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Abstract We investigate the problem of static and spherically symmetric solutions in the Starobinsky

gravity model. By extending the Lichnerowicz and Israel theorems, William Nelson has demonstrated

that the Schwarzschild solution is the unique static, spherically symmetric and asymptotically flat black

hole solution in the Starobinsky model. However, Hong Lü et al. find that there are sign errors in the

proof of Nelson. This raises the problem of whether Nelson’s proof is correct or not. In order to answer

this question, we explore the corresponding solutions by using the Taylor series expansion method. We

find that Nelson’s conclusion is indeed correct despite the flaw in the proof.

Key words: black hole physics: gravitation

1 INTRODUCTION

The most recent observations from the Planck satellite

(Planck Collaboration et al. 2016) are remarkably consis-

tent with the Starobinsky model of gravity f(R) = R +

sR2 (Starobinsky 1980). On the contrary, chaotic infla-

tionary models like large field inflation and natural infla-

tion are disfavored because of their high tensor-to-scalar

ratio. On the other hand, compared to the Starobinsky

model, other alternatives of f(R) modified gravity the-

ories are usually plagued by various problems. For ex-

ample, they generally lead to the Einstein gravity plus

a cosmological constant (Thongkool et al. 2009), have

a field-matter dominated epoch rather than a standard

matter-dominated epoch (Amendola et al. 2007), run into

a curvature singularity (Frolov 2008) (see Kobayashi &

Maeda (2008) for the existence of a singularity in an

asymptotic de Sitter Universe and Upadhye & Hu (2009)

for the opposite statement), produce high frequency os-

cillations and a singularity at finite time in cosmology

(Appleby & Battye 2008), or give rise to a fine tuning

of the exponent (Faraoni 2011). In view of these points,

great enthusiasm for research on Starobinsky gravity has

been generated.

We shall deal with the problem of solving

Starobinsky gravity. Actually, investigations on the static,

spherically symmetric spacetime solutions in other mod-

ified gravity theories have also been carried out. In

the first place, numerical solutions modeled as neutron

stars in modified gravities are studied by the following

references (Cooney et al. 2010; Babichev & Langlois

2010; Arapoǧlu et al. 2011; Jaime et al. 2011; Santos

2012; Orellana et al. 2013; Alavirad & Weller 2013;

Astashenok et al. 2013; Ganguly et al. 2014; Astashenok

et al. 2014; Yazadjiev et al. 2014; Capozziello et al. 2016;

Astashenok et al. 2017). Secondly, many efforts are de-

voted to aspects of black hole solutions. Here we are un-

able to exhaust all the references and we only present

a brief review. Using the Taylor expansion method, the

near-horizon geometry of black hole spacetime is in-

vestigated in Lü et al. (2015a). The Lifshitz black hole

in four dimensional R-squared gravity is presented in

Cai et al. (2009). Some exact, asymptotically non-flat

and static black hole solutions are given in Gao &

Shen (2016). Static spherically symmetric solutions of

f(R) gravity have also been studied in both the vac-

uum case (Multamäki & Vilja 2006) and the perfect fluid

model (Multamäki & Vilja 2007). Following a pertur-
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bative approach in f(R) gravity around the Einstein-

Hilbert action, de La Cruz-Dombriz et al. (2009) found

that only solutions of the Schwarzschild-(Anti) de Sitter

type are present up to second order in perturbations.

A class of exact static spherically symmetric solutions

has been presented in Clifton & Barrow (2005) for

the form R1+δ . Using the Lagrange multiplier method,

Sebastiani & Zerbini (2011) present a Lagrangian deriva-

tion of the equation of motion for static spherically

symmetric spacetimes in the f(R) theory of gravity.

It is found that the corresponding equations of motion

simply have the form of a first order derivative and

thus some new solutions are obtained. Shojai & Shojai

(2012) construct some new static spherically symmet-

ric interior solutions in R1+δ theory. With the method of

Noether symmetries, Capozziello et al. (2012) find some

new static spherically symmetric solutions in f(R) the-

ory. Multamäki & Vilja (2006) construct the spherically

symmetric solutions of f(R) gravity using their input

function method. Gutiérrez-Piñeres & López-Monsalvo

(2013) present a static axially symmetric vacuum solu-

tion for f(R) gravity in Weyl’s canonical coordinates.

Finally, using the so-called generator method, Amirabi

et al. (2016) present some static spherically symmet-

ric solutions in f(R) theory in n dimensional space-

times. For more works on static solutions in f(R) grav-

ity, we refer to Goswami et al. (2014); Hendi et al.

(2012); Bergliaffa & Nunes (2011); Cembranos et al.

(2011); Aparicio Resco et al. (2016); Lobo & Oliveira

(2009); Caramês & de Mello (2009); Azadi et al. (2008);

Capozziello et al. (2008); Kainulainen et al. (2007);

Cognola et al. (2015); Nojiri & Odintsov (2013, 2014);

Hendi et al. (2014b,a); Babichev & Langlois (2009);

Hendi & Momeni (2011); Myrzakulov et al. (2016); Lü

et al. (2015b); Chakraborty & SenGupta (2015); Frolov

& Shapiro (2009).

In this paper, we shall look for the static, spherically

symmetric and asymptotically flat black hole solution in

the Starobinsky model of gravity. In fact, Nelson (2010)

has shown that, by extending the Lichnerowicz and Israel

theorems from Einstein gravity to higher derivative grav-

ities, the Schwarzschild solution is the unique static,

spherically symmetric and asymptotically flat black hole

solution in the Starobinsky model of gravity. However,

Hong Lü et al. (Lü et al. 2015b) found that there are sign

errors in the proof of Nelson. This raises the problem

of whether Nelson’s proof is correct or not. In order to

answer this question, we explore the corresponding so-

lutions by using the Taylor series expansion method. We

find that Nelson’s conclusion is indeed correct despite the

flaw in the proof. Compared to Nelson’s verification, we

can go even further. Using the Taylor series expansion

method, we find the conclusion is applicable not only to

the Starobinsky model but also to the more generalized

modified gravity, f(R) = R + s2R
2 + s3R

3 + s4R
4 +

O
(

R4
)

(in contrast, Nelson’s verification is applicable

to the theory of f(R) = R + sR2 + αRµνRµν ). Thus

it is an important conclusion. Throughout this paper, we

adopt the system of units in which G = c = ~ = 1 and

the metric signature (−, +, +, +).

2 SOLUTION IN THE EINSTEIN GRAVITY

In this section, as a warm-up, we shall derive the static,

spherically symmetric and asymptotically flat spacetime

solution in the Einstein gravity by using the Taylor ex-

pansion method.

Let us start from the Einstein-Hilbert action

S =

∫

d4x
√
−g

R

16π
, (1)

where R is the Ricci scalar. Since we shall look for the

vacuum solutions, the contribution of matters is absent in

the action.

The metric for static and spherically symmetric

spacetime in the isotropic coordinate system can be writ-

ten as

ds2 = −A (r)2 dt2 + B (r)2
(

dr2 + r2dΩ2
)

, (2)

where dΩ2 = dθ2 + sin2 θdφ2. Then we obtain the

Einstein equations

2BB′′r − B′2r + 4BB′ = 0 , (3)

2BB′A′r + B′2Ar + 2B2A′ + 2BB′A = 0 , (4)

A′′B2r+BAB′′r−B′2Ar+B2A′+BB′A = 0 . (5)

The system of equations can be solved and the solution

is

A =
1 − M

2r

1 + M
2r

, B =

(

1 +
M

2r

)2

, (6)

which is the Schwarzschild solution. M is the mass of

the source. Different from the Schwarzschild coordinate,

the metric components in isotropic coordinates are con-

vergent on the event horizon. So, we shall carry out the
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calculation in the isotropic coordinates. We expand A(r)

and B(r) in the form of a Taylor series

A(r) =1 +
a1M

r
+

a2M
2

r2
+

a3M
3

r3

+
a4M

4

r4
+

a5M
5

r5
+

a6M
6

r6
+ O

(

1

r6

)

,

(7)

B(r) =1 +
b1M

r
+

b2M
2

r2
+

b3M
3

r3

+
b4M

4

r4
+

b5M
5

r5
+

b6M
6

r6
+ O

(

1

r6

)

,

(8)

where ai and bi are dimensionless constants to be de-

termined. For sufficiently large r, we have A = 1 and

B = 1.

In other words, the spacetime is asymptotically flat.

Substituting Equations (7) and (8) into the Einstein

Equations (3), (4) and (5), we find Equations (3), (4) and

(5) become

0 =
α2

r2
+

α3

r3
+

α4

r4
+

α5

r5
+

α6

r6
+ O

(

1

r6

)

, (9)

0 =
β1

r
+

β2

r2
+

β3

r3
+

β4

r4
+

β5

r5
+

β6

r6
+O

(

1

r6

)

, (10)

0 =
γ1

r
+

γ2

r2
+

γ3

r3
+

γ4

r4
+

γ5

r5
+

γ6

r6
+ O

(

1

r6

)

, (11)

where αi, βi and γi are constants whose concrete expres-

sions are determined by ai, bi and M . We need to find the

expressions for 12 coefficients, ai and bi in Equations (7)

and (8). So, we want 12 algebraic equations.

By setting the leading terms in Equations (9), (10)

and (11) to zero, we obtain 12 algebraic equations

α2 = 0 , α3 = 0 , α4 = 0 , α5 = 0 , (12)

β1 = 0 , β2 = 0 , β3 = 0 , β4 = 0 , (13)

β5 = 0 , γ3 = 0 , γ4 = 0 , γ5 = 0 . (14)

We find γ1 = β1, γ2 = β2 and γ1 = 0, γ2 = 0. Solving

the 12 equations, we arrive at

a1 = −b1 , b1 = b1 , (15)

a2 =
b2
1

2
, b2 =

b2
1

4
, (16)

a3 = −b3
1

4
, b3 = 0 , (17)

a4 =
b4
1

8
, b4 = 0 , (18)

a5 = − b5
1

16
, b5 = 0 , (19)

a6 =
b6
1

32
, b6 = 0 . (20)

We remember b1 = 1 in the Newtonian limit of Einstein

equations. Therefore, we finally have

a1 = −1 , b1 = 1 , (21)

a2 =
1

2
, b2 =

1

4
, (22)

a3 = −1

4
, b3 = 0 , (23)

a4 =
1

8
, b4 = 0 , (24)

a5 = − 1

16
, b5 = 0 , (25)

a6 =
1

32
, b6 = 0 . (26)

On the other hand, if we expand the Schwarzschild solu-

tion, Equation (6), using the Taylor series, we have

A =1 − M

r
+

M2

2r2
− M3

4r3
+

M4

8r4

− M5

16r5
+

M6

32r6
+ O

(

1

r6

)

,

(27)

B = 1 +
M

r
+

M2

4r2
. (28)

Equations (21)–(26) are exactly consistent with

Equations (27)–(28). Thus we conclude that there are no

problems in seeking the exact solution to any order by

using the Taylor series method.

3 SOLUTION IN THE STAROBINSKY MODEL

In this section, we solve the field equations in the

Starobinsky model by using the Taylor series method.

The action of the Starobinsky model in the absence of

matters is given by

S =

∫

d4x
√
−g

1

16π

(

R + sR2
)

. (29)

Here s is a coupling constant which has the dimension

of the square of length. The corresponding equations of

motion take the form of

Gµν + 2sR

(

Gµν +
1

4
Rgµν

)

+ 2s
(

gµν∇2R −∇µ∇νR
)

= 0 .

(30)

Given the metric, Equation (2), the equations of motion

are then obtained. Then we face a daunting task of re-

solving the equations. Therefore, we resort to the Taylor

series expansion method. Substituting Equations (7) and

(8) into the equations of motion, we obtain

0 =
α2

r2
+

α3

r3
+

α4

r4
+

α5

r5
+

α6

r6
+ O

(

1

r6

)

, (31)
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0 =
β1

r
+

β2

r2
+

β3

r3
+

β4

r4
+

β5

r5
+

β6

r6
+O

(

1

r6

)

, (32)

0 =
γ1

r
+

γ2

r2
+

γ3

r3
+

γ4

r4
+

γ5

r5
+

γ6

r6
+ O

(

1

r6

)

, (33)

where αi, βi and γi are determined by ai, bi and M . In

this case, we also have γ1 = β1 and γ2 = β2. Thus we

have the following algebraic equations

α2 = 0 , α3 = 0 , α4 = 0 , α5 = 0 , (34)

β1 = 0 , β2 = 0 , β3 = 0 , β4 = 0 , (35)

β5 = 0 , γ3 = 0 , γ4 = 0 , γ5 = 0 . (36)

Solving these equations, we obtain

a1 = −b1 , b1 = b1 , (37)

a2 =
b2
1

2
, b2 =

b2
1

4
, (38)

a3 = −b3
1

4
, b3 = 0 , (39)

a4 =
b4
1

8
, b4 = 0 , (40)

a5 = −
b5
1

16
, b5 = 0 , (41)

a6 =
b6
1

32
, b6 = 0 . (42)

They are exact for the Schwarzschild solution when b1 =

1. We note that the coupling constant s does not emerge

in the expressions of the coefficients. This means the

Ricci-squared term sR2 makes no contribution in the

equations of motion. This observation is consistent with

the proof of Nelson. In fact, Nelson showed that any

static black-hole solution of the Starobinsky model must

have a vanishing Ricci scalar. Taking this into consider-

ation, the equations of motion defined by Equation (30)

are simply

Gµν = 0 . (43)

Thus the Ricci-squared term sR2 makes no contribution

to the equations of motion. Up to this point, we confirm

that Nelson’s conclusion that the unique, static, spheri-

cally symmetric and asymptotically flat black hole solu-

tion in the Starobinsky model which is nothing but the

Schwarzschild solution is correct, despite the flaw in his

proof. Compared to Nelson’s verification, we can go fur-

ther. Using the Taylor series expansion method, we have

checked that for more general modified gravity

S =

∫

d4x
√
−g

1

16π

×
[

R + s2R
2 + s3R

3 + s4R
4 + O

(

R4
)

]

,

(44)

the unique, static, spherically symmetric and asymptoti-

cally flat black hole solution remains the Schwarzschild

solution. Then the applicability of the conclusion is ex-

tended. It should be noted that Cañate recently presented

a no-hair theorem which discards the existence of four di-

mensional asymptotically flat, static and spherically sym-

metric or stationary axially symmetric, non-trivial black

holes in the frame of f(R) gravity (Cañate 2018). This

represents huge support for our examination.

4 CONCLUSION AND DISCUSSION

In conclusion, we have investigated the solution to the

problem in the Starobinsky gravity model. By using

the Taylor series expansion method, we show the static,

spherically symmetric and asymptotically flat spacetime

is uniquely the Schwarzschild solution. This is in agree-

ment with the proof of Nelson who uses the method of

extending the Lichnerowicz and Israel theorems from

Einstein gravity to higher order theories of gravity, de-

spite the flaw in his proof. But compared to Nelson’s

verification, we can go further. We find the conclusion

can be extended to the more generalized modified grav-

ity. Thus it is an important conclusion.

We can also understand the conclusion in another

way. We remember that the f(R) theory of modified

gravity is equivalent to the scalar tensor theory

S̃ =

∫

d4x
√

−g̃

×

[

R̃

16π
+

1

2
∇µφ̃∇µφ̃ + V

(

φ̃
)

]

,

(45)

and by making variable redefinitions and conformal

transformations (Sotiriou & Faraoni 2010)

gµν = e−
√

16π

3
φ̃g̃µν . (46)

Heusler (1992); Sudarsky (1995) have shown that black

holes in the above scalar tensor theory cannot carry

scalar charge for arbitrary potentials. This is known as

the black-hole no-hair theorem. The theorem guaran-

tees the scalar field φ̃ is constant in this spacetime.

Then the scalar potential plays the role of the cos-

mological constant. The no-hair theorem requires that

the Schwarzschild-de Sitter solution is the unique static

spherically symmetric spacetime. If one assumes the

spacetime is asymptotically flat, we are left with only

the Schwarzschild solution g̃µν . From Equation (46)

we see the solution gµν of f(R) gravity is exactly the
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Schwarzschild solution since it is proportional to g̃µν by

a constant. In all, we have good reason to believe that the

Schwarzschild solution is the unique static, spherically

symmetric and asymptotically flat spacetime solution in

the Starobinsky gravity.
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