics to disordered flow. The inertial mode u111, followed by u113 or u112, always

dominates the precessing flow when 0.001 ≤ Po ≤ 0.05, ranging from weak to moderate precession.

Moreover, the precessing flow in an annulus shows more stability than in a cylinder which is likely to be

caused by the effect of the inner boundary that restricts the growth of resonant and non-resonant inertial

modes. Furthermore, the mechanism of triadic resonance is not found in the transitional regime from a

laminar to disordered flow.

Key words: Astrometry and Celestial Mechanics: terrestrial planets — planets and satellites: interiors

— planets and satellites: instabilities: waves

1 INTRODUCTION

With significant applications in various research fields,

the problem of precessionally driven flow has been inves-

tigated for a long time by theoretical, experimental and

numerical studies (Wood 1966; Gans 1970; Kobine 1995;

Tilgner & Busse 2001; Zhang et al. 2010b). In planetary

fluid dynamics, it is suggested that a precessing flow, in-

stead of thermal or compositional convection, might be a

candidate for generating the geomagnetic field (Malkus

1994; Tilgner 2007). In the aerospace industry, a preces-

sionally driven flow in a fuel tank may also induce haz-

ardous instability of a spinning spacecraft (Bao & Pascal

1997). In laboratory experiments of rotating fluids, a pre-

cessing flow always arises from Earth’s rotation if it is

not parallel to the rotation of the fluid container (Boisson

et al. 2012).

Extensive studies have been done on this problem in

spherical, spheroidal, cylindrical and annular geometries.

In a sphere, spherical shell or weakly deformed spheroid,

the precession induces a flow with constant vorticity in

the precessing frame which can be described by an in-

ertial wave mode with azimuthal wave number m = 1

in the mantle frame of reference (Busse 1968; Noir et al.

2001; Zhang et al. 2010a; Kida 2011; Zhang et al. 2014).

Meanwhile, a geostrophic flow develops from the inner

and/or outer boundary layers. When the precession rate

is large enough, a large-scale precessional flow becomes

unstable and leads to growth and collapse of small scales.

The key difference between the cases of an annulus and
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a sphere is that an annulus has more geometrical param-

eters that could be tuned, which reveals richer dynamics

inherent to this problem.

However, in cylindrical geometry, a precessionally

driven flow does not reduce to a uniform vorticity. The

flow can be described by a superposition of cylindri-

cal inertial modes and viscous boundary effects (Liao &

Zhang 2012). When the precession rate is small, a sin-

gle inertial mode with simple spatial structure and time-

independent amplitude is directly driven by the preces-

sional force at resonance and dominates the precessing

flow (laminar flow). As precession rate increases, the

simple spatial structure breaks into a complex form and

the velocity amplitude becomes time-dependent because

of nonlinear interactions between inertial modes and vis-

cous boundary layers (disordered flow). This could be

one of the mechanisms that explains the breakdown of

laminar flow and the transitional dynamics to disordered

flow when Poincaré force increases (Kong et al. 2015).

There is also a different mechanism of triadic reso-

nance to explain how laminar flow transits to disordered

flow in precessing cylinders (Kobine 1996; Lagrange

et al. 2008), in which the breakdown of laminar flow

is rooted in the nonlinear interactions among three in-

ertial modes. The primary inertial mode (e.g., umnk: the

flow velocity with azimuthal, axial and radial wave num-

bers m, n, k, respectively), which is directly driven by

the Poincaré force (Poincaré mode), can be reinforced

by nonlinear interaction between other inertial modes

(e.g., um̃ñk̃ and um̂n̂k̂). At the same time , any two iner-

tial modes involving the Poincaré mode (e.g., umnk and

um̂n̂k̂) can induce the other inertial mode (e.g., um̃ñk̃).

When a triadic resonance occurs among the three modes

of umnk, um̃ñk̃ and um̂n̂k̂, the following parametric con-

ditions must be satisfied,

|m̃ − m̂| = m, |ñ − n̂| = n, |ω̃ − ω̂| = ω, (1)

where ω refers to the angular frequency of the corre-

sponding mode.

Since planets generally have a solid core, a cylindri-

cal annulus might be a better geometry than a cylinder

to simulate the fluid dynamics in the equatorial region.

In addition, there is another advantage of annular geom-

etry attracting more research attention in that it is readily

realizable in both laboratory experiments and numerical

simulations where there is no singularity in the mathe-

matical formulas in cylindrical coordinates.

In a laboratory experiment, Lin et al. (2014) re-

ported that the triadic resonance exists in the precessing
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Fig. 1 Geometry of a precessing cylindrical annulus with

height h = 1, inner radius ri = 0.269 and outer radius ro = 1.

Cylindrical polar coordinates (s, φ, z) are fitted to the annulus

while the precession angular velocity Ωp is fixed in space and

perpendicular to the rotation angular velocity Ω0.

flow in an annulus, but the numerical studies of Kong

et al. (2015) and Jiang et al. (2015) did not find any ev-

idence that indicates the triadic resonance takes place

in cylinders with several different radius-height ratios.

The question then arises: why are there different mech-

anisms to explain how the laminar flow becomes dis-

ordered as Poincaré force increases in two similar ge-

ometries? Motivated by this, we will re-investigate a pre-

cessing flow in an annulus via numerical simulations and

identify whether the triadic resonance exists.

In the rest of the paper, we present the mathemati-

cal formulation of the problem in Section 2 and describe

the numerical method in Section 3. The results are pro-

vided in Section 4, and a brief summary and discussion

are supplied in Section 5.

2 MATHEMATICAL FORMULATION

The mathematical model considers a homogeneous, in-

compressible fluid with constant viscosity ν and constant

density ρ fully filled in a cylindrical annulus of length

h, inner radius ri and outer radius ro. For convenience,

the cylindrical polar coordinates (s, φ, z) with the corre-

sponding unit vectors (ŝ, φ̂, ẑ) are adopted, where s = 0

is at the symmetry axis of the annulus and z = 0 is at the

bottom (see Fig. 1). The cylindrical annulus rotates with

an angular velocity Ω0 = Ω0ẑ about its axis of symme-

try, where Ω0 is a constant. Meanwhile, the annulus also

undergoes slow precession with an angular velocity Ωp,

which is fixed in the inertial reference frame and perpen-

dicular to Ω0. We set ri = 0.269, ro = 1 and h = 1,

which are exactly the same as those of the experimental

study by Lin et al. (2014) in order to identify the exis-

tence of triadic resonance.
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In the (s, φ, z) coordinates fixed in the rotating an-

nulus, the angular velocity of precession Ωp is time-

dependent,

Ωp = |Ωp|
[

ŝ cos(φ + Ω0t) − φ̂ sin(φ + Ω0t)
]

, (2)

where |Ωp| is the positive constant amplitude. Then the

governing equations of precessionally driven flow would

be

∂u/∂t + u · ∇u + 2
{

ẑΩ0 + |Ωp|
[

ŝ cos(φ + Ω0t) − φ̂ sin(φ + Ω0t)
]}

× u

= −(1/ρ)∇p + ν∇2
u − 2ẑ|Ωp|Ω0s cos(φ + Ω0t), (3)

∇ · u = 0, (4)

where u and p are the velocity vector and reduced pres-

sure to be solved, respectively. The last term on the right

hand side of Equation (3) is the driving force (Poincaré

force) that excites the precessing flow.

By using h, 1/Ω0 and ρh2Ω2
0 as the scales of length,

time and pressure, respectively, the non-dimensional

equations are obtained as

∂u/∂t + u · ∇u

+2
{

ẑ + Po
[

ŝ cos(φ + t) − φ̂ sin(φ + t)
]}

× u

= −∇p + E∇2
u − 2ẑsPo cos(φ + t), (5)

∇ · u = 0, (6)

where the Poincaré number Po = |Ωp/Ω0| and the

Ekman number E = ν/(|Ω0|h2).

In the rotating frame of reference, the flow on the

boundary is non-slip, imposing

us = uφ = uz = 0 (7)

on the bounding surface of the annulus. The initial condi-

tion is not important and can be arbitrary since the system

will reach a nonlinear equilibrium state.

The problem of precessing flow defined by

Equations (5)–(6) subject to the boundary conditions in

Equation (7) will be solved numerically by a finite dif-

ference method to reveal the evolution of precessing flow

and check the existence of triadic resonance.

3 NUMERICAL METHOD OF 3-D FINITE

DIFFERENCE

Unlike a cylinder or sphere, there is no axial or polar sin-

gularity in an annulus when cylindrical polar coordinates

are adopted, so it is very suitable to use the finite differ-

ence method to solve this kind of problem.

The finite difference method used in our simula-

tions is similar to that of Chan et al. (2006) which will

be briefly described hereafter. In the spatial discretiza-

tion, the annulus is divided uniformly in radial (s), az-

imuthal (φ) and axial (z) coordinates (a nonuniform grid

also can be used in s and/or z coordinates). A stag-

gered grid is used to represent the unknown variable

u and p in which the radial component of velocity us

is located at [(i + 0.5)∆φ, ri + j∆s, (k + 0.5)∆z]

(the nodal point of s and midpoints of φ and z, here k

should not be confused with the radial wave number k

in this context), the azimuthal component uφ is located

at [i∆φ, ri + (j + 0.5)∆s, (k + 0.5)∆z] and the axial

component uz at [(i+0.5)∆φ, ri +(j +0.5)∆s, k∆z],

while the pressure p is located at the center of the grid.

All spatial operators are discretized by a central differ-

ence scheme with a second order accuracy.

The approximate factorization method is used in

temporal discretization (Dukowicz & Dvinsky 1992) by

splitting the Crank-Nicolson scheme of the equations.

In this method, the time advancing from tn to tn+1 is

split into two steps: a prediction and a correction step

where velocity and pressure are decoupled, and thus can

be solved separately. The procedure is briefly described

as follows.

The first step: to predict a temporary velocity ũ

[I − (∆t/2)L] ũ = [I + (∆t/2)L] û

+∆t(u · ∇u)n+1/2 (8)

with

û = u
n − (∆t/2)Gpn, (9)

where I is the unitary matrix, L is the discrete spatial

operator referring to the linear terms in Equation (5)

and G is the discrete operator representing the gradi-

ent. The nonlinear term at the intermediate time step

in Equation (8) is approximated explicitly by using the

Adams-Bashford scheme of the second order as

(u · ∇u)n+1/2 = (3/2)(u · ∇u)n

−(1/2)(u · ∇u)n−1 + O(∆t2).(10)

After solving the temporary velocity ũ in

Equation (8), the second step is to obtain pn+1 from

Equation (11) and u
n+1 from Equation (12) as follows

so that u
n+1 satisfies the incompressible condition in

Equation (6). It reads as the following step.

The second step: to solve the pressure and correct the
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temporary velocity

(∆t/2)DGpn+1 = Dũ, (11)

u
n+1 = ũ − (∆t/2)Gpn+1, (12)

where D is the discrete divergence operator. It is noted

that this splitting scheme remains at second order accu-

racy in time and space domains.

Finally, both steps will transform to a typical linear

system Ax = b, which can be solved by an iterative

method. In this study, we take grid numbers in (s, φ, z)

coordinates as (100,180,100) and time step ∆t = 0.001.

The size of matrix A is about 5.4M×5.4M (for ũ, 1M=

106) or 1.8M×1.8M (for pn+1), which requires parallel

computation that can solve massive linear problems. The

computational code has been verified to be correct and

meet the second order precision.

As for parameters, when the Ekman number E is

sufficiently small such that the dynamics of a precessing

flow are dominated by the effects of rotation, the precise

value of E becomes physically and mathematically less

significant. Since most laboratory experiments were per-

formed in the range 10−5 ≤ E ≤ 10−4 (e.g., Kobine

1995, Lin et al. 2014), we take E = 5 × 10−5 in our

numerical simulations. The Poincaré number Po is the

key parameter to control the degree of nonlinearity in a

precessing flow, hence a few Po values from 0.001 to

0.05 are adopted in the numerical simulations which ex-

tend the regime from weak precession (Po/
√

E ≪ 1) to

moderate precession (1 ≤ Po/
√

E ≤ 10).

4 RESULTS

In the classical theory of cylindrical geometry, there ex-

ist three controlling parameters that characterize the pre-

cessing flow: the Ekman number E, denoting the rel-

ative importance of the viscous force relative to the

Coriolis force; the geometrical parameter Γ, represent-

ing the radius-height aspect ratio of the cylinder; and the

Poincaré number Po, measuring the magnitude of the

precessional force. However, in an annulus, the inner-

radius-height aspect ratio Υ = ri/h also plays an im-

portant role not only in influencing the structure of the

precessing flow but also in controlling the time evolution

of a nonlinear precessing flow. To elucidate the precise

mechanism causing instabilities of the precessional flow

in an annulus, a good way is to expand the nonlinear flow

into a complete set of inertial modes for a cylindrical an-

nulus (the completeness of the inertial modes is partly

proved by Cui et al. 2014). According to Liao & Zhang

(2012), Kong et al. (2015) and Jiang et al. (2015), the

velocity field can be written as

u(s, φ, z, t) = ũ +

K
∑

k=1

A00k(t)u00k(s)

+
M
∑

m=1

K
∑

k=1

1

2
[Am0k(t)um0k(s, φ) + c.c.]

+

N
∑

n=1

K
∑

k=1

1

2
[A0nk(t)u0nk(s, z) + c.c.]

+

M
∑

m=1

N
∑

n=1

2K
∑

k=1

1

2

[

Amnk(t)umnk(s, φ, z)

+c.c.
]

, (13)

where c.c. represents the complex conjugate of the pre-

vious term. The multiple components of the precessing

flow may include: the boundary layer flow ũ; the axisym-

metric, non-axisymmetric geostrophic mode u00k(s),

um0k(s, φ) with m ≥ 1; the axisymmetric oscillatory

inertial mode u0nk(s, z) with n ≥ 1; and the non-

axisymmetric inertial wave modes umnk(s, φ, z) with

m ≥ 1 and n ≥ 1. Note k is always greater than or equal

to 1. A precessing flow resulting from numerical simu-

lations can be decomposed into the inertial eigenmodes

to understand the mechanism of nonlinear interactions in

an annulus.

4.1 Structure of the Precessing Flow

To reveal the features of a nonlinear precessing flow, the

total kinetic energy density Ekin(t) and radial distribu-

tion of geostrophic flow UG(s) are introduced as

Ekin(t) =

1

2π(Γ2 − Υ2)

∫ 1

0

∫ Γ

Υ

∫ 2π

0

|u(t)|2sdφdsdz, (14)

UG(s) =
1

2π

∫ 1

0

∫ 2π

0

φ̂ · u(s, φ, z)dφdz. (15)

The results obtained from numerical simulations using

different Poincaré numbers are summarized with the evo-

lution of Ekin in Figure 2, the spatial structure of velocity

component uz in Figure 3 and the radial distribution of

UG in Figure 4.

Due to the viscous boundary effect, at a small Ekman

number
√

E ≪ 1, the flow will take a long time t ≥
O(1/

√
E) to reach nonlinear equilibrium. The numerical

simulation usually requests the computation to continue

running until the dimensionless time t = 1000 ∼ 3000,
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more than a hundred rotation periods. Figure 2 shows the

evolution of kinetic energy density within the last period

of 300 time units under nonlinear equilibrium. The start

and end of this period are marked as t = 0 and t = 300

respectively. Note that the scalings of Ekin are different

for each Po in Figure 2.

Several evident characteristics are revealed from the

numerical simulations. First, as displayed in Figure 2, the

kinetic energy density is stable when the precession is

weak (Po ≤ 0.02). In moderate precession, the kinetic

energy increases and starts to change irregularly and non-

periodically. The magnitude of variation is also enhanced

as Po increases, but within a few percent. Second, as il-

lustrated in Figure 3, the structure of the precessing flow,

as expected, becomes disordered gradually when Po in-

creases. Comparing the left column at t = 0 with the

right column at t = 300 in Figure 3, the primary pat-

tern of the spatial structure almost remains unchanged

after hundreds of rotations for each Po under nonlinear

equilibrium. Third, the precessing flow consists of sev-

eral waves (modes) that travel retrogradely (opposite to

the direction of annulus rotation) and the predominant

mode is u111 for 0.001 ≤ Po ≤ 0.05, in agreement with

the result of experiments by Lin et al. (2014). The am-

plitude and frequency of the predominant mode is also

shown in Tables 1 and 2 which list the ten largest |Amnk|
in the precessing flow for various Po.

In a cylinder, when the Ekman number E is suffi-

ciently small, the precessional force resonates directly

with the cylindrical inertial mode whose eigen-frequency

is close to the resonant value 1 at any given aspect ra-

tio Γ (Poincaré mode), and the amplitude of the precess-

ing flow |u| satisfies the asymptotic scaling law |u| =

O(Po/
√

E) at small Po, |u| = O(Po) at large Po and

the transition between them (Liao & Zhang 2012). In an

annulus used by our simulation, the nonlinear precessing

flow, when E is sufficiently small, is laminar with a con-

stant amplitude at small Po (0 < Po ≤ 0.02) (Fig. 2

(a,b)), which obeys the scaling law |u| = O(Po/
√

E).

Thus we can define the weakly nonlinear regime as 0 <

Po/
√

E ≤ C on the specific setup of our simulations,

where C = 2.83, a constant of O(1).

The predominant mode is u111 in an annulus in our

setup (Γ = 1), which is different from the case in a cylin-

der where the mode u112 dominates when Γ = 1.045945

(Liao & Zhang 2012), even though the aspect ratios Γ of

both systems are almost the same. In a cylinder with Γ =

1.045945, the eigen-frequency of mode u112 is just 1, ex-

actly the same as the precessional frequency (ω = 1), so

the mode u112 would resonate directly by Poincaré forc-

ing and dominates the precessing flow. However, in the

annulus, the largest three modes are u111, u113 and u112,

which dominate the precessing flow. This is because their

eigen-frequencies are 1.2748, 0.4968 and 0.7312, respec-

tively (see Tables 1 and 2), in the vicinity of the fre-

quency of Poincaré forcing (ω = 1). Other higher-order

modes are strongly diminished by viscous dissipation,

making small contributions to the precessing flow even

though its frequency is close to the resonant value.

It is anticipated that the precessing flow has rich dy-

namics in annuli in the moderately precessing regime

C < Po/
√

E ≤ 10, since in cylinders, the precess-

ing flow is strongly turbulent where the inertial mode

which is directly driven by Poincaré force is still predom-

inant, but many nonresonant inertial modes are spawned

and their amplitudes have the same order as the primary

mode. Figure 2(d,e) and Figure 3(d,e) illustrate a simi-

lar phenomenon for the annulus as Po increases, but the

turbulence amplitude is not as high as in cylinders. The

flow exhibits more stability in an annulus than in a cylin-

der because the newly excited inertial modes are reduced

by the boundary effects with the inner sidewall involved.

When Po/
√

E > 10, on the contrary, the precess-

ing flow has weak turbulence in cylinders, the ampli-

tude of kinetic energy variation is small and the spatial

structure is simpler than that of the turbulent flow when

1 < Po/
√

E ≤ 10 (Jiang et al. 2015, Kong et al. 2015).

For this reason, we will focus on the transition regime of

1 < Po/
√

E ≤ 10 in our study for the geometry of the

annulus where rich dynamics are expected.

From numerical simulations, it is found that the ki-

netic energy density of geostrophic flow is about 1% of

the total kinetic energy density Ekin when Po = 0.0228,

and increases to 10% of Ekin when Po = 0.05, which

implies the geostrophic flow does not dominate the pre-

cessing flow when Po ≤ 0.05 or Po/
√

E ≤ 7.07. This

is compatible with the numerical study in a cylinder by

Jiang et al. (2015) where the geostrophic flow is also very

weak when 1 < Po/
√

E ≤ 10.

It has been proved that the nonlinear interaction

of the inertial mode cannot generate or maintain the

geostrophic flow UG(s)φ̂ (Jiang et al. 2015, Kong et al.

2015). In fact, the steady geostrophic flow is spawned

by the nonlinear effect in the viscous boundary layers.

The geostrophic flow is in the form of a differential

rotation depending on s and determined by the struc-
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(a)

(b)

(c)

(d)

(e)

Fig. 2 Time evolution of kinetic energy density Ekin for the precessing flow at E = 5 × 10−5 in the cylindrical annulus with

ri = 0.269 and ro = 1 for (a) Po = 0.01; (b) Po = 0.02; (c) Po = 0.0228; (d) Po = 0.035 and (e) Po = 0.05.

ture of the predominant inertial mode u111. Figure 4

shows the geostrophic flow possesses a retrograde rota-

tion with the lowest negative amplitude at s = 0.287,

and a prograde rotation with a peak positive amplitude

at s = 0.390. When Po > 0.02375, the prograde rota-

tion will not survive and the geostrophic flow always ro-

tates retrogradely. The numerical simulations also show

that the geostrophic flow has an abnormal local ampli-

tude peak at s = 0.7 when 0.021875 ≤ Po ≤ 0.03125,

which does not appear beyond this parametric range, i.e.,

Po ≤ 0.02 or Po ≥ 0.035. This feature of radial distri-

bution has not been found in the precessing flow in cylin-

ders (Jiang et al. 2015, Kong et al. 2015) and may result

from the complicated nonlinear interaction as the inner

boundary layer is involved. Thus the parameter regime

0.021875 ≤ Po ≤ 0.03125 could be regarded as the di-

vision between weak and strong nonlinearity in the cur-

rent study.

4.2 Search for Triadic Resonance

In order to check the existence of triadic resonance in

the precessing flow in a rotating annulus, the geome-

try of our numerical simulations is deliberately set to

be the same as that of the laboratory experiment by Lin

et al. (2014). The parameters adopted in their study are

Po =(1.0E–2, 1.0E–2, 5.3E–3) in correspondence with
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(a1)

(b1)

(c1)

(d1)

(e1)

(a2)

(b2)

(c2)

(d2)

(e2)

Fig. 3 Contours of uz at the z = 1/2 plane for (a1,a2) Po = 0.01; (b1,b2) Po = 0.02; (c1,c2) Po = 0.0228; (d1,d2) Po = 0.035 and (e1,e2)

Po = 0.05 at two different instants: t = 0 on the left and t = 300 on the right. Solid lines are for positive uz and dashed lines are for negative

uz . From top to bottom, the contour levels are different for different Poincaré numbers.

E=(1.0E–5, 1.0E–5, 5.0E–6) that lead the velocity scal-

ing as Po/
√

E=(3.16, 4.43, 2.37), ranging in the transi-

tion parameter regime 1 < Po/
√

E ≤ 10. In our simula-

tions, several Poincaré numbers are set from Po = 0.001

to 0.05, leading Po/
√

E in the range (0.141, 7.07) which

is compatible with the values of the laboratory experi-

ment.

Suppose triadic resonance is the mechanism by

which the laminar flow breaks and transits to disordered

flow in a precessing annulus. Then there must exist three

inertial modes with large amplitude that dominate the

flow and obey the triadic resonant conditions defined in

Equation (1). To check the existence of triadic resonance,

an effective way is to use the general representation in

Equation (13) to calculate the coefficients Amnk for each

mode of the precessing flow and see if the wave num-

ber m, n and the corresponding frequency ωmnk of the

large modes satisfy the conditions. For the modes with
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Fig. 4 Radial distribution of the scaled axisymmetric geostrophic flow UG/Po for different Po at E = 5× 10−5 in the precessing

cylindrical annulus where s is the radial coordinate. Note the velocity should vanish on the boundaries, but the discrete uφ is not

located right at s = 0.269 or s = 1 in the staggered-grid.

m ≥ 1, n ≥ 1 and k ≥ 1, Amnk can be derived from an

integration of Equation (13) with the numerical solution

u as

Amnk(t) = 2

∫ 1

0

∫ Γ

Υ

∫ 2π

0

(u∗

mnk · u) sdφdsdz,(16)

where u
∗

mnk refers to the complex conjugate of mode

umnk (eigenmode, see Greenspan 1968). For other

modes with m = 0 or n = 0, Amnk can be calculated

in the same way. It should be noted that u
∗

mnk and umnk

are orthogonal and normalized (Zhang & Liao 2017).

The values of |Amnk| calculated from our numer-

ical results are listed in Tables 1 and 2 for different

Poincaré numbers. Through extensive search in the tran-

sitional regime from laminar flow to disordered flow

when 0.0228 ≤ Po ≤ 0.05 (no triadic resonance is ex-

pected to take place outside of the transitional regime),

there is no indication that the triadic resonance exists

with three inertial modes dominating the precessing flow

and satisfying the conditions in Equation (1).

Table 1 gives the ten largest coefficients |Amnk| for

Po = 0.01, 0.02 and 0.0228 with Po/
√

E = 1.41, 2.83

and 3.23, respectively. The top three modes are u111,

u113 and u112 for Po = 0.0228 which shows no triadic

resonance exists. When Po increases further to 0.035

and 0.05 with Po/
√

E ranging from 4.95 to 7.07, the

precessing flow undergoes stronger nonlinear interac-

tions and the top ten coefficients |Amnk| are presented in

Table 2. The dominant modes are u111, u112 and u113,

almost the same as the case for smaller Po, except that

|A112| surpasses |A113|. The lack of three modes that sat-

isfy the conditions in Equation (1) also does not indicate

the existence of triadic resonance.

5 SUMMARY AND DISCUSSION

We have studied the precessionally driven flow, which

is bounded in a cylindrical annulus by numerical simu-

lations with a 3-D finite difference method. A parallel

computational code is developed to solve the nonlinear

fluid motion and the flow features are elucidated with the

evolution of kinetic energy density, spatial structure of uz

and the radial distribution of geostrophic flow. In the cur-

rent study, we intentionally set Γ = 1 and Υ = 0.269 in

the annular geometry in order to compare with the results

of laboratory experiments. By decomposing the nonlin-

ear solution into a complete inertial-mode set, we do not

find the well-known triadic resonance existing in the pre-

cessing flow, which is inconsistent with the findings in

laboratory experiments by Lin et al. (2014), but in agree-

ment with the results by Kong et al. (2015) and Jiang

et al. (2015).

To offer deep insight into understanding of the pre-

cessional flow in an annulus, we suggest an extensive

experimental study to investigate if Poincaré force res-

onates directly with the basic inertial modes by setting

the inner radius ri and outer radius ro with fixed h to
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Table 1 Ten largest coefficients |Amnk| for Po = 0.01, 0.02 and 0.0228.

(m, n, k) ωmnk |Amnk |Po=0.01 |Amnk |Po=0.02 |Amnk|Po=0.0228 (m, n, k)

(1,1,1) 1.2748 0.7373E–02 0.1468E–01 0.1668E–01 (1,1,1)

(1,1,3) 0.4968 0.2992E–02 0.5643E–02 0.6806E–02 (1,1,3)

(1,1,2) 0.7312 0.2814E–02 0.5558E–02 0.6798E–02 (1,1,2)

(1,1,5) 0.2986 0.8035E–03 0.1524E–02 0.1535E–02 (1,1,5)

(1,1,1)− -1.0008 0.5179E–03 0.9934E–03 0.1205E–02 (1,1,1)−

(1,3,3) 1.1938 0.4888E–03 0.7894E–03 0.1103E–02 (1,3,3)

(1,3,5) 0.8118 0.3819E–03 0.7258E–03 0.9145E–03 (1,3,4)

(1,3,4) 0.9722 0.3796E–03 0.7256E–03 0.7418E–03 (1,1,3)−

(1,1,3)− -0.4439 0.3159E–03 0.6754E–03 0.7358E–03 (1,3,5)

(1,1,9) 0.1650 0.3004E–03 0.6032E–03 0.6817E–03 (1,1,9)

Notes: The superscript minus sign of (m, n, k)− refers to the corresponding mode umnk with a negative

angular frequency ω < 0. The order of modes according to |Amnk| for Po = 0.0228 is slightly different

from that for Po = 0.01, 0.02, and the frequency can be found in the second column correspondingly.

Table 2 Ten largest coefficients |Amnk| for Po = 0.035 and Po = 0.05.

(m, n, k) ωmnk |Amnk|Po=0.035 |Amnk |Po=0.05 ωmnk (m, n, k)

(1,1,1) 1.2748 0.2558E–01 0.3536E–01 1.2748 (1,1,1)

(1,1,2) 0.7312 0.1077E–01 0.1799E–01 0.7312 (1,1,2)

(1,1,3) 0.4968 0.8420E–02 0.1104E–01 0.4968 (1,1,3)

(1,1,5) 0.2986 0.2295E–02 0.4926E–02 0.9736 (3,1,1)

(9,1,2)− –0.3520 0.1464E–02 0.2807E–02 –1.0008 (1,1,1)−

(1,3,3) 1.1938 0.1372E–02 0.2541E–02 0.2986 (1,1,5)

(1,1,1)− –1.0008 0.1300E–02 0.2345E–02 1.1938 (1,3,3)

(1,1,3)− –0.4436 0.1256E–02 0.2144E–02 1.6384 (2,2,1)

(1,3,4) 0.9722 0.1237E–02 0.2114E–02 0.6838 (0,2,4)

(1,1,9) 0.1650 0.1095E–02 0.2032E–02 0.8254 (4,1,1)

satisfy the resonance condition:

σ2
1nk =

(nπ)2

(nπ)2 + ξ2
1nk

= (1/2)2, (n = 1, 3, 5, · · · , k = 0, 1, 2, 3, · · ·)

where σ is the half-frequency of inertial mode u1nk and

the radial wave number ξ is determined by the following

equation:

[ξriJ0(ξri) + (1/σ − 1)J1(ξri)] ·
[ξroY0(ξro) + (1/σ − 1)Y1(ξro)]

= [ξriY0(ξri) + (1/σ − 1)Y1(ξri)] ·
[ξroJ0(ξro) + (1/σ − 1)J1(ξro)] ,

in which Jm and Ym are standard Bessel functions of

the first and second kind, respectively; the subscripts of

ξ and σ are omitted.

Our simulations demonstrate that the inertial mode

u111 always dominates the precessing flow when

0.001 ≤ Po ≤ 0.05. The flow is stable with a constant

amplitude of kinetic energy when Po ≤ 0.02. As the pre-

cession rate increases to the range 0.02 < Po ≤ 0.05, the

laminar flow breaks and shifts into the transition regime

to disordered flow where the nonlinear viscous boundary

effects play an important role in the dynamics of precess-

ing flow instead of the mechanism of triadic resonance.

In an annulus, the flow is more stable than in a cylin-

der as an additional inner boundary restricts the growth

of inertial modes with viscous damping. The geostrophic

flow is weak when Po < 0.05 and its radial distribu-

tion shows that there is a boundary parameter region

0.02185 ≤ Po ≤ 0.03125 between the weak and strong

nonlinearity of the precessional flow.

Since the size of the Ekman number in the Earth’s

outer core is extremely small and the precessing flow

in the outer core is likely to be highly turbulent, it is

desirable to expand our knowledge on this problem to

smaller Ekman numbers and larger Poincaré numbers,

which makes the parallel computation very expensive, as

a smaller time step and a higher spatial resolution are

required. A new code that uses parallel computation to

fulfill the task based on many-core architecture (such as

Intel MIC) is under construction instead of the present
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one built on multi-core CPUs. Moreover, a precession-

ally driven planetary dynamo model can also be carried

out based on this numerical framework.
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