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Abstract The equation of state of the electron degenerate gas in a white dwarf is usually treated by em-

ploying the ideal dispersion relation. However, the effect of quantum gravity is expected to be inevitably

present and when this effect is considered through a non-commutative formulation, the dispersion re-

lation undergoes a substantial modification. In this paper, we take such a modified dispersion relation

and find the corresponding equation of state for the degenerate electron gas in white dwarfs. Hence we

solve the equation of hydrostatic equilibrium and find that this leads to the possibility of the existence

of excessively high values of masses exceeding the Chandrasekhar limit, although the quantum gravity

effect is taken to be very small. It is only when we impose the additional effect of neutronization that

we obtain white dwarfs with masses close to the Chandrasekhar limit with nonzero radii at the neutron-

ization threshold. We demonstrate these results by giving numerical estimates for the masses and radii

of helium, carbon and oxygen white dwarfs.
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1 INTRODUCTION

The well-known Chandrasekhar limit for white dwarfs

plays a significant role in the present day understand-

ing of astronomical observations. In particular, this mass

limit has been a very important tool to characterize type

Ia supernovae (SNe) that have served as standard candles

in the measurement of their distances, and in particular in

conclusions about the accelerated expansion of the uni-

verse (Riess et al. 1998; Perlmutter et al. 1999). In deter-

mining the Chandrasekhar mass limit, classical gravity is

employed and it becomes an important question whether

this mass limit is modified because of the inevitable pres-

ence of the effects of quantum gravity.

It is thus important to study the hydrostatic equilib-

rium of white dwarfs when the effect of quantum gravity

is included in the description. In a simple formulation,

it has been shown that quantum gravity leads to a gen-

eralized uncertainty relation [x̂i, p̂j ] = i~δij(1 + βp̂
2)

(Maggiore 1993; Kempf et al. 1995; Pedram 2012) where

x̂i and p̂j are the position and momentum operators re-

spectively and β is a parameter due to the effect of quan-

tum gravity. Since β is a small parameter, this uncertainty

relation will be effective in the high momentum region

(such as the center of a massive white dwarf where the

Fermi momentum is high). As this uncertainty relation

is different from the Heisenberg uncertainty principle,

[x̂i, p̂j] = i~δij , the electron degenerate gas in a white

dwarf is expected to be affected by it, leading to a change

in the equation of state. This problem was analyzed in de-

tail (Mathew & Nandy 2018) and it was found that white

dwarfs with excessively high values of masses beyond

the Chandrasekhar limit could be supported, although the

parameter β is very small. However, when the condition

of neutronization was imposed together with a feasible

small value of β, a mass value close to the Chandrasekhar

mass was obtained.

Since there are various alternative descriptions of

quantum gravity, it becomes a natural question whether

the above feature is preserved in the alternative formu-

lations. It is thus important to analyze the problem in an

alternative perspective of quantum gravity. The works of
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Amelino-Camelia & Majid (2000) and Amelino-Camelia

(2002) in this direction suggested that the dispersion re-

lation is substantially modified from the ideal case due

to the effect of quantum gravity through noncommuta-

tivity where the space and time coordinates are treated

as noncommuting quantities, such as [x̂i, t̂] = iλx̂i and

[x̂i, x̂j ] = 0, where λ is a parameter due to the effect of

quantum gravity. A special form of the modified disper-

sion relation, E2 = p2c2(1 + λE)2 + m2c4, was consid-

ered by Bertolami & Zarro (2010), where E, p and m are

the energy, momentum and mass of an electron respec-

tively. Since this dispersion relation is different from the

ideal dispersion relation, E2 = p2c2 + m2c4, we expect

a modification in the equation of state of the electron de-

generate gas in a white dwarf. This is expected to alter

the stability of the star. Consequently in this paper, we

take this modified dispersion relation to find the equa-

tion of state of the degenerate electron gas in a white

dwarf and hence we solve the equation of hydrostatic

equilibrium. We find that white dwarfs with excessively

high values of masses beyond the Chandrasekhar mass

are supported although the quantum gravity parameter

λ is taken to be very small. It is only when we impose

neutronization into the problem that we get mass val-

ues close to the Chandrasekhar limit. It is thus evident

that whichever way we take the effect of quantum gravity

into account, we reach the same conclusion: unbounded

mass limits for white dwarfs although the effect of quan-

tum gravity is taken to be very small. Since the effect of

quantum gravity is inevitably present, it is neutronization

that is responsible for the limiting mass being nearly the

Chandrasekhar mass.

We note that the effect of noncommutative disper-

sion relation was considered earlier for white dwarfs by

Camacho (2006) and Gregg & Major (2009). The latter

study reported slight increase or decrease in the limiting

mass depending on the sign of the parameter λ, whereas

the alternative approach via the generalized uncertainty

relation formalism predicted an unbounded increase in

mass and radius (Rashidi 2016). On the other hand, in

this work we analyze the effect of the modified dispersion

relation in detail, revealing features such as the possibil-

ity of excessively high values of masses of white dwarfs

and the effect of neutronization that limits the mass of

the white dwarf, as indicated in the previous paragraph.

In the present scenario, we further note that the be-

havior of the density ρ with respect to the Fermi momen-

tum pF remains the same as in the ideal case (ρ ∼ p3
F )

and the noncommutative dispersion relation has no effect

on it. This feature is quite unlike the behavior found with

the generalized uncertainty relation where the density ap-

proaches a constant value as pF → ∞. Despite this dis-

parity in the two approaches, we still find in the present

case of noncommutative dispersion relation that white

dwarfs can acquire arbitrarily high values of masses and

radii, similar to those in the case of generalized uncer-

tainty relation. However, when we consider the role of

neutronization together with a feasible value for the pa-

rameter λ, we find that the maximum possible masses for

different white dwarfs (for example helium, carbon and

oxygen) are close to the Chandrasekhar limits.

The outline of the paper is as follows. In Section 2,

we derive the equation of state for a degenerate electron

gas where we also analyze the related asymptotic behav-

iors. In Section 3, we consider the equations of hydro-

static equilibrium and discuss its asymptotic and exact

solutions. In Section 4, we consider the limitation due to

neutronization. Finally, we present a discussion and con-

clude the paper in Section 5.

2 NONCOMMUTATIVE EQUATION OF STATE

In this section, we obtain the number density n and pres-

sure P of a degenerate electron gas employing the modi-

fied dispersion relation. The asymptotic behavior of pres-

sure P in the limits of low and high Fermi momenta is

also analyzed.

2.1 Modified Thermodynamic Behavior

We employ the grand canonical ensemble (Landau &

Lifshitz 1969) for the electron gas, for which the grand

potential can be expressed as

Ω = −PV

= −kBTV

~3π2

∫ ∞

0

dp p2 ln

[

1 + exp

{

− (Ep − µ)

kBT

}]

.

(1)

The pressure P can be immediately obtained from

the above integral. In addition, the identity N =

−∂Ω/∂µ gives the number density as

n =
N

V

=
1

~3π2

∫ ∞

0

dp p2

{

exp

(

Ep − µ

kBT

)

+ 1

}−1

.

(2)

Since the electron gas in white dwarfs is completely

degenerate to a very good approximation, we take the
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limit T → 0 in the above expressions and obtain

n =
1

~3π2

∫ pF

0

dp p2 ,

P =
1

~3π2

∫ pF

0

dp p2 (EF − Ep) ,

(3)

where pF is the Fermi momentum and EF is the Fermi

energy.

Since the number density n given by Equation (3)

remains unaffected by the modified dispersion relation,

noncommutativity has no effect on it and we obtain the

same expression as in the ideal case. We rewrite it in

terms of the dimensionless variable ξ = pF/mec to ob-

tain n(ξ) = m3
ec

3ξ3/(3~
3π2) and hence the mass den-

sity

ρ(ξ) = µemun(ξ) = K

(

µemu

mec2

)

ξ3

3
, (4)

with µe = A/Z being the number of nucleons per elec-

tron, K = m4
ec

5/~
3π2 and mu = 1.6605 × 10−24 g the

atomic mass unit.

It has been shown that the noncommutative for-

mulation of quantum gravity leads to a dispersion re-

lation that is more complicated than the ideal one

(Amelino-Camelia & Majid 2000; Amelino-Camelia

2002). Bertolami & Zarro (2010) employed a simplified

form of the dispersion relation

E2
p

= p2c2(1 + λEp)2 + m2c4 , (5)

where the parameter λ quantifies the effect of quantum

gravity.

Unlike the number density, the pressure P is mod-

ified due to the modification in the dispersion relation.

This dispersion relation can be rearranged to obtain

Ep =
λp2c2 +

√

p2c2 + m2c4(1 − λ2p2c2)

1 − λ2p2c2
. (6)

This dispersion relation imposes a momentum cutoff at

pmax = (λc)−1 beyond which Ep becomes unphysi-

cal (cf. Fig. 1a). We may rewrite it in terms of p̃ =

p(mec)
−1 as

f(p̃) =
Ep

mec2
=

αp̃2 +
√

(1 − α2)p̃2 + 1

1 − α2p̃2
, (7)

where α = λmec
2. The behavior of f(p̃) is shown in

Figure 1(a). For comparison, the ideal dispersion relation

Ep,ideal =
√

p2c2 + m2
ec

4 is also plotted in the same

figure. We note that if we make the approximation Ep ≈

√

p2c2 + m2c4 + λp2c2 by neglecting the O(λ2) terms,

the intrinsic momentum cut-off will be lost. We there-

fore avoid making this approximation to treat the high

momentum region carefully. It may also be noted that

this modified dispersion relation dictates the existence of

a maximum density ρmax = Kµemu/(3mec
2α3) cor-

responding to the maximum cutoff in momentum pmax.

For example, for

α = 10−3, ρmax = 1.9478× 1015 g cm−3 ,

and for

α = 10−4, ρmax = 1.9478× 1018 g cm−3.

We obtain the pressure P from Equation (3) em-

ploying the complete noncommutative dispersion rela-

tion, given by Equation (6), as

P (ξ) =K

{

f(ξ)

∫ ξ

0

p̃2dp̃ −
∫ ξ

0

f(p̃)p̃2dp̃

}

=K

(

f(ξ)
ξ3

3
− g(ξ)

)

=Kh(ξ)

(8)

with

g(ξ) =
1

α4

(

2 tanh−1 αξ

+ tanh−1 ξ(1 − α2)

α +
√

1 + (1 − α2)ξ2

− (2 − α2)

2
√

1 − α2
sinh−1 ξ

√

1 − α2

)

− ξ

3α3

(

3 + α2ξ2 +
3α

2

√

1 + (1 − α2)ξ2

)

.

(9)

The behavior of P (ξ) is shown in Figure 1(b). We see

that momenta higher than ξmax, determined by the cutoff

pmax of the noncommutative dispersion relation (6), are

forbidden and the curve does not go beyond this limit.

In Figure 2, we compare the noncommutative equa-

tion of state given by Equations (4) and (8) with the ideal

equation of state and the polytropic equations of state

P = Knρ1+1/n with n = 3 and 3/2, where

K3 =
1

4

(

3

K

)1/3 (

mec
2

µemu

)4/3

and

K3/2 =
1

5

(

3

K

)2/3 (

mec
2

µemu

)5/3

.

The noncommutative equation of state clearly indicates

that the density cannot exceed the maximum values ρmax



151–4 A. Mathew & M. K. Nandy: Noncommutative Dispersion Relation and Mass-Radius Relation of White Dwarfs

0 20 40 60 80 100
p/m

e
c

0

300

600

900

1200

1500

1800

E
p
/m

ec2

0 20 40 60 80 100 120
p/m

e
c

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

P
/K

P
P

ideal

P
approx

0 2 4 6 8 10
0

3

6

9

12

E
p

E
p,ideal

(a) (b)

Fig. 1 (a) Noncommutative dispersion relation Ep/mec
2 (smooth curve) as a function of p̃ = p/mec for the case α = 0.01 so that

p̃max = 1/λmec
2 = 1/α = 100. Ideal dispersion Ep,ideal/mec

2 (dashed curve) is also shown. The inset compares the two curves

for low values of momentum. (b) Comparison of the noncommutative pressure P (solid) with approximate Papprox (dot-dashed)

and ideal Pideal (dashed) expressions given by Eqs. (8), (14) and (13), respectively, for pF max/mec = 1/α = 100. In both panels

the vertical dot-dash-dashed line represents the momentum cutoff p̃max.
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Fig. 2 Comparison of the noncommutative equation of state (for different values of α) given by Eqs. (4) and (8) with the ideal

equation of state defined by Eqs. (4) and (13). Also shown are the polytropic equations of state P = Knρ1+1/n with n = 3/2
and 3.

for different values of α. This implies that the effect of

quantum gravity forbids the star from having an infinite

density (at the center).

Consistency of the equation of state connected by the

above noncommutative expressions for P (ξ) and n(ξ)

follows immediately as they satisfy the well-known ther-

modynamic relation dP/dµ = n, where µ is the chemi-

cal potential. The left-hand side of this relation, in terms

of the dimensionless parameter ξ, becomes

dP

dµ
=

K

mec2

dh

dξ

1

df/dξ
, (10)

where we have used µ = mec
2f(ξ), which is the modi-

fied expression for the Fermi energy. The differentials in

the above equation can be obtained from Equations (7),

(9) and (8) as

df

dξ
= ξ

{

(1 + α2ξ2) + (1 − α2ξ2)α2 + 2α
√

1 + (1 − α2)ξ2

(1 − α2ξ2)2
√

1 + (1 − α2)ξ2

}

(11)

and
dh

dξ
=

ξ3

3

df

dξ
. (12)

Using Equation (12) in (10), it immediately follows that

dP/dµ = (K/3mec
2)ξ3 = n, ensuring consistency with

the thermodynamic relation.

We thus see that, in noncommutative geometry, the

equation of state undergoes a drastic modification due to

an intrinsic momentum cutoff inherent in the modified
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dispersion relation. This situation is quite unlike the sce-

nario following from the generalized uncertainty princi-

ple where the equation of state undergoes a drastic modi-

fication due to a change in the measure of the phase space

despite the dispersion relation remaining ideal. A de-

tailed analysis of this latter scenario is given in Mathew

& Nandy (2018).

2.2 Ideal and Asymptotic Behaviors

It is easy to show that, in the limit α → 0, the parametric

forms of the pressure corresponding to the ideal degener-

ate case can be recovered. The leading order terms in the

expansion of Equation (8) are obtained as

Pideal(ξ) =
K

24

{

√

1 + ξ2(2ξ3 − 3ξ) + 3 sinh−1 ξ

}

.

(13)

Figure 1(b) compares the noncommutative pressure

P (ξ) given by Equation (8) with the ideal pressure

Pideal(ξ) given by Equation (13). It may be noted that

there is a large deviation between the two expressions for

higher values of Fermi momentum. In the noncommu-

tative case, the pressure increases faster and approaches

infinity as the Fermi momentum approaches pmax. This

behavior is quite different from the ideal case where

the pressure approaches infinity at a slower rate beyond

pmax.

A first correction to the ideal case can be obtained

by a Taylor expansion about λ = 0 and by retaining the

O(λ) term. In this approximation,

Ep,approx = λp2c2 +
√

p2c2 + m2c4.

The corresponding pressure turns out to be

Papprox(ξ) =K

{

1

24

√

1 + ξ2(2ξ3 − 3ξ)

+
1

8
sinh−1 ξ + 2α

ξ5

15

}

=Pideal +
2

15
Kαξ5 .

(14)

This approximate expression is also compared with

the other cases in Figures 1(b). We see that the noncom-

mutative momentum cutoff pmax (or ξmax = α−1) of the

complete dispersion relation is not respected by the ap-

proximate expression Papprox(ξ) and it deviates strongly

from the noncommutative expression P (ξ). This indi-

cates that the approximate form Papprox(ξ) is not a good

approximation for high values of Fermi momentum near

ξmax. This is due to the fact that the approximate disper-

sion relation given by Ep,approx does not impose any re-

striction on the momentum values. On the other hand, the

complete noncommutative dispersion relation Ep con-

strains momentum values by imposing a momentum cut-

off pmax. The importance of our present analysis lies in

the fact that we use the complete noncommutative dis-

persion relation without making any approximations so

that its basic feature of a maximum attainable momen-

tum pmax is retained.

We next analyze the asymptotic behavior of the non-

commutative pressure P (ξ) given by Equation (8) in the

low and high momentum limits, ξ → 0 and ξ → ξmax

respectively. For low values of ξ, it is obtained as

Plow(ξ) = K(1 + 2α)
ξ5

15
. (15)

It is important to note that, even in this limit, the effect

of noncommutativity persists due to the presence of the

term proportional to α at the order ξ5. We shall see that

this feature is present when we analyze the mass-radius

relation for low values of central Fermi momentum ξc.

Moreover, Equations (4) and (15) imply Plow ∼ ρ5/3

which can be seen in Figure 2 where the noncommuta-

tive and ideal equations of state coincide in the low mo-

mentum region.

In the high momentum region ξ ∼ ξmax, we expand

the noncommutative expression for pressure P assuming

the momentum to be close to pmax (or ξmax), to obtain

Phigh(ξ) =
K

α4

{

1

1 − αξ
− ln

(

2α2

1 − αξ

)

− C(α)

}

,

(16)

where

C(α) = tanh−1

(

1 − α2

1 + α2

)

− sinh−1 1

α
− 11

6
. (17)

Thus, when the central Fermi momentum ξc is close

to ξmax = α−1, the central pressure approaches infin-

ity. This boundless increase in the pressure for very high

values of ξ should be able to counteract the gravitational

pull in very massive white dwarfs. This feature will show

up more explicitly later when we analyze the mass-radius

relation for high values of the central Fermi momentum.

Moreover, this feature can be seen in Figure 2 where the

pressure approaches infinity and the density approaches

constant values ρmax = Kµemu/(3mec
2α3) as implied

by Equation (4). Unlike the ideal case, where Phigh ∼
ρ4/3, this behavior is remarkably different in the high

momentum region of the noncommutative equation of

state.
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3 NONCOMMUTATIVE WHITE DWARFS

In this section, we obtain the mass-radius relation of he-

lium white dwarfs with the equation of state obtained

in Section 2.1 from the noncommutative dispersion re-

lation. In the framework of Newtonian gravity, the con-

dition of hydrostatic equilibrium for a spherical distribu-

tion of matter is given by

dP

dr
= −Gm(r)ρ(r)

r2
(18)

with
dm

dr
= 4πρ(r)r2 . (19)

Combining Equations (18) and (19), we get

1

r2

d

dr

(

r2

ρ

dP

dr

)

+ 4πGρ(r) = 0 . (20)

Substituting Equations (4) and (8) and using the dimen-

sionless variable x = r/R0 in Equation (20) yields

1

x2

d

dx

(

x2f ′(ξ)
dξ

dx

)

+
ξ3

3
= 0 , (21)

where

R0 = (4πGK)−1/2
(

mec
2/µemu

)

= 2242.77 km.

3.1 Asymptotic Solutions

In the limit ξ → 0, that is, for low values of ξ, it can be

shown that f ′(ξ) = (1 + 2α)ξ. Thus Equation (21) can

be rewritten as

(1 + 2α)

2

1

x2

d

dx

(

x2 dξ2

dx

)

+
ξ3

3
= 0 . (22)

Now, taking ξ2(x)/ξ2
c as θ(x), with ξc the central

dimensionless Fermi momentum, and defining a new di-

mensionless coordinate η =
√

2/3
√

ξc/(1 + 2α) x, we

reduce the above equation to

1

η2

d

dη

(

η2 dθ

dη

)

+ θ3/2 = 0 (23)

which is the Lane-Emden equation of index 3/2. The nu-

merical solution for this differential equation is given in

Weinberg (1972). For the boundary conditions θ(0) = 1

and θ′(0) = 0, one can immediately obtain the radius of

the white dwarf as

R =

√

3

2ξc
(1 + 2α)1/2R0ηR , (24)

where ηR = 3.65375 is the first zero of the Lane-Emden

function θ(η) of index 3/2.

Similarly, the asymptotic behavior of the mass of the

white dwarf can be obtained from the integral expression

of Equation (19), namely,

M = 4π

∫ R

0

ρ(r)r2dr

= 4πK

(

µemu

mec2

)
∫ R

0

ξ3

3
r2dr .

(25)

Using M̃ = M/M0 and R̃ = R/R0 with

M0 = (4πK)−1/2G−3/2
(

mec
2/µemu

)2
= 0.41659 M⊙

in the above equation, we get

M̃ =
1

3

∫ R̃

0

ξ3x2dx.

We rewrite this equation in the new dimensionless vari-

able η, yielding

M̃ =

√

3ξ3
c

8
(1 + 2α)3/2

∫ ηR

0

θ3/2η2dη , (26)

thus obtaining the mass of the white dwarf as

M = −
√

3ξ3
c

8
(1 + 2α)3/2M0η

2
R

(

dθ

dη

)

η=ηR

. (27)

The value of
(

−η2dθ/dη
)

η=ηR

is 2.71406

(Weinberg 1972). Thus the above asymptotic analysis

predicts that R ∼ (1+2α)ξ
−1/2
c and M ∼ (1+3α)ξ

3/2
c ,

indicating the persistence of the effect of noncommuta-

tivity through the presence of the parameter α even for

very low values of the central Fermi momentum. The

presence of α (or λmec
2) in these expressions suggests

an increase on the order of α in mass and radius of

white dwarfs. We also note that for α = 0, the above

mass-radius relation approaches the Chandrasekhar

relation for low values of central Fermi momentum.

On the other hand, in the limit

ξ → ξmax = α−1,

f ′(ξ) = (1/α2) (ξ − 1/α)
−2

,

so that Equation (21) reduces to

1

x2

d

dx

(

x2

(ξ − 1
α )2

dξ

dx

)

+
1

3α
= 0 . (28)

Letting φ = α/(1 − αξ) yields

1

x2

d

dx

(

x2 dφ

dx

)

+
1

3α
= 0 . (29)
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Defining (φ(x) − α)/(φc − α) = θ(x), where φc =

α/(1 − αξc) and redefining the dimensionless radius as

x =
√

3α(φc − α)ζ, the above equation takes the form

1

ζ2

d

dζ

(

ζ2 dθ

dζ

)

+ 1 = 0 , (30)

which is the Lane-Emden equation of index zero whose

numerical solution is already known. Thus the radius of

the white dwarf is given by

R = α

√

3αξc

1 − αξc
R0ζR , (31)

where ζR =
√

6 is the zero of the Lane-Emden function

θ(ζ) of index zero.

The mass of the white dwarf can be obtained from

Equation (25) by taking the appropriate limit ξ → ξmax

and using the above dimensionless coordinate ζ, yielding

M̃ =
1

9

(

3αξc

1 − αξc

)3/2

ζ3
R . (32)

Consequently, the mass of the white dwarf is obtained as

M =
M0

9

(

3αξc

1 − αξc

)3/2

ζ3
R . (33)

Since Equations (31) and (33) were obtained with

the assumption of the central Fermi momentum ξc ap-

proaching the maximum value α−1, they are valid near

ξmax (= α−1). In this limit, the quantity (1 − αξc) ap-

proaches zero so that the mass and radius diverge as

M → (1 − αξc)
−3/2 and R ∼ (1 − αξc)

−1/2 as ξc

tends to ξmax. In fact, the largeness of the mass and ra-

dius will depend on how close ξc is with respect to α−1.

Thus, both mass and radius increase unboundedly as the

central Fermi momentum ξc approaches the maximum

cutoff value ξmax = α−1.

From Equations (31) and (33) we obtain MR−3 =

Const. Since those expressions are valid for excessively

high values of the Fermi momentum, this implies M ∼
R3. Since a solid sphere of uniform density has its mass

proportional to its volume (∼ R3), this suggests an ap-

proximately constant density in most parts of the star.

In an alternative description (Mathew & Nandy 2018)

based on the generalized uncertainty principle of quan-

tum gravity, the same features were observed although

with a completely different equation of state.

3.2 Exact Solutions

We employ the noncommutative equation of state ob-

tained in Section 2.1. Substituting Equation (12), and

using the definitions m = M0u and r = R0x in

Equations (18) and (19), we obtain

dξ

dx
= − 1

f ′(ξ)

u(x)

x2
(34)

and
du

dx
=

1

3
ξ3x2 . (35)

The above two first-order differential equations

are integrated simultaneously employing the fourth or-

der Runge-Kutta method with the boundary conditions

ξ(0) = ξc and u(0) = 0 until the surface defined by

ξ(R̃) = 0 is reached. The results of numerical integra-

tion are shown in Figures 3(a) and 3(b).

In Figure 3(a), we notice that for large central Fermi

momenta ξc, the mass-radius relation of the noncom-

mutative case departs considerably from the ideal (com-

mutative) case. On the other hand, the two mass-radius

curves come very close to each other (without coincid-

ing) for lower values of the central Fermi momentum, as

shown in the inset of Figure 3(a). Our numerical data in-

dicate an increase of about 3.2% in the mass for a white

dwarf of 0.17 M⊙ for α = 10−2, whereas this increase

is about 0.03% for α = 10−4.

It is important to note that, for small values of the

central Fermi momentum, the mass-radius relation due

to the noncommutative dispersion relation does not coin-

cide with the ideal degenerate case, which is displayed in

the inset of Figure 3(a). This behavior can be seen from

the asymptotically obtained mass and radius expressions

given by Equations (27) and (24), respectively. The per-

sistence of the deformation parameter α even in the low

momentum regime exhibits this disparity on the right-

hand part of the mass-radius curve. This result leads to

the implication that the value of the deformation param-

eter λ due to the effect of quantum gravity may possibly

be observed via high precision measurements on natu-

rally existing white dwarfs.

In Figure 3(b), we display the mass-radius relations

with the noncommutative equation of state given by

Equations (4) and (8) for different values of α, namely,

α = 0.0001, 0.001, 0.01 and 0.1. We see that, for

large values of α, the mass-radius relation departs from

those of smaller values. This is expected since the ef-

fect of quantum gravity is expected to be stronger for
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Fig. 3 Mass-radius relations for helium white dwarfs. (a) Solid curve (noncommutative equation of state with α = 10−2) and dot-

dashed curve (ideal equation of state). The inset shows a slight departure of the noncommutative curve from the ideal curve for low

ξc. (b) Plots with noncommutative equation of state for different values of α. The inset shows the behavior near the “turning points”

where the symbols represent the neutronization threshold points: M = 2.5734 M⊙, R = 753.24 km (triangle) for α = 10−2,

M = 1.5495 M⊙, R = 613.28 km (square) for α = 10−3 and M = 1.4614 M⊙, R = 602.35 km (circle) for α = 10−4. In the

inset of (b), the x-axis denotes the radius R (in km) and the y-axis denotes the mass M (in M⊙).
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Fig. 4 Mass-radius curves for helium white dwarfs with the noncommutative equation of state for α = 0.01. The dashed curve

represents the exact solution. The solid curve (low ξc) represents the approximate solutions (27) and (24). The inset shows a slight

departure of the asymptotic (high ξc) solutions (33) and (31) from the exact solution.

large values of α. Besides this, we also note that the

Chandrasekhar limit is never attained for a nonzero value

of α and large values of central Fermi momentum. One

can truly obtain Chandrasekhar’s limiting mass by com-

pletely neglecting the effect of quantum gravity by set-

ting α = 0 as shown in Figure 3(a). Thus, the non-

commutative situation is quite unlike the standard theory

of white dwarfs where one can reach the Chandrasekhar

mass in the limit ξc → ∞.

Although the deformation parameter α is expected

to be small, we presume that the effect of Planck scale

physics (quantum fluctuation of space-time) provides an

effective large-distance description which would alter the

dynamics of large-scale systems existing on such back-

grounds. Moreover, it is difficult to tackle numerical

values with high precision for very small values of α.

Consequently, to assess the effect, we take α = 0.01,

the result of which is shown in Figure 4. For low values

of ξc, it is observed from the right-hand part of Figure 4

that the mass-radius curve approaches the asymptotic be-

havior M/M⊙ = 4.6475(1 + 2α)3(R0/R)3 as obtained

from Equations (27) and (24), which is also shown on

the right hand part of the figure. As ξc is increased, the

mass increases slowly and the radius decreases, reaching
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a minimum value ≈ 326 km, as can be seen in the inset

of Figure 4. On further increasing ξc, the mass and radius

both increase boundlessly and behave similarly to the

asymptotic expression M/M⊙ = 0.04628 (R/αR0)
3

obtained from Equations (33) and (31), as shown in the

inset of Figure 4. However for large ξc, the asymptotic

expression does not coincide exactly with the exact so-

lution because the exact solution has a core of approxi-

mately uniform density and the density falls off outside

this core, whereas the asymptotic solution was based on

the approximate Lane-Emden equation of order zero im-

plying a constant density throughout the star. These fea-

tures are displayed in Table 1 where it is shown that the

asymptotic values are in better agreement with the exact

ones for low values of ξc than for high values of ξc.

Although these conclusions are based on a not very

small value of α (= 0.01), we expect the same qualitative

behavior for lower values of α. This is in fact clear from

the mass-radius curves shown in Figure 3(b) where the

mass is seen to diverge for very large values of ξc even for

the case α = 10−4. To get an approximate idea, we cal-

culate mass and radius values from the asymptotic rela-

tions given by Equations (33) and (31) with central Fermi

momentum close to ξmax. If we take ξc = (1−δ)ξmax =

(1 − δ)/α, then the asymptotic values of mass and ra-

dius turn out to be M = {18(1 − δ)/δ}3/2M0/9 and

R = α{18(1− δ)/δ}1/2R0 respectively. Table 2 demon-

strates that the mass and radius values can be excessively

large when the central Fermi momentum ξc approaches

ξmax sufficiently closely, when α is made very small.

Thus for very low values of α, we do not expect the

Chandrasekar limit even when the central Fermi momen-

tum is taken to be very large. This behavior is in contrast

with the ideal (commutative) case where the radius de-

creases to zero and the mass increases and approaches

the Chandrasekar limit as ξc → ∞. Thus it suggests that

quantum gravity plays a significant role in determining

the mass-radius relation.

4 LIMITATION DUE TO NEUTRONIZATION

The preceding analysis suggests that the inclusion of

quantum gravity (via a noncommutative geometry) in the

dispersion relation and hence into the equation of state

affects the existence of the Chandrasekhar limit signifi-

cantly. It predicts white dwarfs with masses exceedingly

larger than the Chandrasekhar mass with large radii.

This obviously disagrees with observed non-magnetic

white dwarfs that are found only in the mass range

0.17 M⊙−1.33 M⊙ (Shipman 1972, 1977, 1979; Vennes

et al. 1997; Marsh et al. 1997; Vennes 1999; Kilic et al.

2007). In this section, we propose a realistic model of

white dwarfs by including neutronization which can ac-

tually resolve these difficulties.

It is well-known that neutronization, or inverse β-

decay (AZX + e −→ A
Z−1 Y + νe), takes place at a suf-

ficiently high density. Since the density determines the

Fermi energy EF, the condition of inverse β-decay is sat-

isfied when EF > εZ , where εZ is the difference in bind-

ing energies of the parent and daughter nuclei. Following

Salpeter (1961), we calculate the threshold density ρβ by

setting EF = εZ (excluding the electron rest mass) and

obtain ξβ (= pβ/mec) as

ξβ =
εZ

mec2

{

1 + 2
mec

2

εZ

}1/2

×
{

1 + α

(

1 +
εZ

mec2

)}−1
(36)

using the noncommutative dispersion relation given by

Equation (6). For helium, εZ = 20.596MeV, as obtained

from table II of Rotondo et al. (2011).

In the noncommutative framework, the equations for

hydrostatic equilibrium are expressed by Equations (34)

and (35). Since Equation (34) contains the parame-

ter α through its dependence on the noncommutative

dispersion function f(ξ), their solution yields differ-

ent values for different choices of α, or equivalently λ.

Consequently, we solve Equations (34) and (35) numer-

ically for different values of α taking the central value

as the neutronization threshold ξβ . It may be noted that

ξβ also depends on the choice of the α value through

Equation (36). The inset of Figure 3(b) shows the neu-

tronization points for α = 10−2, 10−3 and 10−4 (trian-

gle, square and circle, respectively).

Table 3 gives the values of ξβ corresponding to dif-

ferent deceasing values of α or λ. It is clear that it is

not possible to have an exceedingly large central value ξc

corresponding to these values of α due to the neutroniza-

tion threshold. The mass and radius of white dwarfs ob-

tained via the exact solution of Equations (34) and (35)

are shown in the last two columns of Table 3. We note

that both mass and radius take finite values. For large val-

ues of α, such as 10−2 (and higher), the mass increases to

values higher than the Chandrasekhar mass. However, as

the α value is decreased to 10−3, the mass is 1.5495 M⊙

and the radius is 613.2817 km. On gradually decreasing

α, we see that the mass appears to approach the limits



151–10 A. Mathew & M. K. Nandy: Noncommutative Dispersion Relation and Mass-Radius Relation of White Dwarfs

Table 1 Masses and radii of helium white dwarfs with noncommutative equation of state for α = 0.01. The columns marked

“Asymptotic” correspond to the approximate Eqs. (27), (24), (33) and (31). The columns marked “Exact” represent the exact

solutions of Eqs. (34) and (35).

Low Asymptotic Exact High Asymptotic Exact

ξc R [km] M [M⊙] R [km] M [M⊙] ξc R [km] M [M⊙] R [km] M [M⊙]

0.09 33786.90 0.0193 33777.13 0.0192 95.0 414.76 292.7555 473.68 242.6950

0.10 32053.07 0.0225 32041.25 0.0225 96.0 466.15 415.6153 518.51 350.0674

0.11 30561.40 0.0260 30547.46 0.0259 97.0 541.06 649.9058 586.17 558.8757

0.12 29260.31 0.0296 29244.17 0.0295 98.0 666.07 1212.4638 702.76 1072.0714

0.13 28112.40 0.0334 28093.96 0.03321 99.0 946.79 3481.9895 972.68 3205.1357

Table 2 Asymptotic values of masses and radii of helium white dwarfs with noncommutative equation of state following from

Eqs. (33) and (31) respectively when ξc is close to ξmax such that ξc = (1 − δ)ξmax, with δ small.

α = 1.0 × 10−5 α = 3.0 × 10−10 α = 5.0 × 10−22

δ R [km] M [M⊙] δ R [km] M [M⊙] δ R [km] M [M⊙]

10−6 9.4 × 101 3.1 × 1010 10−12 2.9 × 100 3.1 × 1019 10−30 4.7 × 10−3 3.1 × 1046

10−12 9.4 × 104 3.1 × 1019 10−18 2.9 × 104 3.1 × 1028 10−40 4.7 × 1002 3.1 × 1061

10−18 9.4 × 107 3.1 × 1028 10−26 2.9 × 107 3.1 × 1040 10−50 4.7 × 1007 3.1 × 1076

1.4518 M⊙ and the radius 601.1821km, which are ob-

tained for the case α = 10−7. This is not a very low

value for α, because if we speculate that λ ∼ 1/MP c2,

where MP =
√

~c/G is the Planck mass, α = λmec
2 ∼

me/MP ∼ 10−23. We see that the α = 10−7 values

are close to the ideal (α = 0) values of 1.4518 M⊙ and

601.18km for ξβ = 41.2932. However, when we dis-

regard the neutronization threshold for the ideal case and

seek solutions for a very large value of ξc (beyond ξβ ) we

obtain the Chandrasekhar limiting mass as 1.4562 M⊙

with zero radius. The slight difference from the quoted

value of 1.44M⊙ is because of a slightly different nu-

merical accuracy in our computation.

An estimate of the quantum gravitational parameter

EQG ∼ λ−1 (defined in Sect. 5) was obtained from the

observed time-delay in the arrival of TeV-scale photons

from γ-ray flares in a distant galaxy, the AGN Markarian

421. This suggested a lower bound of EQG ∼ 1016 GeV

(or λ ∼ 10−20 MeV−1) (Biller et al. 1999). On the

other hand, a value of EQG ∼ 1018 GeV (or λ ∼
10−21 MeV−1) was suggested from the compatibility be-

tween data obtained from AGN Markarian 501 and PKS

2155-304 (Ellis et al. 2009). This latter value of λ gives

α ∼ 5 × 10−22, suggesting the limit α ≪ 10−7.

We see from Table 3 that α ≪ ξβ for low values of α

and we thus make use of this limit to solve Equations (34)

and (35) approximately. Equation (11) gives f ′(ξ) ≈ 1

for extremely low values of α, so that Equation (21) re-

duces to

1

η2

d

dη

(

η2 dθ

dη

)

+ θ3 = 0 , (37)

where θ = ξ/ξc and η = ξc x/
√

3 is a dimensionless ra-

dius. This equation is solved with boundary conditions

θ(0) = 1 and θ(ηR) = 0, where ηR corresponds to

the radius of the white dwarf. Equation (37) is the Lane-

Emden equation with index 3, whose numerical solution

is given in Weinberg (1972).

From Equation (25) we obtain the dimensionless

mass and using Equation (36) in (26) in the limit α ≪
10−7, we obtain the dimensionless radius of the white

dwarf as below

M̃β =
√

3

(

−η2 dθ

dη

)

η=ηR

R̃β =
mec

2

εZ

√

3

1 + mec2

εZ

ηR

(38)

giving the mass as Mβ = M0M̃β = 1.4563 M⊙ and

the radius as Rβ = R0R̃β = 648.809km, using ηR =

6.89685 and −η2 (dθ/dη)η=ηR
= 2.01824 for n = 3.

These mass and radius values, being approximate, do not

coincide with the numerical solutions given in the last

few rows of Table 3. We also note that for values of ξc

lower than ξβ , lower values of masses with higher val-

ues of radii are possible solutions (for any value of α) as

shown in the right-hand part of Figure 3(b).

As noted earlier in Table 2, the noncommutative

equation of state allows for extremely high values of

mass and radius if the effect of neutronization is ne-

glected so that the central Fermi momentum could ap-

proach ξmax = 1/α. However, due to the constraint

of neutronization, the ξc value cannot approach a value
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Table 3 Masses and radii of helium white dwarfs with the noncommutative equation of state for different values of α when the

central Fermi momentum is taken to be the neutronization threshold ξβ , Eq. (36); the corresponding neutronization density ρβ is

given by Eq. (4). The displayed results represent exact solutions for the equation of hydrostatic equilibrium, Eqs. (34) and (35).

α λ [MeV−1] ξβ ρβ [g cm−3] Rβ [km] Mβ [M⊙]

2.0 × 10−2 3.91 × 10−2 22.613 2.252 × 1010 948.55 3.9954

1.0 × 10−2 1.96 × 10−2 29.223 4.861 × 1010 753.24 2.5736

1.0 × 10−3 1.96 × 10−3 39.655 1.214 × 1011 613.28 1.5495

1.0 × 10−4 1.96 × 10−4 41.123 1.355 × 1011 602.35 1.4614

1.0 × 10−5 1.96 × 10−5 41.276 1.370 × 1011 601.30 1.4527

1.0 × 10−7 1.96 × 10−7 41.293 1.371 × 1011 601.18 1.4518

higher than ξβ . Together with the neutronization con-

straint on ξc, when we take α ≪ 10−7 as suggested by

observations from γ-ray bursts, the mass and radius val-

ues approach finite values as we see in Tables 3 and 4.

5 DISCUSSION AND CONCLUSION

The effect of quantum gravity, although very small, is

inevitably present everywhere. We thus expect that it

will modify the stability of astrophysical objects such

as white dwarfs. In particular, it is already well-known

that the noncommutative formulation of quantum grav-

ity modifies the dispersion relation of any particle. To

study the effect of such modification on the stability of

white dwarfs, we employed a modified dispersion rela-

tion in the form E2
p

= p2c2(1 + λEp)2 + m2c4 and ob-

served that the equation of state of a degenerate electron

gas undergoes a substantial modification as a result of the

emergence of a cutoff momentum pmax = 1/λc inherent

in the dispersion relation. As a consequence, the possible

values of masses and radii of white dwarfs change from

the ideal case.

We have analyzed the situation in two different ways

in the framework of Newtonian gravity. First, we em-

ployed the equation of hydrostatic equilibrium to obtain

an approximation in the limit of low central Fermi mo-

mentum resulting in the Lane-Emden equation of index

3/2. On analyzing the solutions we found that both the

mass and radius are affected by the parameter λ, indi-

cating the persistence of the effect of noncommutative

equation of state even for low mass white dwarfs. Next,

we analyzed the problem when the central Fermi mo-

mentum pFc approaches pmax = 1/λc. On working out

the asymptotics, the Lane-Emden equation of index zero

is obtained which clearly indicated that both mass and

radius would approach infinity when the central Fermi

momentum approaches pmax = 1/λc.

Finally, we solved the equations of hydrostatic equi-

librium exactly by numerical means with the noncom-

mutative equation of state without making any approx-

imations to the modified dispersion relation. We found

that the modified mass-radius curve did not coincide with

the ideal degenerate curve even in the low central Fermi

momentum region. This can be associated with the pre-

vious asymptotic solution in the low momentum limit

where the masses and radii were found to have small

departures in terms of the noncommutative parameter

λ. On the other hand, we observed a strong departure

from the ideal mass-radius curve for high values of the

central Fermi momentum even for a low value such as

α = λmec
2 = 10−4. This trend is expected to be

qualitatively the same for values of α lower that 10−4.

Since it is difficult to handle very low values of α nu-

merically, we assessed the situation for a few higher val-

ues of α such as 10−1, 10−2, 10−3 and 10−4. For all

these cases, we found masses excessively larger than the

Chandrasekhar bound. The approach to high mass values

is delayed (with respect to the increase in central Fermi

momentum) when the α value is decreased. It was clear

that even for lower values of α, the mass would approach

very large values, higher than the Chandrasekhar limit,

with large values of radii. This was confirmed from our

asymptotic analysis for any low magnitude of α when ξc

approaches ξmax.

The above situation is remarkably different from ob-

servations of non-magnetic white dwarfs because they

are found in the mass range from 0.17 M⊙ (Kilic et al.

2007) to 1.33 M⊙ (Vennes et al. 1997; Vennes 1999;

Marsh et al. 1997; Kepler et al. 2007) with radii ranging

from 0.0153R⊙ (10 644 km) to 0.0071R⊙ (4939 km)

(Shipman 1972, 1977, 1979). This disagreement can be

reconciliated by noting that the central Fermi momen-

tum of white dwarfs cannot take arbitrarily high values

as it is limited by the neutronization threshold. In addi-

tion, the quantum gravity parameter λ is also not large.

Consequently we solved the equations of hydrostatic

equilibrium with a few values of α ranging from 10−2
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Table 4 Masses and radii of carbon and oxygen white dwarfs with the noncommutative equation of state for different values of

α when the central Fermi momentum is taken to be the neutronization threshold ξβ , Eq. (36); the corresponding neutronization

density ρβ is given by Eq. (4). The displayed values of masses and radii represent exact solutions for the equation of hydrostatic

equilibrium, Eqs. (34) and (35).

12
6C, εZ = 13.370 MeV 16

8O, εZ = 10.419 MeV

α ξβ ρβ [g cm−3] Rβ [km] Mβ [M⊙] ξβ ρβ [g cm−3] Rβ [km] Mβ [M⊙]

2.0 × 10−2 17.590 1.060 × 1010 1206.20 2.9795 14.964 6.527 × 109 1406.70 2.5994

1.0 × 10−2 21.347 1.895 × 1010 1028.13 2.1463 17.601 1.062 × 1010 1236.10 1.9783

1.0 × 10−3 26.428 3.595 × 1010 895.22 1.5100 20.919 1.783 × 1010 1105.41 1.4903

1.0 × 10−4 27.072 3.865 × 1010 883.98 1.4525 21.320 1.888 × 1010 1093.92 1.4453

1.0 × 10−5 27.139 3.893 × 1010 882.89 1.4468 21.361 1.898 × 1010 1092.79 1.4409

1.0 × 10−7 27.146 3.896 × 1010 882.77 1.4462 21.366 1.899 × 1010 1092.67 1.4404

to 10−7 with the central Fermi momentum taken as the

neutronization threshold. Although the case α = 10−2

yielded a mass as large as 2.5736 M⊙ for helium, as the

α value is decreased to 10−5, we found the mass to be

1.4527 M⊙ with a radius 601.29 km. On further deceas-

ing the α value these values did not change appreciably.

The parameter λ may be inversely proportional to

the quantum gravity parameter EQG that occurs in the

dispersion relation

c2p2 = E2[1 + σE/EQG + . . .]

for propagation of photons through the vacuum. In par-

ticular, Ellis et al. (2009) predicted the time delay in re-

ceiving γ-ray photons from distant active galaxies which

suggested the value EQG ∼ 1018 GeV. This value of

EQG translates to α ∼ 5×10−22 if we assume λ ∼ E−1
QG.

We thus expect the α value to be lower than 10−5. In our

numerical calculation, when we decreased the α value

from 10−4 to 10−7, we saw that the mass and radius ap-

proach the limiting values of 1.45 M⊙ and 601 km (for

helium), respectively, at the neutronization threshold. For

values of the central Fermi momentum lower than the

neutronization threshold, we obtained lower values of

masses with larger values of radii.

It may however be noted that the above observations

are for photons from γ-ray bursts propagating through

the vacuum. Equivalent data for massive particles, such

as electrons, do not exist in the literature and it is diffi-

cult to guess the value of α for electrons. Consequently,

we have shown the neutronization threshold values for

the masses and radii of some white dwarfs (42He, 12
6C,

and 16
8O) for values of α ranging from 2.0 × 10−2 to

1.0 × 10−7 in Tables 3 and 4. We note that the neu-

tronization threshold value for a pure 16
8O white dwarf

should be the same as that of a carbon-oxygen white

dwarf because the core of the latter is expected to be

purely 16
8O and neutronization is expected to begin at

the center (Canal et al. 1980). The top row of Table 4

for α = 2.0×10−2 indicates that a carbon-oxygen white

dwarf would have a critical mass of 2.5994 M⊙. There

have been a few observations of overluminous type Ia

SNe (SN 2003fg, SN 2006gz, SN 2007if, SN 2009dc)

(Howell et al. 2006; Hicken et al. 2007; Yamanaka et al.

2009; Scalzo et al. 2010; Silverman et al. 2011) that

produced a high amount of 56Ni ranging from 1.2 M⊙

to 1.7 M⊙, suggesting their progenitors to be super-

Chandrasekhar white dwarfs ranging from 2.2 M⊙ to

2.8 M⊙.

However, Hicken et al. (2007) argued that the type

Ia SN 2006gz was a double degenerate (DD) merger

of two sub-Chandrasekar white dwarfs as supported by

the unusually low and slowly declining silicon velocity

which is also predicted by DD models. Silverman et al.

(2011) speculated that SN 2009dc was very likely due to

the merger of two white dwarfs as supported by simula-

tions. Chen & Li (2009) considered a single-degenerate

white dwarf supported by differential rotation accreting

at a low rate from a normal companion. With an initial

1.2 M⊙, they found the possibility of having a super-

Chandrasekhar SNe Ia event. However, white dwarfs

with mass exceeding 1.7 M⊙ were predicted to be not

likely. Das & Mukhopadhyay (2012) indicated that the

presence of a strong magnetic field (∼ 1015 Gauss) in a

white dwarf can support a mass of 2.3–2.6M⊙ due to the

role of Landau levels. On the other hand, pointing to var-

ious disagreements among the existing SNe Ia models,

van Kerkwijk (2013) argued that SNe Ia events generally

happen due to the merger of two carbon-oxygen white

dwarfs.

Thus it appears that the super-Chandrasekhar sce-

nario is not possible in the case of a normal white dwarf

(without rotation or magnetic field). We are thus led to

infer that it is neutronization that would constrain white

dwarfs within the Chandrasekhar limit. This implies that
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α should be very small (∼ 10−7 or lower) so that a mass

close to the Chandrasekhar limit is obtained as a conse-

quence of the neutronization threshold. If this were not

the case, that is, in the absence of neutronization, the

modified dispersion relation would support excessively

high mass values (beyond the Chandrasekar mass) even

for very low values of α such as 10−7 or lower. It is only

when we impose the condition of neutronization (on top

of the effect of quantum gravity) that we get mass limits

close to the Chandrasekhar mass.

We further note that since the effect of quantum grav-

ity must be inevitably present, we should consider it in

the analysis. There are two simple ways to take the ef-

fect of quantum gravity into account. One way is to con-

sider this effect through noncommutativity that modifies

the dispersion relation as presented in this paper. Another

way is to include this effect through a generalized uncer-

tainty relation as discussed earlier in Mathew & Nandy

(2018). Based on these two differing approaches, we

may state that whichever way we attempt to include the

effect of quantum gravity in the description, we find

that white dwarfs with excessively high masses (beyond

the Chandrasekar mass) would be supported although

the quantum gravity parameter is taken to be extremely

small. In both approaches, we find that it is only when

we impose the condition of neutronization that we ob-

tain mass limits close to the Chandrasekar mass. Thus, in

realistic situations, such mass limits exist because of the

neutronization threshold that destabilizes the white dwarf

due to the onset of inverse β-decay.

Since the above discussion applies to white dwarfs

when the equilibrium is governed by Newtonian grav-

ity, the situation is expected to alter when general rel-

ativity is employed for the hydrostatic equilibrium. It

is already known that gravitational instability sets in

before the neutronization instability for 4
2He and 12

6C

white dwarfs, whereas, for 16
8O white dwarfs, it is

the instability due to neutronization that sets in be-

fore the gravitational instability (Shapiro & Teukolsky

(1983)). However, in the present case of noncommuta-

tive equation of state, the neutronization threshold de-

pends on the noncommutative parameter α according to

Equation (36). Consequently, it would be interesting to

analyze the problem in the general relativistic framework

to see to what extent the above situation changes in de-

termining the competition between the two kinds of in-

stabilities. We leave this motivation as an interesting re-

search problem for the future.
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