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Abstract In our previous work, we developed a model to study the effects of rotation and/or tidal distor-

tions on anharmonic radial oscillations and hence on the radial velocity curves of the polytropic models

of pulsating variable stars. We considered the first three modes (fundamental and the next two higher

modes) for the polytropic models of index 1.5 and 3.0 in that work. In the present paper, we are further

extending our previous work to study the effect of the interaction of various modes on anharmonic ra-

dial oscillations and hence on radial velocity curves of the rotationally and/or tidally distorted polytropic

models of pulsating variable stars. For this purpose, we have considered the following cases: (i) funda-

mental mode (ii) fundamental and the first mode, (iii) fundamental and the next two modes and finally

(iv) fundamental and the next three higher modes of pulsation in our study. The objective of this paper

is also to investigate whether the interaction of various modes affects the results of our previous study

or not. The results of this study show that the interaction of the fundamental mode with higher modes

appreciably changes the shape of the radial velocity curve of rotationally distorted and rotationally and

tidally distorted polytropic models of pulsating variable stars.
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1 INTRODUCTION

Several types of pulsating variables stars have been ob-

served in the sky. Many of these are single rotating stars

whereas some of the pulsating variable stars have also

been found in binary systems. The radial velocity curves

of such pulsating variable stars have also been plotted

through observations and it has been found that they are

not exactly sinusoidal. Rosseland (1943) proposed the

theory of anharmonic oscillations to explain such vari-

ation in the shapes of radial velocity curves of variable

stars. According to this theory, the normal sinusoidal

wave gets distorted on account of the interaction between

various modes that are concurrently excited in the case of

pulsating variable stars. Rosseland (1949) extended the

theory of anharmonic pulsations to include the effect of

higher modes and higher order on the shape of the ra-

dial velocity curve of a pulsating stellar model. This the-

ory has been subsequently used by different investiga-

tors such as Schwarzschild & Savedoff (1949), Prasad

(1949a,b), Bhatnagar & Kushwaha (1951), Chatterji

(1952), Gurm (1963) and Kumar et al. (2018) for study-

ing various problems associated with pulsating variable

stars.

van der Borght & Murphy (1966) investigated the an-

harmonic adiabatic radial pulsations of an early main se-

quence nonrotating star of 10 solar masses. They found

that the inclusion of higher modes such as fifth and sixth

together with the third order terms appreciably changes

the shape of the radial velocity curves of nonrotating

stars. However, they also concluded that the inclusion

of only higher modes does not improve agreement be-

tween the theoretical and observed radial velocity curves.

Prasad & Mohan (1969) used the theory of anharmonic
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pulsation to study the shapes of the radial velocity curve

for a 15.6 solar mass star in the helium-burning phase of

its evolution. They also investigated the effect of the first

four modes of pulsation on the shapes of radial velocity

curves for non-rotating stars. They found that with the

inclusion of second, third and fourth modes the skew-

ness ratio decreases, bringing it nearer to the observed

values. Mohan (1972) considered the anharmonic pul-

sation of a 15.6 solar mass star in the helium burning

phase taking into account the fifth and sixth modes in the

anharmonic pulsation equation of nonrotating stars. He

found that with the inclusion of the fifth mode the skew-

ness coefficient again increases and the inclusion of the

sixth mode creates humps in the radial velocity curve of

a nonrotating star. However, in both cases – with the in-

clusion of modes higher than fourth mode – the radial ve-

locity curves start deviating from the observed radial ve-

locity curves of Cepheids. So, they concluded that modes

higher than the fourth are not active in most Cepheid type

pulsating variable stars.

Using simultaneous photometric and spectroscopic

observations, Gieren (1980) showed that the δ-Cephei

star AH Vel is pulsating in the first and second harmonic.

Kiss et al. (1999) presented the photometric measure-

ment of variable V2109 Cyg and also obtained its ra-

dial velocity curve. They showed that V2109 Cyg is a

pulsating variable star that pulsates in the second over-

tone. Arentoft et al. (2001) found multiperiodicity and

cyclic amplitude variability in the light curve of the delta

Scuti star V1162 Ori. They also concluded that the ob-

served linear period changes are not caused by evolu-

tionary effects, but rather by long-period binarity or non-

linear mode interaction. Kjurkchieva et al. (2017) con-

ducted intensive photometric and spectral observations

of the variable star V2551 Cyg. They also studied its ra-

dial velocity curves and found it to be a pulsating star

that pulsates with the fundamental mode.

In our previous work (Kumar et al. 2018, hereafter

Paper 1), we developed a model to study the effect of

rotation and/or tidal distortions on the anharmonic radial

oscillations and hence on the radial velocity curves of the

polytropic models of pulsating variable stars. Extending

this work further in the present paper, we are trying to

study the effect of interaction of various modes on anhar-

monic radial oscillations and hence on the radial velocity

curves of rotationally and/or tidally distorted (hereafter

RTD) polytropic models of pulsating variable stars. One

of the objectives of this paper is also to check whether

interaction of the various modes affects the results ob-

tained in our previous work where we have only taken

into account the case of the first three modes.

In Paper 1 we considered the first three modes (fun-

damental and the next two higher modes) for polytropic

models of index 1.5 and 3.0. However, in the present

work we are considering the following cases: (i) funda-

mental mode (hereafter f mode); (ii) fundamental and

the first mode (hereafter f + 1 mode); (iii) fundamen-

tal and the next two modes (hereafter f + 2 modes) and

(iv) fundamental and the next three higher modes (here-

after f + 3 modes) of pulsation. We have chosen poly-

tropic models of index N = 1.5, 3.0 and 4.0 (to repre-

sent stars in the different stages of evolution: N = 1.5

is for pre-main sequence stars, N = 3.0 for main se-

quence stars and N = 4.0 for post-main sequence stars).

Also for the present work, we have considered the poly-

tropic models for an undistorted star (no rotational or

tidal distortions), a single rotating star (only rotational

distortions) and a rotating star which is a primary compo-

nent of a synchronous, circular and aligned binary system

(or rotationally and tidally distorted star). As discussed

in Paper 1, the present analysis is applicable to highly

centrally condensed pulsating variable stars with small

oscillations that are (i) single and rotating slowly and (ii)

slowly rotating primary components of the synchronous,

circular and aligned binary systems in which the mass of

the secondary is much less than the mass of the primary

star (for more details, the reader can see Paper 1).

This paper is organized as follows:

In Section 2 we present the equation that governs the

anharmonic pulsation of RTD distorted polytropic mod-

els of the stars. A successive approximation method is

discussed in Section 3 to solve the anharmonic pulsation

equation. In Section 4, numerical computations are per-

formed to obtain the solution of the anharmonic pulsation

equation for certain RTD polytropic models of the stars.

Numerical results thus obtained are analyzed and certain

conclusions are discussed in Section 5.

2 ANHARMONIC RADIAL PULSATION

EQUATION OF A RTD POLYTROPIC MODEL

OF A STAR

The equation that governs the anharmonic radial pulsa-

tions of the RTD polytropic model of a star – as obtained

in Paper 1 – can be written as
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Here γ is the ratio of the specific heat, τ is the time variable, θ (0 ≤ θ ≤ 1) is a polytropic parameter, N is the

polytropic index, ω2
1 is the eigenfreqency of the fundamental radial mode, x is a nondimensional variable of the

displacement varying from the center to the surface for a given polytropic model of a star and η1,η2,η3,η4, . . . are the

eigenfuctions of the various modes of the radial oscillation of the RTD polytropic models for the stars, as discussed in

Mohan & Saxena (1985). The coefficients D∗

ij,k and I∗k are constants that can be computed for a given RTD polytropic

model of a star. Also, the displacement qb at the surface is given by

qb = q1 + q2 + q3 + q4 + . . . . (2)

The eigenfunctions and eigenfrequencies have been obtained using the methodology discussed by Mohan &

Saxena (1985). The equations governing radial oscillations of the RTD polytropic model of a star, as obtained by

Mohan & Saxena (1985), in nondimensional form are given by
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Here n is a rotation parameter (2n = Ω2, Ω is the normalized angular velocity of rotation), q is the tidal param-

eter that represents the ratio of mass of the secondary to mass of the primary star, D is separation between the two

components of a binary system, G is the universal gravitational constant, M0 is the total mass of the star, ω2 is the

nondimensional form of the actual eigenfrequencies of oscillation σ, ros is the value of r0 on the outermost surface, N

is the polytropic index, H1, H2, H3 and H4 are nonlinear functions of the distortion parameters n and q, ρc represents

the density at the center, ρ̄ is the average density of the undistorted polytropic model of a star and ξu is the value

of ξ (where ξ is the Lane-Emden variable: specifically we have the values of ξu = 3.65375, 6.89685 and 14.97715

corresponding to the polytropic indexes N = 1.5, 3.0 and 4.0 respectively) at the outermost surface of the polytropic

model.

3 METHOD FOR SOLVING THE EQUATION OF THE ANHARMONIC RADIAL OSCILLATION OF

ROTATIONALLY AND TIDALLY DISTORTED POLYTROPIC MODEL OF A STAR

To solve Equation (1) we have followed the approach that was used in Paper 1. We consider the equations for q1, q2,

q3 and q4

d2q1
dτ2 + q1 = A11,1q

2
1 + 2A12,1q1q2 + 2A13,1q1q3 + 2A14,1q1q4 ,

d2q2
dτ2 + β2q2 = A11,2q

2
1 + 2A12,2q1q2 + 2A13,2q1q3 + 2A14,2q1q4 ,

d2q3
dτ2 + β3q3 = A11,3q

2
1 + 2A12,3q1q2 + 2A13,3q1q3 + 2A14,3q1q4 ,

d2q4
dτ2 + β4q4 = A11,4q

2
1 + 2A12,4q1q2 + 2A13,4q1q3 + 2A14,4q1q4 ,

(4)

where A11,1, A12,1, A13,1, A14,1... are the constants that are to be determined. Following Prasad (1949a,b), we assume

the solution of these equations is in the form

q1 = a0,1 + a1,1 cosn1τ + a2,1 cos 2n1τ + a3,1 cos 3n1τ + a4,1 cos 4n1τ + . . . ,

q2 = a0,2 + a1,2 cosn1τ + a2,2 cos 2n1τ + a3,2 cos 3n1τ + a4,2 cos 4n1τ + . . . ,

q3 = a0,3 + a1,3 cosn1τ + a2,3 cos 2n1τ + a3,3 cos 3n1τ + a4,3 cos 4n1τ + . . . ,

q4 = a0,4 + a1,4 cosn1τ + a2,4 cos 2n1τ + a3,4 cos 3n1τ + a4,4 cos 4n1τ + . . . ,

(5)

where

a0,1, a1,1, a2,1, . . . ,

a0,2, a1,2, a2,2, . . . ,

a0,3, a1,3, a2,3, . . . ,

a0,4, a1,4, a2,4, . . .

and n1 are constants that are to be determined. The values of q1, q2, q3 and q4 are substituted in Equation (4) and on

equating the constant terms and the coefficients of cos kn1τ (for different k) to zero we get

a0,1 =A11,1

[

a2
0,1 +

1

2
a2
1,1 +

1

2
a2
2,1 +

1

2
a2
3,1 + . . .

]

+ 2A12,1

[

a0,1a0,2 +
1

2
a1,1a1,2 +

1

2
a2,1a2,2 +

1

2
a3,1a3,2 + . . .

]

+ 2A13,1

[

a0,1a0,3 +
1

2
a1,1a1,3 +

1

2
a2,1a2,3 +

1

2
a3,1a3,3 + . . .

]

+ 2A14,1

[

a0,1a0,4 +
1

2
a1,1a1,4 +

1

2
a2,1a2,4 +

1

2
a3,1a3,4 + . . .

]

, (6a)
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(
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1

)
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+ 2A13,1

[
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1

2
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1

2
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1

2
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]

+ 2A14,1

[

2a0,1a1,4 + a1,1a0,4 +
1

2
a1,1a2,4 +

1

2
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1
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, (6b)

(

1 − n2
1k

2
)

ak,1 =A11,1

[

1

2

k
∑

i=0

ai,1ak−i,1 +

∞
∑

i=0

ai,1ak+i,1

]

+ A12,1

[

1

2

k
∑

i=0

ai,1ak−i,2 +
1

2
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∑

i=0
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]

+ A13,1

[

1

2
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∑

i=0

ai,1ak−i,3 +
1
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∑
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[

1
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ai,1ak−i,4 +
1

2

∞
∑
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(ai,1ak+i,4 + ak+i,1ai,4)

]

. (6c)

We get a similar equation from the second equation in Equation (4) which is the same as above but with (β2−k2n2
1)ak,2

in place of (1 − k2n2
1)ak,1 and A11,2, A12,2, A13,2 and A14,2 in place of A11,1, A12,1, A13,1 and A14,1 respectively.

In order to solve these algebraic (Eqs. (6a)–(6c)) equations, we suppose that a1,1 is a known small quantity and we

determine the other a’s in terms of a1,1. Considering Equation (6a) we see that a0,1 is a small quantity of the second

order, all other terms are square or products and they contain the term a2
1,1. Similarly, we find that a2,1 is a quantity

of the second order, a3,1 is of the third order and in general ak,1 (k > 1) is of the kth order. We consider the equation

for a1,2 of the third order and a2,2 of the second order and in general ak,2 (k > 1) of the kth order. Therefore, a first

approximation to the solution of Equations (6a)–(6c) can be given as:

a0,1 =
1

2
A11,1a

2
1,1 ,

a2,1 = −
1

6
A11,1a

2
1,1 ,

a3,1 =
1

16

[

1

3
A2

11,1 +
A12,1

(4 − β2)
A11,2

]

a3
1,1 ,

.................................

a0,2 =
1

2
A11,2a

2
1,1/β2 ,

a1,2 =

[

5

6
A11,1 +

(8 − 3β2)

2β2(4 − β2)
A12,2

]

A11,2a
3
1,1

(β2 − 1)
,

a2,2 = −
1

2

A11,2a
2
1,1

(4 − β2)
,

a3,2 =
1

2

[

1

3
A11,1 +

A12,2

(4 − β2)

]

A11,2a
3
1,1

(9 − β2)
,

.................................
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a0,3 =
1

2
A11,3a

2
1,1/β3 ,

a1,3 =

[

5

6
A11,1 +

(8 − 3β3)

2β3(4 − β3)
A13,3

]

A11,3a
3
1,1

(β3 − 1)
,

a2,3 = −
1

2

A11,3a
2
1,1

(4 − β3)
,

a3,3 =
1

2

[

1

3
A11,1 +

A13,3

(4 − β3)

]

A11,3a
3
1,1

(9 − β3)
,

.................................

a0,4 =
1

2
A11,4a

2
1,1/β4 ,

a1,4 =

[

5

6
A11,1 +

(8 − 3β4)

2β4(4 − β4)
A14,4

]

A11,4a
3
1,1

(β4 − 1)
,

a2,4 = −
1

2

A11,4a
2
1,1

(4 − β4)
,

a3,4 =
1

2

[

1

3
A11,1 +

A14,4

(4 − β4)

]

A11,4a
3
1,1

(9 − β4)
,

.................................

and

n1
2 = 1 −

[

5

6
A2

11,1 + (8 − 3β2)A12,1A11,2/ (2β2 (4 − β2))

]

a2
1,1 .

These values of ai,1, ai,2, ai,3, ai,4 and n1 are substituted in Equations (6a)–(6c) and a better approximation is ob-

tained. The new values are resubstituted in Equations (6a)–(6c) and the process is repeated a number of times till we

attain the desired accuracy.

4 NUMERICAL COMPUTATIONS

We have solved the equation of the anharmonic radial os-

cillation up to the first four modes for certain RTD poly-

tropic models of the stars. We have considered the poly-

tropic models with indices 1.5, 3.0 and 4.0 for different

values of the rotational distortion parameter (n) and the

tidal distortion parameter (q) with γ = 5
3 . Simpson’s rule

has been used to numerically evaluate the coefficients I∗k
and D∗

ij,k in the anharmonic pulsation Equation (1). The

numerical technique discussed in Section 3 has been used

to solve the anharmonic pulsation equation, Equation (1).

In Table 1, we describe the important parameters

that have been used in the manuscript. The eigenfrequen-

cies of the pseudo-radial modes of oscillations in the

RTD polytropic models have been obtained using the ap-

proach of Mohan & Saxena (1985) and are presented in

Table 2 for certain polytropic models of the stars. The ra-

dial velocity curves for each model of polytropic index

N = 1.5, 3.0 and 4.0 have been obtained and are shown

in Figures 1–13. The value of the skewness coefficient K

has also been computed in each case and these values are

listed in Table 3.

In the present work, to study the effect of the inter-

action of various modes on the radial velocity curves of

RTD polytropic models for the stars, we have considered

the case of (i) fundamental mode, (ii) fundamental and

the first mode, (iii) fundamental and the next two modes

and finally (iv) fundamental and the next three higher

modes of the pulsation. For computational and numerical

purposes, the following polytropic models of the pulsat-

ing variable stars have been considered: (i) undistorted

star (no rotational or tidal distortion), (ii) single rotat-

ing star (only rotational distortion) and (iii) rotating star

which is a primary component of the synchronous, circu-

lar and aligned binary system (or rotationally and tidally

distorted star) in which the mass of the secondary is as-

sumed to be much less than the mass of the primary star.

5 CONCLUDING OBSERVATIONS

The results shown in Table 2 represent the eigenfrequen-

cies of the fundamental, first, second and third pseudo-
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(a) (b) (c)

Fig. 1 Radial velocity curves of the undistorted polytropic models n = 0.0, q = 0.0).

(a) (b) (c)

Fig. 2 Radial velocity curves of the rotationally distorted polytropic models (n = 0.03, q = 0.0).

(a) (b) (c)

Fig. 3 Radial velocity curves of the rotationally distorted polytropic models (n = 0.05, q = 0.0 ).
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(a) (b) (c)

Fig. 4 Radial velocity curves of the rotationally distorted polytropic models (n = 0.07, q = 0.0).

(a) (b) (c)

Fig. 5 Radial velocity curves of the rotationally and tidally distorted polytropic models (n = 0.525, q = 0.05).

(a) (b) (c)

Fig. 6 Radial velocity curves of the rotationally and tidally distorted polytropic models (n = 0.535, q = 0.07).
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(a) (b) (c)

Fig. 7 Radial velocity curves of the rotationally and tidally distorted polytropic models (n = 0.55, q = 0.1).

(a) f mode (b) f + 1 modes

(c) f + 2 modes (d) f + 3 modes

Fig. 8 Radial velocity curves of the rotationally distorted polytropic models (n varies, q = 0).
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(a) f mode (b) f + 1 modes

(c) f + 2 modes (d) f + 3 modes

Fig. 9 Radial velocity curves of the rotationally and tidally distorted polytropic models with N = 1.5 (both n and q vary).

(a) f mode (b) f + 1 modes

(c) f + 2 modes (d) f + 3 modes

Fig. 10 Radial velocity curves of the rotationally distorted polytropic models with N = 3.0 (n varies and q = 0).
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(a) f mode (b) f + 1 modes

(c) f + 2 modes (d) f + 3 modes

Fig. 11 Radial velocity curves of the rotationally and tidally distorted polytropic models with N = 3.0 (both n and q vary).

(a) f mode (b) f + 1 modes

(c) f + 2 modes (d) f + 3 modes

Fig. 12 Radial velocity curves of the rotationally distorted polytropic models with N = 4.0 (n varies and q = 0).
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Table 1 Various Parameters used in the Manuscript

S. No Parameter Definition

1 n The rotation parameter that represents the distortions due to rotation

(2n = Ω2,Ω is the normalized angular velocity of rotation of the star)

2 q The tidal parameter that represents the distortions due to tidal effects

(q = m2

m1
, mass of the secondary component to the primary component

in a binary system)

3 N Polytropic index

4 qb(t) The displacement at the surface of a star at time t

5 τ A variable for time (τ = ω1t)

6 ω1 Eigenfrequency of the fundamental mode

7 η Relative amplitude of the displacement of an element at a distance r

from the center of the star

8 K The skewness coefficient

Table 2 Eigenfrequencies of the Various Modes of the Polytropic Models for the Stars

N = 1.5 N = 3.0 N = 4.0

ω2

1
ω2

2
ω2

3
ω2

4
ω2

1
ω2

2
ω2

3
ω2

4
ω2

1
ω2

2
ω2

3
ω2

4

Undistorted

(n = 0, q = 0) 2.705 12.533 26.533 44.509 9.254 16.983 28.554 44.749 15.149 24.834 35.477 48.859

Rotationally distorted

(n = 0.03, q = 0.0) 2.574 11.647 24.598 41.247 8.823 15.869 26.427 41.452 14.157 23.029 33.112 45.684

(n = 0.05, q = 0.0) 2.486 11.042 23.297 39.138 8.519 15.099 24.598 38.495 13.463 21.827 31.618 43.568

(n = 0.07, q = 0.0) 2.397 10.387 21.981 37.074 8.306 14.642 23.948 35.977 12.996 20.707 30.933 41.514

Rotationally and Tidally distorted

(n = 0.525, q = 0.05) 2.418 10.512 22.322 37.645 8.265 14.451 23.506 35.449 12.887 20.938 31.120 42.012

(n = 0.535, q = 0.07) 2.409 10.499 22.144 37.337 8.241 14.391 23.352 35.110 12.835 20.850 31.058 41.701

(n = 0.55, q = 0.1) 2.399 10.428 21.995 37.113 8.206 14.300 23.150 34.599 12.697 20.726 31.011 40.456

radial modes of the oscillations of the RTD polytropic

models with indexes N = 1.5, 3.0 and 4.0. From

this table, it is clear that the eigenfrequencies of the ra-

dial modes of the rotationally distorted and the rotation-

ally and tidally distorted polytropic models are small as

compared to the corresponding values of the undistorted

polytropic model. Also, from this table it can be observed

that with the increase in the rotational distortions (the

value of n or angular velocity of the rotation of the star)

and the rotational and tidal distortions (the values of both

n and q where q represents tidal distortions due to the

secondary component), the value of the eigenfrequencies

decreases. These results are in accordance with previous

results of Mohan & Saxena (1985).

From Figures 1–7, it can be observed that as we con-

sider the interaction of the fundamental mode with the

higher modes there is appreciable deviation in the shape

of the radial velocity curve of the rotationally distorted

and the rotationally and tidally distorted polytropic mod-

els of the pulsating variable stars. These deviations in the

shapes of the radial velocity curves (as compared with

the shapes of the radial velocity curves obtained for the

f mode) are more in the case of the polytropes with in-

dex 1.5 than for the polytropes with indexes 3.0 and 4.0.

However, for the polytropes with index 1.5 the f + 3

modes do not seem to change the radial velocity curve

further, in fact the radial velocity curve coincides with

the radial velocity curve of the f + 1 modes in all the

considered cases.

From Figures 8–13, it can be observed that with an

increase in the value of n (rotational distortions) and

both n and q (rotational and tidal distortions) there is

no change in the shape of the radial velocity curves (as

compared to the shape of the radial velocity curve of

the undistorted model) when only f mode is considered.

However, considering the interaction of the f mode with

the higher modes there is an appreciable change in the

shape of the radial velocity curves for the various poly-

tropic models when increasing the value of n and both

n and q. Also, the radial velocity curve shows more de-
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Table 3 Values of n2

1 and the Skewness Coefficient K

Model f mode f + 1 modes f + 2 modes f + 3 modes

n2

1
K n2

1
K n2

1
K n2

1
K

Polytropic index (N = 1.5)

(n = 0.0, q = 0.0) 0.97029 0.4632 0.90616 0.6207 0.90616 0.7926 0.90616 0.6219

(n = 0.03, q = 0.0) 0.96658 0.4588 0.88041 0.6152 0.88040 0.7920 0.88040 0.6213

(n = 0.05, q = 0.0) 0.96434 0.4569 0.85341 0.6082 0.85341 0.7830 0.85341 0.6131

(n = 0.07, q = 0.0) 0.96114 0.4541 0.80336 0.6082 0.80337 0.7821 0.80335 0.5983

(n = 0.525, q = 0.05) 0.96243 0.4551 0.82527 0.5944 0.82170 0.7822 0.82526 0.6035

(n = 0.535, q = 0.07) 0.96160 0.4544 0.81557 0.5975 0.81556 0.7813 0.81556 0.6013

(n = 0.55, q = 0.1) 0.96123 0.4541 0.80885 0.5956 0.80884 0.7812 0.80882 0.5993

Polytropic index (N = 3.0)

(n = 0.0, q = 0.0) 0.99724 0.4965 0.99467 0.4181 0.99468 0.2891 0.99464 0.3615

(n = 0.03, q = 0.0) 0.99682 0.4955 0.99349 0.4126 0.99353 0.2830 0.99349 0.4038

(n = 0.05, q = 0.0) 0.99646 0.4947 0.99252 0.4074 0.99252 0.2770 0.99252 0.4754

(n = 0.07, q = 0.0) 0.99649 0.4948 0.99235 0.4038 0.99235 0.2716 0.99235 0.5106

(n = 0.525, q = 0.05) 0.99609 0.4939 0.99143 0.4026 0.99143 0.2718 0.99143 0.5541

(n = 0.535, q = 0.07) 0.99605 0.4938 0.99133 0.4022 0.99133 0.2717 0.99133 0.5620

(n = 0.55, q = 0.1) 0.99599 0.4937 0.99113 0.4021 0.99111 0.2698 0.99113 0.5735

Polytropic index (N = 4.0)

(n = 0.0, q = 0.0) 0.99939 0.5033 0.99855 0.4608 0.99855 0.3764 0.99855 0.3433

(n = 0.03, q = 0.0) 0.99928 0.5028 0.99845 0.4567 0.99833 0.3764 0.99833 0.3388

(n = 0.05, q = 0.0) 0.99919 0.5024 0.99819 0.4555 0.99819 0.3763 0.99819 0.3385

(n = 0.07, q = 0.0) 0.99876 0.5003 0.99661 0.4443 0.99661 0.2760 0.99661 0.2701

(n = 0.525, q = 0.05) 0.99891 0.5013 0.99723 0.4414 0.99723 0.3021 0.99722 0.3008

(n = 0.535, q = 0.07) 0.99883 0.5010 0.99691 0.4377 0.99691 0.2882 0.99691 0.2818

(n = 0.55, q = 0.1) 0.99872 0.5006 0.99642 0.4318 0.99642 0.2643 0.99642 0.2501

viation in the case of the rotational distortion (n) than

the rotational and tidal distortion (both n and q). These

results are in accordance with the results of our Paper 1

except for the case when we considered only the f mode.

From Table 3, it is clear that when only the f mode is

considered and when the interaction of the f mode with

higher modes is taken into account, in general, there is a

slight decrease in the value of K with increasing value

of n and both n and q. The value of K decreases more in

the case of rotational distortions than rotational and tidal

distortions. Again, these results are in accordance with

the results of our Paper 1.

However, in Table 3, we also found some results that

are contrary to the usual trend and also contrary to the

trend we obtained in Paper 1. Firstly for polytropes of

index N = 3.0, when f + 3 modes are considered then

the value of K shows the opposite behavior. It tends to

increase with an increase in the value of n and both n

and q. Secondly, there is an appreciable decrease in the

value of K with increase in the value of n and both n and

q for polytropes of index N = 4.0 when higher modes

f + 2 and f + 3 are considered. Whereas, in general, a

very slight decrease is observed in the values of K with

increasing values of n and both n and q in all other cases.

Again from Table 3, it can be observed that for poly-

tropes of index N = 1.5 with an increase in the number

of modes (up to f + 2 modes) the value of K increases

and then it decreases for f +3 modes. However, for poly-

tropes of index N = 3.0 and N = 4.0 with an increase

in the number of modes the value of K decreases, except

for polytropes with index N = 3.0 where, after f + 2

modes, the value starts increasing.

So, from the present study we can conclude that

the interaction of the fundamental mode with the higher

modes appreciably changes the shape of the radial veloc-

ity curves of the rotationally distorted and rotationally

and tidally distorted polytropic models of the pulsating

variable stars.
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(a) f mode (b) f + 1 modes

(c) f + 2 modes (d) f + 3 modes

Fig. 13 Radial velocity curves of the rotationally and tidally distorted polytropic models with N = 4.0 (both n and q vary).
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