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Abstract We show that a phenomenological form of energy density for the scalar field can provide the

required transition from decelerated (q > 0) to accelerated expansion (q < 0) phase of the universe.

We have used the latest type Ia supernova (SNIa) and Hubble parameter datasets to constrain the model

parameters. The best fit values obtained from those datasets are then applied to reconstruct ωφ(z), the

equation of state parameter for the scalar field. The results show that the reconstructed forms of q(z) and

ωφ(z) do not differ much from the standard ΛCDM value at the current epoch. Finally, the functional

form of the relevant potential V (φ) is derived by a parametric reconstruction. The corresponding V (φ)

comes out to be a double exponential potential, which has a number of cosmological implications.

Additionally, we have also studied the effect of this particular scalar field dark energy sector on the

evolution of matter overdensities.
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1 INTRODUCTION

Recent cosmological observations (Riess et al. 1998,

2004; Perlmutter et al. 1999; Eisenstein et al. 2005;

Spergel et al. 2007) strongly suggest that the universe is

currently going through an accelerated phase of expan-

sion. These observations also suggest that the observed

accelerated phase is indeed a very recent phenomenon

and that the universe must have had a decelerated phase

of expansion in the past in order to facilitate structure for-

mation. The driving force responsible for generating this

observed accelerated expansion is popularly named dark

energy (DE), which has large negative pressure. For re-

view on DE models, one can refer to the relevant review

works (Sahni & Starobinsky 2000; Copeland et al. 2006;

Martin 2008). Among the most popular DE models, the

Λ cold dark matter (ΛCDM) model enjoys more wor-

thy attention in the literature, and is found to be in good

agreement with the observational data. But, it has two as-

sociated theoretical problems, namely, fine tuning prob-

lem and cosmological coincidence problem (Weinberg

1989; Steinhardt et al. 1999). Alternatively, quintessence

models do not suffer from the above mentioned problems

due to their dynamical nature and are widely used as can-

didates for DE. The quintessence (or canonical) field, is

capable of driving the acceleration with some suitably

chosen potentials, but none of these models have firm

theoretical motivation (for a comprehensive review, see

Sahni & Starobinsky 2000). Numerous DE models have

been explored and studied over the last two decades in or-

der to explain this observed late time accelerated behav-

ior of the universe (for details, one can look into Sahni

2004). However, none of these models can be considered

as superior to others, so the search is still on for a suitable

model for DE consistent with the current observations.

Although it is mostly believed that DE components do

not cluster, recently studies have been conducted to in-

vestigate the effects of perturbations on DE components

(Weller & Lewis 2003; Bartolo et al. 2004; Unnikrishnan

2008; Unnikrishnan et al. 2008; Jassal 2010), so this
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branch of cosmology requires huge attention to probe

whether such clustering can provide us with new infor-

mation regarding the true nature of the DE component.

Keeping in mind the above facts, we have proposed

a simple scalar field model of DE in the framework of

a spatially flat (k = 0) Friedmann-Robertson-Walker

(FRW) universe, where we have considered a functional

dependence for the energy density of the scalar field,

ρφ(a). The aim of this paper is to investigate the evo-

lution history of the universe in this scenario. With this

input, expressions for the Hubble parameter H(z), de-

celeration parameter q(z), equation of state (EoS) pa-

rameter ωφ(z) and density parameter Ωφ(z) are inves-

tigated. Next, we have obtained constraints on various

parameters of the model using type Ia supernova (SNIa),

Hubble and joint analysis of SNIa+Hubble datasets. The

best-fit values obtained are then used to constrain the

evolution behaviors of q(z) and ωφ(z). We have found

that for this specific ansatz, the deceleration parameter

q smoothly transits from the positive to negative value

regime in the recent past (around z < 1) such that struc-

ture formation can take place unhindered. These results

are compatible with results that are expected both theo-

retically (Padmanabhan & Choudhury 2003; Choudhury

& Padmanabhan 2005) and observationally (Riess et al.

2001, 2004; Turner & Riess 2002; Cunha 2009; Mamon

& Das 2016). We also discuss the future evolution dy-

namics of the universe. Using the combination of the

SNIa and Hubble datasets, we have also tried to ob-

tain the functional dependence of potential V (φ) for this

model. Finally, we also examine the effect of this par-

ticular DE sector on the growth of matter perturbations

by comparing it with well studied cosmological mod-

els such as the ΛCDM model and Chevallier-Polarski-

Linder (CPL) model or with a model where there is no

DE sector.

The organization of the paper is as follows. In

Section 2, we present basic equations related to the scalar

field DE model for a spatially flat FRW model of the uni-

verse. We then obtain analytical solutions for the field

equations using a specific choice of ρφ. In Section 3,

we describe the observational datasets and their analy-

sis method used in this paper. We then derive constraints

on various cosmological parameters. The results are pre-

sented in Section 4. In Section 5, we study the effect of

this particular DE sector on the evolution of matter over-

densities at perturbative level. Finally, some conclusions

are provided in Section 6.

2 THEORETICAL MODEL

The Einstein field equations for an FRW space-time

(with a flat spatial term) are given by

3
ȧ2

a2
= ρm +

1

2
φ̇2 + V (φ) = ρm + ρφ , (1)

2
ä

a
+

ȧ2

a2
= −1

2
φ̇2 + V (φ) = −pφ , (2)

written in natural units such that 8πG = c = 1.

It is clear from Equations (1) and (2) that the energy den-

sity ρφ and pressure pφ for the scalar field component

are

ρφ =
1

2
φ̇2 + V (φ) , (3)

pφ =
1

2
φ̇2 − V (φ) . (4)

Also, the conservation equations for the scalar field and

matter field are

ρ̇φ + 3H(ρφ + pφ) = 0 , (5)

ρ̇m + 3Hρm = 0 . (6)

Equation (6) on integration yields

ρm = ρm0a
−3 , (7)

where ρm0 denotes the current value of energy density

corresponding to the matter field.

Also, from Equation (5), one can obtain the EoS pa-

rameter as

ωφ =
pφ

ρφ
= −1 − a

3ρφ

dρφ

da
. (8)

Only three equations among (1), (2), (5) and (6) are

independent. The fourth one can be derived from the

other three in view of the Bianchi identities. So, we have

to solve for four unknown parameters, namely H , ρm, φ

and V (φ), from three independent equations. Hence, an

exact solution is not possible without an additional input.

With this freedom, we make an ansatz for the functional

form of ρφ as,

1

ρφ

dρφ

da
= − λa

(k + a)2
, (9)

where k, λ are positive constants. This immediately

yields,

ρφ =
A

(k + a)λ
exp

[

− kλ

(k + a)

]

, (10)

where A = ρφ0(1 + k)λexp
[

kλ
(1+k)

]

and ρφ0 repre-

sents the current value of scalar field energy density. Of
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course, the choice made in Equation (9) is quite arbitrary.

However, for k = 0, Equation (10) will provide a simple

power law evolution of ρφ (∼ a−λ), which has been con-

sidered in many cosmological analyses (Copeland et al.

2006).

From Equations (8) and (9), one can immediately

obtain the EoS parameter ωφ as a function of redshift z

(z = 1
a − 1) as

ωφ(z) = −1 +
λ

3[1 + k(1 + z)]2
. (11)

In fact, one can reframe this particular phenomeno-

logical model or the phenomenological choice made in

(9) in a different way as well. One can as well make a

choice for the EoS parameter ωφ(z) as

ωφ(z) = ω0 +
ω1

(ω2 + ω3z)2
, (12)

and for proper choices of ω0, ω1, ω2 and ω3 one can get

back Equation (11).

Equation (12) provides a new form of parametriza-

tion for the DE EoS parameter. It deserves mention that

for proper choices of λ and k in Equation (11), or equiv-

alently for ω2 = ω3 = 1, Equation (12) takes the form

ωφ(a) = ω0 + ω1a
2 , (13)

which has been studied extensively in many cosmolog-

ical DE models (Copeland et al. 2006). However, this

representation in terms of the EoS parameter or energy

density of the DE sector ρφ(z) are interrelated and one

can consider any of these approaches to begin with.

At present, most of the existing models of DE lack

a well motivated physical background which can explain

the origin of late-time cosmic acceleration successfully,

so it is reasonable to consider a phenomenological ap-

proach. Cosmologists are looking forward to the DESI

(DESI Collaboration et al. 2016), Euclid (Laureijs et al.

2011) and LSST (Abell et al. 2009) experiments which,

when operational, will provide high precision data. These

efforts will be useful for understanding the expansion

history of the universe and one will be able to verify the

viability of various DE models beyond a ΛCDM model.

Until then, one can test a cosmological toy model with

the available data and check its viability. Motivated by

these facts, in this paper, we made the ansatz (9) to track

the expansion dynamics of the universe. The assumption

in Equation (9) (or equivalently Eq. (10) or (11)) now

makes the system of equations closed. In what follows,

we shall try to obtain some cosmological solutions for

this toy model providing an accelerating universe.

From Equations (1), (7) and (10), the expression for

the Hubble parameter is obtained as

H2 = H2
0

{

Ωm0a
−3 +

βΩφ0

(k + a)λ
exp

[

− kλ

(k + a)

]}

,

(14)

where β = (1 + k)λexp
[

kλ
(1+k)

]

is a constant. Ωm0 =
ρm0

3H2
0

and Ωφ0(=
ρφ0

3H2
0
) = 1 − Ωm0 represent the current

values of density parameters for the matter and scalar

fields respectively.

The deceleration parameter q is defined as

q = −
ä

aH2
= −

(

1 +
Ḣ

H2

)

, (15)

where Ḣ = dH
dt = aH dH

da .

From Equations (14) and (15), we have obtained the

expression for q in terms of scale factor a as,

q(a) = − 1

+

3
2Ωm0a

−3 +
λβΩφ0a2

2(k+a)λ+2 exp
[

− kλ
(k+a)

]

Ωm0a−3 +
βΩφ0

(k+a)λ exp
[

− kλ
(k+a)

] .

(16)

Now, Equation (16) can be written in terms of redshift z

as

q(z) = −1

+

3
2Ωm0(1 + z)3 +

λβΩφ0(1+z)λ

2(1+k(1+z))λ+2 exp
[

− kλ(1+z)
(1+k(1+z))

]

Ωm0(1 + z)3 +
βΩφ0(1+z)λ

(1+k(1+z))λ exp
[

− kλ(1+z)
(1+k(1+z))

] .

(17)

For the sake of completeness, we have also obtained the

functional behavior of the density parameters for the mat-

ter field (Ωm) and scalar field (Ωφ) as:

Ωm(z) =
Ωm0(1 + z)3

Ωm0(1 + z)3 +
βΩφ0(1+z)λ

(1+k(1+z))λ exp
[

−
kλ(1+z)

(1+k(1+z))

] ,

(18)

Ωφ(z) =
βΩφ0(1 + z)λexp

[

−
kλ(1+z)

(1+k(1+z))

]

(1 + k(1 + z))−λ

Ωm0(1 + z)3 +
βΩφ0(1+z)λ

(1+k(1+z))λ exp
[

−
kλ(1+z)

(1+k(1+z))

] .

(19)
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Now, adding Equations (3) and (4), one can obtain

φ̇2 =(1 + z)2H2

(

dφ

dz

)2

= (1 + ωφ(z))ρφ(z)

⇒
dφ(z)

dz
= ±

√
λ(1 + z)−1

1 + k(1 + z)

×
{

1 +
Ωm0

βΩφ0

(1 + k(1 + z))λ

(1 + z)(λ−3)

×exp

[

kλ(1 + z)

(1 + k(1 + z))

]}

−1/2

,

(20)

which on integration gives,

φ(z) = φ0 ±
(

2

k

)
λ
2

λ
(1−λ)

2 F(z)

× (1 + z)−1(1 + k(1 + z))
λ
2

√

1 + Ωm0

βΩφ0

(1+k(1+z))λ

(1+z)−2 exp
[

− kλ(1+z)
(1+k(1+z))

]

,
(21)

where φ0 is an integration constant and

F(z) = exp

[

kλ(1 + z)

2(1 + k(1 + z))

]

Γ

(

λ

2
,

kλ(1 + z)

2(1 + k(1 + z))

)

.

Similarly, using Equations (3) and (4), one can re-

construct the potential for the scalar field as

V (φ) =
1

2
ρφ(1 − ωφ) , (22)

which when expressed in terms of redshift parameter z

becomes

V (z) =V0
(1 + z)λ

[1 + k(1 + z)]λ

×
[

1 − λ

6(1 + k(1 + z))2

]

× exp

[

− kλ(1 + z)

(1 + k(1 + z))

]

,

(23)

where V0 = 3H2
0Ωφ0β. Therefore, by using Equations

(21) and (23), one can arrive at the expression for po-

tential V (φ) if the values of k and λ are given. In this

work, we first obtain constraints on k and λ using the ob-

servational datasets and from the best-fit values, we then

reconstruct the functional form of V (φ) (see Sect. 4).

In order to facilitate the structure formation, an ac-

celerating model of the universe should have a decelera-

tion history in the past as well. So, the deceleration pa-

rameter q is an important factor in modeling the evolu-

tion history of our universe. For this reason, we shall try

to analyze the behavior of q for this particular model.

3 DATA ANALYSIS

Here we shall fit the present model by using the SNIa

dataset and observational data from the Hubble data sur-

vey. We present a brief summary of the data analysis

method for each of the datasets.

For the SNIa dataset, we have used the recently re-

leased Union2.1 compilation data (Suzuki et al. 2012) of

580 data points. The corresponding χ2 function is de-

fined as (Nesseris & Perivolaropoulos 2005)

χ2
SN = A −

B2

C
(24)

with

A =

580
∑

i=1

[µobs(zi) − µth(zi)]
2

σ2
µ(zi)

, (25)

B =

580
∑

i=1

[µobs(zi) − µth(zi)]

σ2
µ(zi)

, (26)

and

C =
580
∑

i=1

1

σ2
µ(zi)

, (27)

where µobs is the observed distance modulus at a partic-

ular redshift, µth is the corresponding theoretical coun-

terpart and σµ is the error.

Next, we have continued the analysis with 29

data points obtained in Hubble parameter measurements

(Simon et al. 2005; Stern et al. 2010; Blake et al. 2012;

Moresco et al. 2012; Chuang & Wang 2013; Samushia

et al. 2013; Zhang et al. 2014; Delubac et al. 2015; Ding

et al. 2015) in the range 0.07 ≤ z ≤ 2.34 (Mamon &

Das 2015). The corresponding χ2 function is given by

χ2
H =

29
∑

i=1

[hobs(zi) − hth(zi)]
2

σ2(zi)
. (28)

In the above equation, hobs and hth are the observed and

theoretical values of the Hubble parameter respectively.

Also, σ represents the error in Hubble parameter mea-

surements and h(z) = H(z)
H0

.

Now the total χ2 for the (SNIa+Hubble) dataset is

defined as

χ2
total = χ2

SN + χ2
H . (29)

One can now minimize these χ2 functions (i.e., χ2
SN,

χ2
H and χ2

total) with respect to the model parameters and

compute the estimated values and their errors.
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4 RESULTS

Following the data analysis method mentioned above, in

this section, limits on the values of k and λ are obtained

for the Hubble, SNIa and Hubble+SNIa datasets, which

are displayed in Table 1 along with the 1σ errors.

Table 1 Best fit values for k and λ for the Hubble and SNIa
Datasets with Ωm0 = 0.27. Here, χ2

m represents the minimum
value of χ2.

Dataset k λ χ2
m (min. value of χ2)

Hubble 4.96 ± 0.40 2.82 ± 0.23 28.59

SNIa 4.97 ± 0.22 2.99 ± 0.19 562.27

SNIa+Hubble 4.93 ± 0.10 2.94 ± 0.12 573.84

It has been found that the joint analysis of the

SNIa+Hubble dataset puts a tighter constraint as com-

pared to the constraints obtained from the SNIa or

Hubble datasets alone. Using these values, the deceler-

ation parameter q(z) has been reconstructed for different

datasets which are shown in Figure 1.

From Figure 1, we have found that q(z) enters into a

negative value regime in the recent past at a redshift zt.

The best-fit values of q(z) at present (say, q0 = q(z = 0))

and the redshift zt at which a transition in q occurs along

with 1σ errors for different datasets are listed in Table 2.

Table 2 Best fit values of q0 and zt (within 1σ errors) for dif-
ferent datasets.

Datasets q0 zt

Hubble q0 = −0.57 ± 0.13 zt = 0.75 ± 0.04

SNIa q0 = −0.56 ± 0.05 zt = 0.76 ± 0.02

SNIa+Hubble q0 = −0.56 ± 0.02 zt = 0.76 ± 0.01

These results are almost consistent with known val-

ues for the flat ΛCDM model (q0 = −0.59, zt = 0.75)

with Ωm0 = 0.27 and ΩΛ0 = 0.73. It deserves men-

tion that our results also match those obtained in litera-

ture [for details, one can examine Turner & Riess (2002);

Riess et al. (2004); Cunha (2009); Mamon & Das (2016)

and references therein].

Figure 2 shows the future evolution of q(z). It is ev-

ident from Figure 2 that the present model does not indi-

cate any slowing down of the present cosmic acceleration

in the near future as suggested in Shafieloo et al. (2009);

Magaña et al. (2014) for various DE parametrizations. In

the far future (near z → −1), however there is evidence

that the rate of expansion varies but the universe contin-

ues to accelerate forever in the present toy model. Hence,

we need more robust observational datasets and more ef-

fective analysis methods to have consensus on whether

the cosmic acceleration is speeding up or not.

The reconstructed evolution dynamics of ωφ(z) is

shown in Figure 3 for different datasets. The values of

ωφ(z) at present (i.e., ωφ(z = 0)) with 1σ errors for the

Hubble, SNIa and SNIa+ Hubble datasets are obtained as

−0.88 ± 0.26, −0.89 ± 0.10 and −0.89 ± 0.04 respec-

tively.

In the left panel of Figure 4, we depict the behavior

of ωφ(z) for the values of k and λ obtained in Table 1

for each dataset. We also plot the rate of change of ωφ

against z
(

D =
dωφ

dz

)

in Figure 4, which shows that the

magnitude of
dωφ

dz is negative and remains almost con-

stant at high redshifts, but the magnitude of
dωφ

dz is de-

creasing at low redshifts for each dataset.

Figures 3 and 4 indicate that at high redshifts the

present model does not have any significant deviation

from the ΛCDM model, but with evolution (as z → 0),

the deviation from ΛCDM becomes prominent. This dy-

namical nature of the DE component can be effective in

determining the late time evolution of the universe and

thus may provide an answer to the coincidence problem

in cosmology.

For the sake of completeness, we have also solved

Equations (21) and (23) numerically and plotted the po-

tential V (φ) for k = 4.93, λ = 2.94, Ωφ0 = 0.73,

H0 = 72 km s−1 Mpc−1 and φ0 = 5 in the left panel of

Figure 5. From this figure, we have found that the poten-

tial V (φ) increases with φ. The reason behind this seems

to be the choice of ρφ as given in Equation (9). For this

toy model, V (φ) can be obtained as

V (φ) ≈ Aexp(α1φ) + Bexp(α2φ) , (30)

where A = 1.07 × 104, α1 = 0.02, B = −4.21 × 1016

and α2 = −9.50. Recently, this type of potential has al-

ready been discussed by several authors while explaining

the late-time cosmic acceleration (Barreiro et al. 2000;

Rubano & Scudellaro 2001; Sen & Sethi 2002). We have

also checked that the nature of the V (φ) curve is hardly

affected by a small change in the allowed values of k and

λ within the 1σ confidence limit and other choices of φ0.

The variation of density parameters Ωm(z) and

Ωφ(z) is also shown in the right panel of Figure 5. This

plot also indicates that the universe has evolved to a DE

dominated era in the recent past, which is in accordance

with observational results.
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SNIa +Hubble data

Fig. 1 The reconstructed q(z) values for different observational datasets are shown. For each panel, the central dotted line and the

dashed lines represent the best-fit curve with 1σ errors respectively. Also, in each panel, the thick line indicates a ΛCDM universe

(with Ωm0 = 0.27 and ΩΛ0 = 0.73). This is for Ωm0 = 0.27.

- 0.5 0.0 0.5 1.0 1.5 2.0

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

0.2

0.4

z

q

SNIa +Hubble data

Fig. 2 Future evolution of q(z) for this model shown by a dotted line along the 1σ contour (dashed lines). This plot corresponds

to values of (k, λ) obtained for the SNIa+Hubble dataset with Ωm0 = 0.27. The thick line as usual indicates the behavior of q for

ΛCDM model.

5 GROWTH OF PERTURBATIONS

We are also interested in looking into the effect of this

particular DE sector on the evolution of matter overdensi-

ties. It is expected that the growth of matter perturbations

will be affected in the presence of a DE sector. As the DE

sector provides a repulsive gravity effect, it will result in

slowing down growth of the matter sector. However, for

different DE models the effect will be different depend-

ing upon the nature of the DE EoS parameter. In this sec-

tion we want to study the rate by which the evolution of

matter densities gets affected for this particular form of

DE density. To study this, we consider the following sys-
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Fig. 3 The reconstructed EoS parameter ωφ(z) for this model using various observational datasets, as indicated in each panel. The

central dotted line represents the best-fit curve and the dashed lines signify the 1σ contour. All the plots are for Ωm0 = 0.27.

tem of linearized Einstein Equations (Jaber & Macorra

2018)

a2δ′′m(a)+a
3

2
[1 − ωφ(a)Ωφ(a)] δ′m(a)

−
3

2
[Ωm(a)δm(a) + Ωφ(a)δφ(a)] = 0 ,

(31)

a2δ′′φ(a)+a
3

2
[1 − ωφ(a)Ωφ(a)] δ′φ(a)

+

[

c2
sκ

2

a2H2(a)
− 3

2
Ωφ(a)

]

δφ(a)

−3

2
Ωm(a)δm(a) = 0 ,

(32)

where

δm ≡ δρm

ρm
and δφ ≡ δρφ

ρφ

represent the matter and DE density contrasts, respec-

tively. A prime indicates variation with respect to a and

κ is the Fourier wave number. Also, the term c2
s in

Equation (32) represents the speed of sound for the DE

sector. One can split it into the sum of an adiabatic and

an effective (non-adiabatic) contribution, namely c2
ad and

c2
eff respectively, given by

c2
s =

δpφ

δρφ
= c2

ad + c2
eff , (33)

where

c2
ad = ωφ − 1

3

ω̇φ

H(1 + ωφ)
= ωφ(a) − 1

3

aω′

φ(a)

(1 + ωφ(a))
.

Following Jaber & Macorra (2018), in this work, we have

modeled c2
eff as a constant which can take values c2

eff =

0, 1
3 or 1.

To solve this system of equations, we need initial

conditions for δm and δφ. For our case, we set our ini-

tial conditions at the matter dominant era when the DE

contribution was very small and the modes are well in-

side the horizon. We choose δm(aini) = 10−5 at κ =

0.01 Mpc−1, which corresponds to the value when the

κ-mode enters the horizon. For the scalar field perturba-

tion, the contribution from the DE sector is considered to

be negligible initially and is set at δφ(aini) = 10−8.

With the initial conditions mentioned above, the sys-

tem of equations is solved numerically for different val-

ues of c2
eff . We have displayed the results in Figure 6 for

c2
eff = 1. However, it has been found that the different

values of c2
eff only reduce the growth of matter overden-

sities slightly, keeping the shape the same. In Figure 6,

the solid line represents the growth of matter perturba-

tions for the present DE model, which is slower com-

pared to the growth rate when there is no DE compo-
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Fig. 4 The left panel shows a plot of the reconstructed EoS parameter ωφ(z) using the best-fit values of k, λ and Ωm0 = 0.27. The

right panel displays a plot of D
(

=
dωφ

dz

)

against z. In both plots, the dotted, dashed and thick lines represent the evolution of the

corresponding parameter for the Hubble, SNIa and SNIa+Hubble datasets respectively.
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Fig. 5 The left panel shows the reconstructed potential V (φ) with (k, λ) values arising from the SNIa+Hubble dataset. In this plot,

we have chosen Ωφ0 = 0.73, H0 = 72 km s−1 Mpc−1 and φ0 = 5. The right panel displays the plot of Ωm (dashed curve) and

Ωφ (solid curve) for k = 4.9, λ = 2.9 and Ωm0 = 0.27.

nent in the universe (shown by the dotted line in Fig. 6).

We have also compared the growth rate for our model

with that for a ΛCDM model (ωΛCDM = −1) and CPL

model (ωCPL = ω0 + ω1z
(1+z) ) (Chevallier & Polarski

2001; Linder 2003) (shown by orange and green lines

respectively). For the CPL model, the values of ω0 and

ω1 have been taken as ω0 = −1.17 and ω1 = 0.35 (Qi

et al. 2016) respectively. It is evident that with evolution

(increasing a), the effect of the present DE sector on the

growth of matter overdensities is larger as compared to a

ΛCDM or a CPL model.

In Figure 7 we have plotted the percentage deviation

in the growth rate for the present model compared to a no

DE model. We have actually plotted the percentage de-

crease in the growth rate given by ∆m =
δm−δm(noDE)

δm(noDE)
.

The higher the percentage decrease is, the slower the

growth rate is. It is evident from the figure that the growth

rate becomes slower with the evolution and at later times

when the DE component dominates the evolution, the

growth rate is suppressed by around 12%.

6 CONCLUSIONS

To summarize, in this paper, we have tried to show that

a canonical scalar field model can provide an early de-

celerated expansion followed by an accelerated expan-

sion at late times. For this purpose, we have chosen one

specific ansatz for ρφ to characterize the properties of
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and CPL models respectively (color online). In this plot, we have chosen H0 = 72kms−1 Mpc−1 and the values of the model

parameters k and λ have been taken from joint analysis of the SNIa + Hubble dataset as listed in Table 1.
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Fig. 7 Percentage decrease in δm as a function of scale factor compared to a no DE model.

DE. Then with this input, we have obtained exact an-

alytical solutions for various cosmological parameters.

Using the SNIa, Hubble and SNIa+Hubble datasets, we

have reconstructed the deceleration parameter q(z) and

the EoS parameter ωφ(z) of this model. Results indicate

that the evolution of q(z) does not provide any signal of

cosmic deceleration in the future. The reconstructed val-

ues of q0, zt and ωφ(z = 0) have been calculated and

it has been found that the results obtained do not devi-

ate much from the standard ΛCDM model. Furthermore,

the potential V (φ) has been found numerically for some

specific choices of model parameters and the potential

is found to be a combination of two exponentials in φ

(see Eq. (30)). As already discussed, this type of po-

tential has earlier been considered by several authors

for quintessence fields. Hence, this work shows again

the importance of the double exponential potential for

a quintessence field. Finally, we would like to mention

that the observational datasets suffer from systematic er-

rors and the reconstructed results might vary for other

datasets. So, one can hope that the next generation of ob-

servational datasets will improve the constraints on these

model parameters considerably.

From the perturbative analysis it has been found that

the dynamical evolution of the DE sector or the cor-

responding EoS parameter ωφ(z) got imprinted in the

growth rate of the matter sector and this effect is much

more prominent at later times for the present DE model

as compared to a ΛCDM model or a CPL model.
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However, as nothing much is known about the DE

sector and a wide variety of possibilities is open, vari-

ous effective cosmological toy models can be considered

for different functional forms for ρφ, which may agree

even better with the observational results. So, one effec-

tive way to check the viability of a DE model may be to

look at the imprints of these models on the growth rate

of matter perturbations and compare it with available ex-

perimental measurements.
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