High amplitude δ Scuti star BO Lyn with evidence of a late A-type companion in an elliptical orbit

Lin-Jia Li^{1,2,3}, Sheng-Bang Qian^{1,2,3,4}, Jia Zhang^{1,2,3}, Li-Ying Zhu^{1,2,3,4} and Wen-Ping Liao^{1,2,3}

¹ Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China; *lipk@ynao.ac.cn*

- ² Key Laboratory of the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China
- ³ Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China

⁴ University of Chinese Academy of Sciences, Beijing 100049, China

Received 2017 September 1; accepted 2017 November 20

Abstract We present 145 times of light maximum for high amplitude δ Scuti star BO Lyn based on several sky surveys (CRTS, DASCH, NSVS, OMC and SuperWASP) and our photometric observations. Combining with the data in literature, a total of 179 times of light maximum are used to analyze the O - C diagram of BO Lyn. We find that it can be described by an upward parabolic component and a periodic variation with a period of 34.5 ± 0.1 yr. The latter could be caused by the light travel time effect as a result of an additional companion orbiting in a highly elliptical orbit ($e = 0.64 \pm 0.03$). Our study indicates that the companion's luminosity cannot be ignored, and it should be a late A-type main-sequence star. The long-term period change of BO Lyn is also detected, and its value, $1.52 \pm 0.26 \times 10^{-3}$ d Myr⁻¹, is consistent with evolutionary models. We suggest that more spectroscopic and photometric observations are needed in the future to confirm the nature of the BO Lyn system.

Key words: techniques: photometric — stars: variables: δ Scuti — stars: individual (BO Lyn)

1 INTRODUCTION

 δ Scuti variables are one type of variable star, with a short pulsation period, situated in the Classical Cepheid instability strip on the main sequence or moving away from the main sequence (Breger 2000). Their members, having V amplitudes greater than 0.3 mag, are known as high amplitude δ Scuti stars (HADS). Some authors have also suggested that the limit should be relaxed to $\Delta V > 0.1 \,\mathrm{mag}$ (Solano & Fernley 1997). Observations and research on the associated stellar pulsations and oscillations can provide valuable information about the interior properties of these stars and hence can be applied to test the theory of stellar structure and evolution (Christensen-Dalsgaard 2003). Moreover, the pulsations also can be used as probes to detect the companions of these stars, and the corresponding technique is the Observed–Calculated method (O - C method, Sterken) 2005), which is also known as the timing method. Actually, many δ Scuti stars, especially HADS, have been discovered existing in binary or multiple systems by using different methods (Zhou 2010; Liakos & Niarchos 2017), and the O - C method is a powerful tool for deriving their orbital elements (e.g. SZ Lyn, Paparo et al. 1988, Li & Qian 2013; CY Aqr, Fu & Sterken 2003; BL Cam, Fauvaud et al. 2006, 2010; KZ Hya, Fu et al. 2008; DY Peg, Li & Qian 2010; DW Psc, Qian et al. 2015). Moreover, this method also plays an important role in the field of other variable stars, such as eclipsing binaries (Yuan, Şenavcı & Qian 2016; Liao et al. 2016) and cataclysmic variables (Han et al. 2016, 2017).

BO Lyncis (BO Lyn, $\alpha_{2000} = 08^{h}43^{m}01.2^{s}$, $\delta_{2000} = 40^{\circ}59'51.8''$, $\langle V \rangle = 11.955$, $\Delta V = 0.23$, Sp: A5V–A8V) was discovered to be a δ Scuti variable by Kinman et al. (1994). After a comprehensive investigation, Kinman (1998) pointed out that the properties of

BO Lyn revealed that it is a member of the old disk population. Period analysis of BO Lyn was performed by Hintz et al. (2005). They used a parabola to fit the O - C diagram, and identified a period decrease of -1.5×10^{-10} d d⁻¹ or -0.056 d Myr⁻¹. However, based on new observations, Peña et al. (2016) found that the O - C curves show a sinusoidal behavior which could be caused by the light travel time effect (LiTE), and they provided a new linear ephemeris

$$\text{HJD}_{\text{Max}} = 2447933.7845(47) + 0.093358109(74)^{\text{d}} \cdot E.$$
 (1)

To investigate the pulsation period change of BO Lyn, we collect and determine its times of light maximum, and study the O - C diagram with a single-Keplerian fit. Sections 2 and 3 describe the observations and O - C analysis. We present the discussion and conclusion in Section 4.

2 OBSERVATIONS AND DATA COLLECTION

BO Lyn was observed by the 60 cm and 1 m telescopes administered by Yunnan Observatories in China on four nights in February and March 2017. The two telescopes were equipped with a PIXIS: 2048B detector and Andor DW436 CCD camera, respectively. Two standard Johnson-Cousin Bessel filters, V and R bands, were used in the observations, and the exposure times ranged from 10 to 50 s, depending on the weather, diameters of the telescopes and filters. The comparison star was TYC 2985-390-1 (08:42:39.9 +40:59:48.3, V = 10.91) and the check star was UCAC4 655-051112 (08:43:05.74 +40:59:41.06, V = 13.56). The light curves from the four nights and corresponding information (e.g. telescopes, exposure times) are displayed in Figure 1. Based on our observations, we determined 10 times of light maximum by fitting a cubic polynomial to each observed peak.

Actually, BO Lyn was observed by several sky surveys, and the most important one in this context should be the Digital Access to a Sky Century @ Harvard (DASCH) project, which provides digitized images for a century of coverage (Grindlay et al. 2009). Even though the light curves have lower time resolutions and higher uncertainties (\sim 0.1 mag) than other surveys, reliable times of light maximum can be determined by the appropriate methods and can provide useful information on more than 100 yr time scales (Liška et al. 2016). The other surveys also include NSVS (Woźniak et al. 2004),

OMC¹, CRTS (Drake et al. 2009) and SuperWASP (SWASP, Pollacco et al. 2006; Butters et al. 2010), and based on these data, we determined more than one hundred new times of light maximum for BO Lyn. The detection method is similar to those described in Li & Qian (2014), but the difference is that the orders of the Fourier polynomials are 1 (DASCH, NSVS and CRTS) or 3 (OMC and SWASP), depending on the time resolutions of the data from different surveys. It is worth mentioning that different orders applied to different data sets would introduce systematic deviations into the times of light maximum. Using the SWASP data as a test sample, we find that the two times of light maximum determined by different Fourier polynomials (orders 1 and 3) differ by 0.0025 d on average.

Based on our observations, the sky surveys and literature, we collected 179 times of light maximum in total for BO Lyn; DASCH allows our data to span more than 100 yr (about 120 yr). Table 1 lists the corresponding times of light maximum obtained from our work. The data which have been given by Peña et al. (2016) were not listed repeatedly.

Figure 2 presents the O - C diagram, from which the cyclic variations can been seen clearly. The linear ephemeris used in Figure 2 is Equation (1), which was published by Peña et al. (2016).

3 O - C **ANALYSIS**

We hypothesize that variations in the O - C diagram are caused by the long-term period change and by LiTE of a companion in a highly elliptical orbit (model 1)

$$O - C = \Delta T_0 + \Delta P_0 \cdot E + \frac{\beta}{2}E^2 + \tau, \qquad (2)$$

and

$$\tau = A[(1 - e^2)\frac{\sin(\nu + \omega)}{1 + e\cos\nu} + e\sin\omega]$$
(3)

$$= A[\sqrt{1-e^2}\sin E^*\cos\omega + \cos E^*\sin\omega], \quad (4)$$

where ΔT_0 and ΔP_0 are the correction values to the initial epoch and pulsation period respectively, β is the linear change of the pulsation period (d cycle⁻¹) and τ represents the periodic change caused by the LiTE effect. Equation (3) was first given by Irwin (1952), where $A = a_1 \sin i/c$ is the projected semi-major axis expressed in d (day); *e* is the eccentricity; ν is the true anomaly; ω is the longitude of the periastron passage in

¹ https://sdc.cab.inta-csic.es/omc/index.jsp

Fig. 1 The observed light curves of BO Lyn from the four nights. In each panel, the information about telescopes, exposure times and filters is given.

Fig. 2 O - C diagram of BO Lyn using the ephemeris in Eq. (1). The periodic variation can be seen clearly.

the plane of the orbit; and E^* in Equation (4) is the eccentric anomaly.

The connection between E^\ast and the mean anomaly N is

$$N = E^* - e\sin E^*,\tag{5}$$

and

$$N = \frac{2\pi}{P_{\rm B}}(t - T).$$
 (6)

 $P_{\rm B}$ is the orbital period of the binary system; t is the time of light maximum; T is the time of passage through the periastron. A detailed description can be referenced in Li & Qian (2010).

Table 2 lists the results of the fit and Figure 3 shows the corresponding O - C diagram. The solid line in the upper panel of Figure 3 refers to the combination of a parabola and the cyclic change due to the LiTE. The parabola means that the pulsation period is increasing linearly. The orbital period of BO Lyn is $P_{\rm B} =$ $12611 \pm 36 \, d \simeq 34.53 \pm 0.10 \, {\rm yr}$, which is longer than the result given by Peña et al. (2016). However, combining with the parabola, they can describe the O - Ccurves very well. In the middle panel, the quadratic term has been subtracted, and the periodic variation τ can be seen more clearly. The residuals after removing all the variations are displayed in the bottom panel, from which

Table 1 The 145 new available times of light maximum for BO Lyn obtained from sky surveys and our observations.

2400000+ 2400000+ 13700.2929 0.0025 DASCH 53502.1121 0.0025 OMC 54167.2002 0.0028 SWASP 16400.8560 0.0029 DASCH 53751.3774 0.0021 SWASP 54169.1595 0.0004 SWASP 19222.3066 0.0030 DASCH 54067.3666 0.0013 SWASP 54171.1510 0.0006 SWASP 21520.7015 0.0027 DASCH 54069.3570 0.0009 SWASP 54193.107 0.0007 SWASP 22475.8407 0.0025 DASCH 54079.2042 0.0011 SWASP 54433.3102 0.0007 SWASP 26397.154 0.0038 DASCH 54078.4187 0.0008 SWASP 54434.3130 0.0006 SWASP 27460.2601 0.0049 DASCH 54092.4178 0.0006 SWASP 54502.258 0.0006 SWASP 28179.2064 0.0048 DASCH 54096.4020 0.007 SWASP 5452.1369 0.0004 SWASP 28178.0	HJD.	Error	Ref.	HJD.	Error	Ref.	HJD.	Error	Ref.
13760.2929 0.0025 DASCH 53502.1121 0.0025 SWASP 16460.8560 0.0025 DASCH 53672.8648 0.0020 SWASP 54169.1595 0.0009 SWASP 1767.3116 0.0020 DASCH 53751.3774 0.0031 CRTS 54169.1595 0.0006 SWASP 20379.2094 0.0027 DASCH 54063.3966 0.0013 SWASP 54170.1181 0.0006 SWASP 21520.7015 0.0027 DASCH 54072.9042 0.0011 SWASP 54193.1107 0.0006 SWASP 22469.8375 0.0034 DASCH 54073.336 0.0014 SWASP 54432.333 0.0006 SWASP 26408.97154 0.0038 DASCH 54084.1887 0.0007 SWASP 54433.310 0.0007 SWASP 27860.2610 0.0049 DASCH 54095.4155 0.0012 SWASP 54501.1928 0.0005 SWASP 27800.2610 0.0027 DASCH 54096.9020 0.0007 SWASP	2400000+			2400000+			2400000+		
16460.8560 0.0025 DASCH 53672.8648 0.0020 SWASP 54168.1303 0.0028 SWASP 17767.3116 0.0029 DASCH 53751.3774 0.0031 CKTS 54169.1595 0.0004 SWASP 20379.2094 0.0026 DASCH 54067.3966 0.0013 SWASP 54170.1851 0.0006 SWASP 2152.07015 0.0027 DASCH 54072.9042 0.0011 SWASP 54195.1170 0.0007 SWASP 24629.6375 0.0040 DASCH 54072.9042 0.0011 SWASP 54433.3335 0.0007 SWASP 26039.7154 0.0029 DASCH 54085.4155 0.0012 SWASP 54439.1392 0.0007 SWASP 27743.1491 0.0029 DASCH 54085.4155 0.0012 SWASP 54521.150 0.0013 CRTS 27780.2601 0.0049 DASCH 54096.9020 0.0007 SWASP 54521.160 0.0005 SWASP 27972.064 0.0025 DASCH 5	13760.2929	0.0025	DASCH	53502.1121	0.0025	OMC	54167.2002	0.0007	SWASP
17767.3116 0.0029 DASCH 53751.3774 0.0031 CRTS 54169.1595 0.0009 SWASP 19222.3066 0.0030 DASCH 54065.3266 0.0010 SWASP 54171.1240 0.0006 SWASP 21520.7015 0.0027 DASCH 54068.3266 0.0011 SWASP 54193.6178 0.0006 SWASP 23275.8407 0.0040 DASCH 54072.9042 0.0011 SWASP 54433.3102 0.0007 SWASP 24629.6375 0.0034 DASCH 54079.9029 0.0007 SWASP 54433.3102 0.0007 SWASP 2639.7154 0.0034 DASCH 54084.3877 0.0008 SWASP 54434.4159 0.0013 CRTS 27360.2601 0.0049 DASCH 5408.4151 0.0007 SWASP 5452.1050 0.0005 SWASP 28391.1927 0.062 DASCH 5409.4102 0.0009 SWASP 5452.1050 0.0005 SWASP 29162.1376 0.0027 DASCH 5409	16460.8560	0.0025	DASCH	53672.8648	0.0020	SWASP	54168.1303	0.0028	SWASP
19222.3066 0.0030 DASCH 54067.3966 0.0010 SWASP 54170.1851 0.0004 SWASP 20379.2094 0.0025 DASCH 54068.3286 0.0011 SWASP 54173.6178 0.0006 SWASP 21520.7015 0.0040 DASCH 54092.370 0.0007 SWASP 2469.29.6775 0.0040 DASCH 54079.9029 0.0007 SWASP 54432.3353 0.0007 SWASP 25440.8248 0.0038 DASCH 54084.3887 0.0007 SWASP 54433.3120 0.0007 SWASP 26767.66734 0.0029 DASCH 54084.88714 0.0007 SWASP 5452.1369 0.0004 SWASP 27860.2601 0.0049 DASCH 54092.4178 0.0006 SWASP 5452.1369 0.0005 SWASP 281797.2064 0.0049 DASCH 54096.902 0.0007 SWASP 5452.1606 0.0005 SWASP 29186.2819 0.0037 DASCH 54099.4020 SWASP 5452.1605	17767.3116	0.0029	DASCH	53751.3774	0.0031	CRTS	54169.1595	0.0009	SWASP
20379.2094 0.0026 DASCH 54068.3286 0.0013 SWASP 54171.2140 0.0006 SWASP 21520.7015 0.0027 DASCH 54079.3170 0.0009 SWASP 54193.1070 0.0007 SWASP 23275.8407 0.0040 DASCH 54077.3336 0.0014 SWASP 54433.3102 0.0007 SWASP 25409.7154 0.0033 DASCH 54084.3887 0.0008 SWASP 54433.3195 0.0007 SWASP 26039.7154 0.0029 DASCH 54084.3887 0.0007 SWASP 54433.3195 0.0001 SWASP 27860.2601 0.0049 DASCH 5408.4387 0.0007 SWASP 54521.105 0.0005 SWASP 28391.1927 0.0062 DASCH 5409.4090.200 SWASP 54521.105 0.0005 SWASP 29162.1376 0.0002 DASCH 5409.4090 0.0007 SWASP 54521.1660 0.0005 SWASP 29162.1376 0.0002 DASCH 54100.3534	19222.3066	0.0030	DASCH	54067.3966	0.0010	SWASP	54170.1851	0.0004	SWASP
21520.7015 0.0027 DASCH 54069.3570 0.0009 SWASP 54193.6178 0.0006 SWASP 23275.8407 0.0025 DASCH 54072.9042 0.0011 SWASP 54195.1107 0.0007 SWASP 24629.6375 0.0040 DASCH 54075.3336 0.0007 SWASP 54433.333 0.0007 SWASP 26039.7154 0.0038 DASCH 54085.4155 0.0012 SWASP 54443.3335 0.0007 SWASP 26776.6734 0.0029 DASCH 54085.4155 0.0012 SWASP 54502.2588 0.0006 SWASP 2780.02601 0.0049 DASCH 54093.9102 0.0009 SWASP 54525.1369 0.0008 SWASP 28391.1027 0.0027 DASCH 54099.4208 0.0012 SWASP 54525.1369 0.0005 SWASP 29488.310 0.0037 DASCH 5410.3324 0.0009 SWASP 54521.1466 0.0005 SWASP 29488.310 0.0035 DASCH	20379.2094	0.0026	DASCH	54068.3286	0.0013	SWASP	54171.2140	0.0006	SWASP
23275.8407 0.0025 DASCH 54072.9042 0.0011 SWASP 54195.1107 0.0007 SWASP 2460.29.6375 0.0040 DASCH 54075.3336 0.0014 SWASP 54432.3333 0.0006 SWASP 25440.8248 0.0034 DASCH 54085.4155 0.0007 SWASP 54433.3350 0.0007 SWASP 26039.7154 0.0029 DASCH 54085.4155 0.0012 SWASP 54491.4159 0.0006 SWASP 27780.2601 0.0049 DASCH 54092.4178 0.0007 SWASP 54503.1928 0.0005 SWASP 28397.2064 0.0048 DASCH 54099.4208 0.0017 SWASP 54521.169 0.0005 SWASP 29162.1376 0.0027 DASCH 54103.334 0.0009 SWASP 54521.160 0.0005 SWASP 29488.3310 0.0028 DASCH 54110.3824 0.0009 SWASP 54521.1480 0.0006 SWASP 30199.1492 0.0035 DASCH <	21520.7015	0.0027	DASCH	54069.3570	0.0009	SWASP	54193.6178	0.0006	SWASP
24629.6375 0.0040 DASCH 54075.3336 0.0014 SWASP 54432.3353 0.0006 SWASP 25430.8248 0.0034 DASCH 54079.929 0.0007 SWASP 54439.3395 0.0007 SWASP 26039.7154 0.0029 DASCH 54084.3887 0.0008 SWASP 54439.44159 0.0017 SWASP 27860.2601 0.0049 DASCH 54088.8714 0.0007 SWASP 54524.1695 0.0006 SWASP 28391.1927 0.0062 DASCH 54093.9102 0.0007 SWASP 54525.1695 0.0005 SWASP 28391.1927 0.0027 DASCH 54099.4208 0.0012 SWASP 54525.1669 0.0005 SWASP 29488.310 0.0027 DASCH 5410.3824 0.0009 SWASP 54521.1605 0.0005 SWASP 29488.310 0.0035 DASCH 54113.303 0.0009 SWASP 54521.466 0.0005 SWASP 29488.310 DASCH 54113.303 <td< td=""><td>23275.8407</td><td>0.0025</td><td>DASCH</td><td>54072.9042</td><td>0.0011</td><td>SWASP</td><td>54195.1107</td><td>0.0007</td><td>SWASP</td></td<>	23275.8407	0.0025	DASCH	54072.9042	0.0011	SWASP	54195.1107	0.0007	SWASP
25440.8248 0.0034 DASCH 54079.9029 0.0007 SWASP 54438.3102 0.0007 SWASP 26039.7154 0.0038 DASCH 54085.4155 0.0012 SWASP 54439.3395 0.0007 SWASP 26776.6734 0.0029 DASCH 54085.4155 0.0012 SWASP 54430.22588 0.0006 SWASP 27343.1491 0.0029 DASCH 54092.4178 0.0006 SWASP 54524.1095 0.0004 SWASP 28797.2064 0.0048 DASCH 54099.4208 0.0012 SWASP 54524.1095 0.0005 SWASP 29816.2891 0.0021 DASCH 54099.4208 0.0012 SWASP 54527.186 0.0005 SWASP 29816.2891 0.0035 DASCH 54113.334 0.0009 SWASP 54531.1091 0.0013 SWASP 30199.1492 0.0035 DASCH 54113.330 0.009 SWASP 54531.1091 0.0013 SWASP 31452.7645 0.0035 DASCH <td< td=""><td>24629 6375</td><td>0.0040</td><td>DASCH</td><td>54075 3336</td><td>0.0014</td><td>SWASP</td><td>54432, 3353</td><td>0.0006</td><td>SWASP</td></td<>	24629 6375	0.0040	DASCH	54075 3336	0.0014	SWASP	54432, 3353	0.0006	SWASP
26039.7154 0.0038 DASCH 54084.3887 0.0008 SWASP 54439.3395 0.0007 SWASP 27776.6734 0.0029 DASCH 54088.8714 0.0007 SWASP 54502.2588 0.0004 SWASP 27860.2601 0.0049 DASCH 54093.4178 0.0007 SWASP 54502.2588 0.0004 SWASP 28391.1927 0.0062 DASCH 54099.4178 0.0007 SWASP 54521.1959 0.0005 SWASP 28162.176 0.0027 DASCH 54099.4208 0.0012 SWASP 54521.1650 0.0005 SWASP 29162.176 0.0037 DASCH 54101.3524 0.0008 SWASP 54521.1866 0.0005 SWASP 29162.176 0.0037 DASCH 54110.3834 0.0009 SWASP 54521.1372 0.0006 SWASP 30199.1492 0.0035 DASCH 54117.712 0.0101 SWASP 54531.091 0.0005 SWASP 31452.7645 0.0032 DASCH 5	25440.8248	0.0034	DASCH	54079.9029	0.0007	SWASP	54438.3102	0.0007	SWASP
26776.6734 0.0029 DASCH 54085.4155 0.0012 SWASP 54494.4159 0.0003 CRTS 27343.1491 0.0029 DASCH 54088.8714 0.0007 SWASP 54502.2588 0.0006 SWASP 28391.1927 0.0020 DASCH 54093.9102 0.0009 SWASP 54524.1095 0.0005 SWASP 28162.1376 0.0027 DASCH 54099.4208 0.0012 SWASP 54527.1866 0.0005 SWASP 29816.2891 0.0035 DASCH 5410.3324 0.0009 SWASP 54521.1480 0.0009 SWASP 30199.1492 0.0035 DASCH 54110.3824 0.0009 SWASP 54521.1480 0.0001 SWASP 31452.7645 0.0035 DASCH 54115.2890 0.0009 SWASP 54531.1091 0.0004 SWASP 32246.2383 0.0026 DASCH 54113.266 0.0006 SWASP 54536.1498 0.0006 SWASP 31452.7645 0.0026 DASCH <td< td=""><td>26039.7154</td><td>0.0038</td><td>DASCH</td><td>54084.3887</td><td>0.0008</td><td>SWASP</td><td>54439,3395</td><td>0.0007</td><td>SWASP</td></td<>	26039.7154	0.0038	DASCH	54084.3887	0.0008	SWASP	54439,3395	0.0007	SWASP
27343.1491 0.0029 DASCH 54098.8714 0.0007 SWASP 54502.2588 0.0006 SWASP 27860.2601 0.0049 DASCH 54093.9102 0.0009 SWASP 54502.2588 0.0006 SWASP 28391.1927 0.0062 DASCH 54093.9102 0.0009 SWASP 54524.1095 0.0008 SWASP 28797.2064 0.0027 DASCH 54099.4208 0.0012 SWASP 54526.1605 0.0005 SWASP 29486.2891 0.0037 DASCH 54101.3524 0.0009 SWASP 54521.1369 0.0009 SWASP 30199.1492 0.0035 DASCH 54113.303 0.0009 SWASP 54531.1091 0.0013 SWASP 31452.7645 0.0055 DASCH 54117.152 0.0010 SWASP 54531.484 0.0005 SWASP 31452.7645 0.0026 DASCH 54112.2918 0.0006 SWASP 5453.1484 0.0005 SWASP 3140414150 0.0026 DASCH	26776 6734	0.0029	DASCH	54085 4155	0.0012	SWASP	54494 4159	0.0013	CRTS
27860.2601 0.0042 DASCH 54092.4178 0.0006 SWASP 54503.1928 0.0004 SWASP 28391.1927 0.0062 DASCH 54096.9020 0.0007 SWASP 54521.1059 0.0005 SWASP 28176.1376 0.0027 DASCH 54099.400 SWASP 54521.1059 0.0005 SWASP 29481.3310 0.0028 DASCH 54100.3534 0.0008 SWASP 54521.1065 0.0009 SWASP 294816.2891 0.0037 DASCH 54110.3824 0.0009 SWASP 54521.1480 0.0009 SWASP 30766.6708 0.0035 DASCH 54113.303 0.0009 SWASP 54531.1091 0.0013 SWASP 31452.7645 0.0055 DASCH 54113.7152 0.0010 SWASP 54531.1321 0.0006 SWASP 42793.8356 0.0026 DASCH 54112.3569 0.0008 SWASP 54531.6776 0.0007 SWASP 44100.3907 0.0028 DASCH 54122.2918	27343,1491	0.0029	DASCH	54088.8714	0.0007	SWASP	54502.2588	0.0006	SWASP
28391.1927 0.0067 DASCH 54093.9102 0.0009 SWASP 54524.1095 0.0005 SWASP 28797.2064 0.0048 DASCH 54096.9020 0.0007 SWASP 54525.1369 0.0008 SWASP 29488.3310 0.0027 DASCH 54100.3534 0.0008 SWASP 54521.166 0.0009 SWASP 29816.2891 0.0037 DASCH 54110.3824 0.0009 SWASP 54521.1601 0.0013 SWASP 30199.1492 0.0035 DASCH 54113.303 0.0009 SWASP 54531.1091 0.0013 SWASP 31452.7645 0.0055 DASCH 54117.152 0.0010 SWASP 54536.1498 0.0004 SWASP 32246.2383 0.0026 DASCH 54112.3569 0.0008 SWASP 54536.1498 0.0007 SWASP 41048.1150 0.0028 DASCH 5412.2171 0.0008 SWASP 54537.0828 0.0007 SWASP 41049.1344 0.0029 DASCH	27860.2601	0.0049	DASCH	54092.4178	0.0006	SWASP	54503,1928	0.0004	SWASP
23797.2064 0.0003 DASCH 54096,9020 0.0007 SWASP 54521.1369 0.0008 SWASP 29162.1376 0.0027 DASCH 54099,4208 0.0012 SWASP 54521.1369 0.0005 SWASP 29488.3310 0.0028 DASCH 54101.3524 0.0008 SWASP 54521.1369 0.0007 SWASP 29816.2891 0.0037 DASCH 54101.3824 0.0009 SWASP 54531.1091 0.0013 SWASP 30199.1492 0.0035 DASCH 54115.2899 0.0009 SWASP 54531.1091 0.0013 SWASP 32246.2383 0.0032 DASCH 54117.152 0.0010 SWASP 54531.0884 0.0004 SWASP 41048.1150 0.0035 DASCH 54112.3569 0.0008 SWASP 5453.088 0.0013 SWASP 4410.03907 0.0028 DASCH 54122.3171 0.0008 SWASP 5454.0017 0.0015 SWASP 5126.5433 0.0029 DASCH 5	28391 1927	0.0062	DASCH	54093 9102	0.0009	SWASP	54524 1095	0.0005	SWASP
29162.1376 0.0037 DASCH 54099.4208 0.0017 SWASP 54526.1605 0.0005 SWASP 29488.3310 0.0028 DASCH 54100.3534 0.0008 SWASP 54527.1866 0.0005 SWASP 29488.3310 0.0037 DASCH 54110.3824 0.0009 SWASP 54521.101 0.0013 SWASP 30199.1492 0.0030 DASCH 54111.3824 0.0009 SWASP 54532.1372 0.0006 SWASP 31452.7645 0.0055 DASCH 54117.7152 0.010 SWASP 54536.1498 0.0004 SWASP 31452.7645 0.0035 DASCH 54117.7152 0.0010 SWASP 54536.1498 0.0005 SWASP 41048.1150 0.0035 DASCH 54121.3569 0.0008 SWASP 54530.1498 0.0007 SWASP 44100.3907 0.0028 DASCH 54123.3171 0.0008 SWASP 54541.0017 0.0015 SWASP 45155.8433 0.0029 DASCH 54142.187 0.0007 SWASP 54545.1099 0.0016 SWASP	28797 2064	0.0048	DASCH	54096 9020	0.0007	SWASP	54525 1369	0.0008	SWASP
29488.3310 0.0028 DASCH 54100.3334 0.0008 SWASP 54527.1866 0.0009 SWASP 29816.2891 0.0037 DASCH 54101.3824 0.0009 SWASP 54527.1866 0.0009 SWASP 30199.1492 0.0035 DASCH 54110.8088 0.0011 SWASP 54531.1091 0.0006 SWASP 30766.6708 0.0030 DASCH 54115.2899 0.0009 SWASP 54534.1884 0.0004 SWASP 31452.7645 0.0025 DASCH 54117.7152 0.010 SWASP 54537.0828 0.0006 SWASP 41048.1150 0.0026 DASCH 54122.2918 0.0008 SWASP 54536.1498 0.0007 SWASP 44100.3907 0.0028 DASCH 54122.2918 0.0008 SWASP 54543.081 0.0008 SWASP 45150.9983 0.0031 DASCH 54132.3171 0.0007 SWASP 54545.1099 0.0016 SWASP 51276.5843 0.0009 NSVS <td< td=""><td>29162 1376</td><td>0.0027</td><td>DASCH</td><td>54099 4208</td><td>0.0012</td><td>SWASP</td><td>54526 1605</td><td>0.0005</td><td>SWASP</td></td<>	29162 1376	0.0027	DASCH	54099 4208	0.0012	SWASP	54526 1605	0.0005	SWASP
29816.2891 0.0037 DASCH 54101.3824 0.0009 SWASP 54529.1480 0.0003 SWASP 30199.1492 0.0035 DASCH 54110.8088 0.0011 SWASP 54531.1091 0.0013 SWASP 31452.7645 0.0055 DASCH 54115.2899 0.0009 SWASP 54532.1372 0.0006 SWASP 32246.2383 0.0032 DASCH 54117.7152 0.0010 SWASP 54534.1884 0.0004 SWASP 41048.1150 0.0035 DASCH 54112.3569 0.0006 SWASP 54538.5776 0.0007 SWASP 44100.3907 0.028 DASCH 54122.2918 0.0008 SWASP 54540.0685 0.0013 SWASP 45357.8433 0.0028 DASCH 54133.171 0.0008 SWASP 54541.0017 0.0015 SWASP 51276.5843 0.0009 NSVS 54141.2435 0.0008 SWASP 54554.0746 0.0005 SWASP 51480.7519 0.0010 NSVS	29488 3310	0.0028	DASCH	54100 3534	0.0008	SWASP	54527 1866	0.0005	SWASP
20199.1492 0.0035 DASCH 54110.8088 0.0011 SWASP 54531.1091 0.0013 SWASP 30199.1492 0.0030 DASCH 54113.3303 0.0009 SWASP 54531.1091 0.0014 SWASP 31452.7645 0.0055 DASCH 54117.7152 0.0010 SWASP 54534.1884 0.0004 SWASP 41048.1150 0.0035 DASCH 54117.7152 0.0010 SWASP 54538.61498 0.0006 SWASP 41048.1150 0.0035 DASCH 54112.3569 0.0008 SWASP 54538.5776 0.0007 SWASP 44100.3907 0.0028 DASCH 54122.3171 0.0008 SWASP 54541.0017 0.0015 SWASP 45357.8433 0.0029 DASCH 54133.1625 0.0008 SWASP 54541.0017 0.0015 SWASP 51276.5843 0.0009 NSVS 54141.2187 0.0007 SWASP 54554.0746 0.0005 SWASP 51480.7519 0.0010 NSVS <	29816 2891	0.0020	DASCH	54101 3824	0.0009	SWASP	54529 1480	0.0009	SWASP
5117172 50005 DASCH 54113.3303 0.0001 SWASP 54532.137 0.0001 SWASP 31452.7645 0.0055 DASCH 54115.2899 0.0009 SWASP 54534.1884 0.0004 SWASP 32246.2383 0.0032 DASCH 54117.7152 0.0016 SWASP 54536.1498 0.0005 SWASP 41048.1150 0.0035 DASCH 54112.3569 0.0006 SWASP 54537.0828 0.0007 SWASP 44100.3907 0.0026 DASCH 54123.2171 0.0008 SWASP 54540.0685 0.0015 SWASP 46156.9983 0.0031 DASCH 54123.3171 0.0008 SWASP 54541.0017 0.0016 SWASP 51276.5843 0.0009 NSVS 54142.2187 0.0007 SWASP 54551.0581 0.0008 SWASP 51283.1173 0.010 NSVS 54142.2686 0.0009 SWASP 54551.024 0.0005 SWASP 51480.7519 0.0010 NSVS 54142.	30199 1492	0.0035	DASCH	54110 8088	0.0011	SWASP	54531 1091	0.0013	SWASP
5)1452.7645 0.0005 DASCH 54115.2899 0.0009 SWASP 54334.1884 0.0004 SWASP 32246.2383 0.0032 DASCH 54117.7152 0.0010 SWASP 54334.1884 0.0006 SWASP 41048.1150 0.0035 DASCH 54117.7152 0.0010 SWASP 54536.1498 0.0006 SWASP 42793.8356 0.0026 DASCH 5412.2918 0.0008 SWASP 54534.0685 0.0017 SWASP 45357.8433 0.0028 DASCH 54123.3171 0.0008 SWASP 5454.0685 0.0015 SWASP 46156.9983 0.0031 DASCH 54138.1625 0.0007 SWASP 5454.1001 0.0016 SWASP 51276.5843 0.0009 NSVS 5414.22686 0.0009 SWASP 54551.024 0.0008 SWASP 51480.7519 0.0010 NSVS 5414.22686 0.0009 SWASP 54556.1281 0.0006 SWASP 51499.7988 0.00010 NSVS 5	30766 6708	0.0030	DASCH	54113 3303	0.0000	SWASP	54532 1372	0.0015	SWASP
51321613 0.0003 DASCH 54115.129 0.0001 SWASP 54336.1498 0.0005 SWASP 41048.1150 0.0035 DASCH 54119.8626 0.0006 SWASP 54537.0828 0.0006 SWASP 42793.8356 0.0026 DASCH 54121.3569 0.0008 SWASP 54538.5776 0.0007 SWASP 44100.3907 0.0028 DASCH 54122.2918 0.0008 SWASP 54540.0685 0.0013 SWASP 45357.8433 0.0028 DASCH 54123.3171 0.0008 SWASP 54541.0017 0.0015 SWASP 46156.9983 0.0031 DASCH 54142.1437 0.0007 SWASP 54543.0581 0.0008 SWASP 51276.5434 0.0009 NSVS 54141.2435 0.0008 SWASP 54555.1024 0.0005 SWASP 51480.7519 0.010 NSVS 54142.2686 0.0009 SWASP 54556.1281 0.0006 SWASP 51499.7988 0.0008 NSVS 54146.2852 0.0006 SWASP 54556.1281 0.0006 SWASP <tr< td=""><td>31452 7645</td><td>0.0055</td><td>DASCH</td><td>54115 2899</td><td>0.0009</td><td>SWASP</td><td>54534 1884</td><td>0.0004</td><td>SWASP</td></tr<>	31452 7645	0.0055	DASCH	54115 2899	0.0009	SWASP	54534 1884	0.0004	SWASP
31240.2305 0.0002 DASCH 54117.113 0.0006 SWASP 54537.0828 0.0006 SWASP 41048.1150 0.0026 DASCH 54112.3569 0.0006 SWASP 54537.0828 0.0006 SWASP 42793.8356 0.0026 DASCH 54121.3569 0.0008 SWASP 54530.0828 0.0001 SWASP 44100.3907 0.0028 DASCH 54122.2918 0.0008 SWASP 54541.0017 0.0015 SWASP 45357.8433 0.0029 DASCH 54138.1625 0.0005 SWASP 54545.1099 0.0016 SWASP 51276.5843 0.0009 NSVS 54141.2435 0.0008 SWASP 54554.1099 0.0016 SWASP 51283.1173 0.0010 NSVS 54142.2686 0.0009 SWASP 54556.1281 0.0005 SWASP 51480.7519 0.0101 NSVS 54142.2680 0.0006 SWASP 54556.1281 0.0005 SWASP 51499.7988 0.0008 NSVS 54144.7896 0.012 SWASP 54556.1281 0.0006 SWASP <t< td=""><td>37746 7383</td><td>0.0032</td><td>DASCH</td><td>54117 7152</td><td>0.0000</td><td>SWASP</td><td>54536 1498</td><td>0.0004</td><td>SWASP</td></t<>	37746 7383	0.0032	DASCH	54117 7152	0.0000	SWASP	54536 1498	0.0004	SWASP
42793.8356 0.0026 DASCH 54121.3569 0.0008 SWASP 54538.5776 0.0007 SWASP 44100.3907 0.0028 DASCH 54122.2918 0.0008 SWASP 54540.0685 0.0013 SWASP 45357.8433 0.0028 DASCH 54123.3171 0.0008 SWASP 54541.0017 0.0015 SWASP 46156.9983 0.0031 DASCH 54138.1625 0.0007 SWASP 54543.0581 0.0008 SWASP 46156.9983 0.0009 NSVS 54141.2435 0.0007 SWASP 54545.1099 0.0016 SWASP 51276.5843 0.0009 NSVS 54141.2435 0.0008 SWASP 54556.124 0.0008 SWASP 51480.7519 0.0010 NSVS 54142.2686 0.0009 SWASP 54556.1281 0.0006 SWASP 51490.798 0.00010 NSVS 54144.7896 0.0012 SWASP 54865.4268 0.0007 CRTS 51510.2582 0.0010 NSVS 54144.7896 0.0012 SWASP 54865.4268 0.0002 CRTS	41048 1150	0.0032	DASCH	54119 8626	0.0010	SWASP	54537 0828	0.0005	SWASP
44100.3907 0.0028 DASCH 5412.2918 0.0008 SWASP 54540.0685 0.0013 SWASP 45357.8433 0.0028 DASCH 54123.3171 0.0008 SWASP 54541.0017 0.0015 SWASP 46156.9983 0.0031 DASCH 54123.3171 0.0005 SWASP 54541.0017 0.0008 SWASP 47049.1344 0.0029 DASCH 54140.2187 0.0007 SWASP 54545.1099 0.0016 SWASP 51283.1173 0.0010 NSVS 54141.2435 0.0008 SWASP 54555.1024 0.0008 SWASP 51480.7519 0.0010 NSVS 54147.2686 0.0009 SWASP 54556.1281 0.0005 SWASP 51499.7988 0.0008 NSVS 54147.2212 0.0006 SWASP 54566.00029 CRTS 51519.2193 0.0010 NSVS 54147.2212 0.0006 SWASP 5456.1268 0.0027 CRTS 51519.2193 0.0010 NSVS 54147.2212 0.0006 SWASP 5599.2297 0.0037 CRTS 51552.1718 <td>42703 8356</td> <td>0.0035</td> <td>DASCH</td> <td>54121 3569</td> <td>0.0008</td> <td>SWASP</td> <td>54538 5776</td> <td>0.0007</td> <td>SWASP</td>	42703 8356	0.0035	DASCH	54121 3569	0.0008	SWASP	54538 5776	0.0007	SWASP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44100 3907	0.0020	DASCH	54122.3505	0.0008	SWASP	54540.0685	0.0007	SWASP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45357 8433	0.0028	DASCH	54123 3171	0.0008	SWASP	54541 0017	0.0015	SWASP
47049.13440.0029DASCH54130.102.00.0007SWASP54545.10310.0006SWASP51276.58430.0009NSVS54141.24350.0008SWASP54554.07460.0005SWASP51283.11730.0010NSVS54141.24350.0008SWASP54555.10240.0008SWASP51480.75190.0010NSVS54143.29850.0008SWASP54556.12810.0005SWASP51490.79880.0008NSVS54144.78960.0012SWASP54556.12810.0006SWASP51510.25820.0010NSVS54146.28520.0006SWASP5456.12810.0007CRTS51519.21930.0012NSVS54147.22120.0009SWASP55592.22970.0037CRTS51531.72810.0016NSVS54149.17990.0010SWASP55998.70990.0055CRTS51552.17180.0009NSVS54151.70110.0004SWASP57802.12400.0003R51555.71770.0018NSVS54152.24740.0006SWASP57802.21740.0004V51566.17550.0019NSVS54152.24740.0006SWASP57802.21740.0004V51580.18110.0026NSVS54157.20610.0005SWASP57802.21740.0004V51580.18110.0026NSVS54157.20610.0005SWASP57802.21740.0004V51580.18110.0026NSVS54157.20610.0005 <td>46156 0083</td> <td>0.0020</td> <td>DASCH</td> <td>54128 1625</td> <td>0.0005</td> <td>SWASP</td> <td>54543.0581</td> <td>0.0013</td> <td>SWASP</td>	46156 0083	0.0020	DASCH	54128 1625	0.0005	SWASP	54543.0581	0.0013	SWASP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47049 1344	0.0029	DASCH	54140 2187	0.0005	SWASP	54545 1099	0.0016	SWASP
5120.0049 0.0009 SMASH 0.0009 SWASP 0.0008 SWASP 51283.1173 0.0010 NSVS 54142.2686 0.0009 SWASP 54555.1024 0.0008 SWASP 51480.7519 0.0010 NSVS 54143.2985 0.0008 SWASP 54556.1281 0.0005 SWASP 51499.7988 0.0008 NSVS 54144.7896 0.0012 SWASP 54558.0931 0.0006 SWASP 51510.2582 0.0010 NSVS 54146.2852 0.0006 SWASP 54865.4268 0.0007 CRTS 51519.2193 0.0012 NSVS 54144.72212 0.0009 SWASP 55592.2297 0.0037 CRTS 51545.7330 0.0009 NSVS 54149.1799 0.0010 SWASP 56330.2302 0.0033 CRTS 51555.7177 0.0018 NSVS 54150.2072 0.0005 SWASP 57802.1240 0.0003 R 51558.3305 0.0020 NSVS 54153.1955 0.0005 SWASP 57802.2174 0.0004 R 51557.177 0.0018 NSVS<	51276 5843	0.0009	NSVS	54141 2435	0.0008	SWASP	54554 0746	0.0005	SWASP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51283 1173	0.0000	NSVS	54142 2686	0.0000	SWASP	54555 1024	0.0003	SWASP
51409.7988 0.0008 NSVS 54144.7896 0.0012 SWASP 54558.0931 0.0006 SWASP 51510.2582 0.0010 NSVS 54146.2852 0.0006 SWASP 54865.4268 0.0087 CRTS 51519.2193 0.0012 NSVS 54147.2212 0.0009 SWASP 55227.6586 0.0029 CRTS 51519.2193 0.0016 NSVS 54148.1553 0.0026 SWASP 55592.2297 0.0037 CRTS 51545.7330 0.0009 NSVS 54149.1799 0.0010 SWASP 5599.2297 0.0037 CRTS 51552.1718 0.0009 NSVS 54150.2072 0.0005 SWASP 56330.2302 0.0033 CRTS 51555.7177 0.0018 NSVS 54151.7011 0.0004 SWASP 57802.1240 0.0003 R 51558.3305 0.0020 NSVS 54153.1955 0.0005 SWASP 57802.2171 0.0004 R 51573.1793 0.0014 NSVS 54154.2210 0.0006 SWASP 57802.2174 0.0004 K 51566.17	51289.1179	0.0010	NSVS	54143 2985	0.0009	SWASP	54556 1281	0.0005	SWASP
51550.2582 0.0010 NSVS 54146.2852 0.0006 SWASP 54865.4268 0.0087 CRTS 51510.2582 0.0012 NSVS 54147.2212 0.0009 SWASP 55227.6586 0.0029 CRTS 51519.2193 0.0012 NSVS 54144.1553 0.0026 SWASP 55227.6586 0.0029 CRTS 51531.7281 0.0016 NSVS 54148.1553 0.0026 SWASP 55592.2297 0.0037 CRTS 51545.7330 0.0009 NSVS 54149.1799 0.0010 SWASP 55998.7099 0.0055 CRTS 51552.1718 0.0009 NSVS 54150.2072 0.0005 SWASP 5630.2302 0.0033 CRTS 51555.7177 0.0018 NSVS 54151.7011 0.0004 SWASP 57802.1240 0.0003 R 51556.1755 0.0019 NSVS 54154.2210 0.0006 SWASP 57802.2171 0.0004 K 51566.1755 0.0014 NSVS 54155.2474 0.0006 SWASP 57802.2174 0.0004 V 51576.630	51499 7988	0.0008	NSVS	54144 7896	0.0012	SWASP	54558 0931	0.0006	SWASP
51510.2.02 0.0012 NSVS 54147.2212 0.0009 SWASP 55227.6586 0.0029 CRTS 51519.2193 0.0012 NSVS 54148.1553 0.0026 SWASP 55227.6586 0.0029 CRTS 51531.7281 0.0016 NSVS 54148.1553 0.0026 SWASP 55592.2297 0.0037 CRTS 51545.7330 0.0009 NSVS 54149.1799 0.0010 SWASP 55998.7099 0.0055 CRTS 51552.1718 0.0009 NSVS 54150.2072 0.0005 SWASP 56330.2302 0.0033 CRTS 51555.7177 0.0018 NSVS 54151.7011 0.0004 SWASP 57802.1240 0.0003 R 51556.1755 0.0019 NSVS 54154.2210 0.0006 SWASP 57802.2171 0.0004 V 51566.1755 0.0011 NSVS 54155.2474 0.0006 SWASP 57802.2174 0.0004 V 51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51580.1811<	51510 2582	0.0010	NSVS	54146 2852	0.00012	SWASP	54865 4268	0.0087	CRTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51519 2193	0.0012	NSVS	54147 2212	0.0009	SWASP	55227 6586	0.0029	CRTS
515511201 0.0019 NSVS 54149.1799 0.0010 SWASP 55998.7099 0.0055 CRTS 51552.1718 0.0009 NSVS 54150.2072 0.0005 SWASP 55998.7099 0.0033 CRTS 51552.1718 0.0009 NSVS 54150.2072 0.0005 SWASP 56330.2302 0.0033 CRTS 51555.7177 0.0018 NSVS 54151.7011 0.0004 SWASP 57802.1240 0.0003 R 51558.3305 0.0020 NSVS 54153.1955 0.0005 SWASP 57802.1246 0.0004 V 51566.1755 0.019 NSVS 54154.2210 0.0006 SWASP 57802.2174 0.0004 R 51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51580.1811 0.0025 NSVS 54157.2061 0.0005 SWASP 57804.2735 0.0004 V 51586.1586 0.0026 NSVS 54156.1786 0.	51531 7281	0.0012	NSVS	54148 1553	0.0026	SWASP	55592 2297	0.0037	CRTS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51545 7330	0.0009	NSVS	54149 1799	0.0020	SWASP	55998 7099	0.0055	CRTS
51552.1110 0.0018 NSVS 54151.7011 0.0004 SWASP 57802.1240 0.0003 R 51555.7177 0.0018 NSVS 54151.7011 0.0004 SWASP 57802.1240 0.0003 R 51558.3305 0.0020 NSVS 54153.1955 0.0005 SWASP 57802.1246 0.0003 V 51566.1755 0.0019 NSVS 54154.2210 0.0006 SWASP 57802.2171 0.0004 R 51573.1793 0.0014 NSVS 54155.2474 0.0006 SWASP 57802.2174 0.0004 V 51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51580.1811 0.0025 NSVS 54157.2061 0.0005 SWASP 57804.2741 0.0007 R 51586.1586 0.0026 NSVS 54158.1400 0.0009 SWASP 57816.0356 0.0003 V 51595.6799 0.0028 NSVS 54160.8510 0.0021 CRTS 57816.0357 0.0004 R 51602.3080 0	51552 1718	0.0009	NSVS	54150 2072	0.0010	SWASP	56330 2302	0.0033	CRTS
51553.1171 0.001 10505 54151.1011 0.0004 SWASP 57802.1246 0.0003 V 51558.3305 0.0020 NSVS 54153.1955 0.0005 SWASP 57802.1246 0.0003 V 51556.1755 0.0019 NSVS 54154.2210 0.0006 SWASP 57802.2171 0.0004 R 51573.1793 0.0014 NSVS 54155.2474 0.0006 SWASP 57802.2174 0.0004 V 51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51586.1586 0.0026 NSVS 54157.2061 0.0005 SWASP 57804.2735 0.0007 R 51586.1586 0.0026 NSVS 54158.1400 0.0009 SWASP 57816.0356 0.0003 V 51595.6799 0.0028 NSVS 54160.8510 0.0021 CRTS 57816.0357 0.0004 R 51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0	51555 7177	0.0018	NSVS	54151 7011	0.0004	SWASP	57802 1240	0.0003	R
51556.1755 0.0019 NSVS 54154.2210 0.0006 SWASP 57802.2171 0.0004 R 51573.1793 0.0014 NSVS 54155.2474 0.0006 SWASP 57802.2174 0.0004 V 51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51580.1811 0.0025 NSVS 54157.2061 0.0005 SWASP 57804.2735 0.0007 R 51586.1586 0.0026 NSVS 54158.1400 0.0009 SWASP 57816.0356 0.0003 V 51595.6799 0.0028 NSVS 54161.1296 0.0008 SWASP 57816.0357 0.0004 R 51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0.0013 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 52375 54166	51558 3305	0.0020	NSVS	54153 1955	0.0005	SWASP	57802.1246	0.0003	V
51500.1753 0.0014 NSVS 54155.2474 0.0006 SWASP 57802.2174 0.0004 V 51573.1793 0.0014 NSVS 54155.2474 0.0006 SWASP 57802.2174 0.0004 V 51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51580.1811 0.0025 NSVS 54157.2061 0.0005 SWASP 57804.2735 0.0007 R 51586.1586 0.0026 NSVS 54158.1400 0.0009 SWASP 57816.0356 0.0003 V 51595.6799 0.0028 NSVS 54160.8510 0.0021 CRTS 57816.0357 0.0004 R 51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0.0013 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 52375.8116 0	51566 1755	0.0019	NSVS	54154 2210	0.0006	SWASP	57802.1210	0.0004	, R
51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51576.6309 0.0011 NSVS 54156.1786 0.0005 SWASP 57804.2735 0.0004 V 51580.1811 0.0025 NSVS 54157.2061 0.0005 SWASP 57804.2741 0.0007 R 51586.1586 0.0026 NSVS 54158.1400 0.0009 SWASP 57816.0356 0.0003 V 51595.6799 0.0028 NSVS 54160.8510 0.0021 CRTS 57816.0357 0.0004 R 51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0.0013 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1685 0.0009 SWASP 57820.0521 0.0003 R	51500.1793	0.0014	NSVS	54155 2474	0.0006	SWASP	57802.2174	0.0004	V
51530.3509 0.0011 11878 54157.2061 0.0005 SWASP 57804.2741 0.0007 R 51580.1811 0.0025 NSVS 54157.2061 0.0005 SWASP 57804.2741 0.0007 R 51586.1586 0.0026 NSVS 54158.1400 0.0009 SWASP 57816.0356 0.0003 V 51595.6799 0.0028 NSVS 54160.8510 0.0021 CRTS 57816.0357 0.0004 R 51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0.0013 NSVS 54164.1173 0.0011 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 52375 54166 6455 0.0009 SWASP 57820.0521 0.0003 R	51576 6309	0.0011	NSVS	54156 1786	0.0005	SWASP	57804 2735	0.0004	V
51586.1586 0.0026 NSVS 54158.1400 0.0009 SWASP 57816.0356 0.0003 V 51595.6799 0.0028 NSVS 54160.8510 0.0021 CRTS 57816.0357 0.0004 R 51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0.0013 NSVS 54164.1173 0.0011 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP	51580 1811	0.0025	NSVS	54157 2061	0.0005	SWASP	57804 2741	0.0007	, R
51505.1500 0.0028 NSVS 54160.8510 0.0021 CRTS 57816.0357 0.0004 R 51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0.0013 NSVS 54164.1173 0.0011 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 523755.8116 0.0026 SWASP 54166.1655 0.0009 SWASP	51586 1586	0.0025	NSVS	54158 1400	0.0009	SWASP	57816 0356	0.0003	V
51602.3080 0.0015 NSVS 54161.1296 0.0008 SWASP 57820.0514 0.0003 V 51606.1343 0.0013 NSVS 54164.1173 0.0011 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 52375 54166 645.1652 0.0009 SWASP 57820.0521 0.0003 R	51595 6799	0.0028	NSVS	54160 8510	0.0021	CRTS	57816.0357	0.0004	, R
51002.0000 0.0013 NSVS 54164.1173 0.0011 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 57820.0521 0.0003 R 51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP 52375.8116 0.0026 SWASP 54166.1685 0.0000 SWASP	51602 3080	0.0015	NSVS	54161 1296	0.00021	SWASP	57820.0514	0.0004	V
51612.2024 0.0014 NSVS 54165.1398 0.0014 SWASP	51606 1343	0.0013	NSVS	54164 1173	0.0011	SWASP	57820.0521	0.0003	, R
52775 2116 0.0026 SWASD 54166 1685 0.0000 SWASD	51612 2024	0.0014	NSVS	54165 1398	0.0014	SWASP	5,020.0521	0.0005	10
	53275 8116	0.0026	SWASP	54166 1685	0.0009	SWASP			

Notes: References: R and V are the bands used in our observations.

it can be seen that no change can be traced for the later O-C points (those $E > -10\,000$). However, there is a bump at $E \sim -20\,000$ in the residuals. Noticing that the corresponding O-C points obtained from DASCH have the highest errors, we tend to think that the variation is not real.

In some analyses, the O - C data span is not long enough, so the long-term period change β can be ignored (Qian et al. 2015). We fit the data without the period change ($\beta = 0$; model 2). The third column of Table 2 lists the corresponding results, and Figure 4 shows the O - C diagram. An F-test (a statistical test which is often

5	1	,
 Parameter	Model 1	Model 2
 $T_0[cor]$	2447933.7821 ± 0.0008	2447933.7838 ± 0.0009
$P_0[cor](d)$	$0.093358251 \pm 0.000000007$	$0.093358215 \pm 0.000000007$
β (d cycle ⁻¹)	$(3.89 \pm 0.66) \times 10^{-13}$	0 (fixed)
β (d Myr ⁻¹)	$(1.52 \pm 0.26) \times 10^{-3}$	0 (fixed)
A (d)	0.0300 ± 0.0011	0.0299 ± 0.0013
$a_1 \sin i$ (au)	5.19 ± 0.18	5.17 ± 0.22
e	0.64 ± 0.03	0.67 ± 0.04
ω (°)	185.5 ± 3.1	191.1 ± 3.1
$P_{\rm B}$ (d)	12611 ± 36	12494 ± 44
$P_{\rm B}$ (yr)	34.53 ± 0.10	34.21 ± 0.12
T	2452047.5 ± 94.0	2452146.2 ± 130.5
$f(M)(M_{\odot})$	0.117 ± 0.013	0.118 ± 0.015
$K ({\rm km}{\rm s}^{-1})$	5.85 ± 0.29	6.09 ± 0.38

Table 2 The pulsation and orbital elements of BO Lyn. f(M) is the mass function of the companion and K is the velocity semi-amplitude in km s⁻¹. In model 2, the value of β is set as zero.

Fig. 3 Upper panel: O - C diagrams of BO Lyn using the ephemeris of Eq. (1); the solid line shows the fit exhibiting an upward parabolic variation and the cyclic change due to the LiTE; *Middle panel*: only the cyclic change τ is plotted for better visualization; *Bottom panel*: Residual O - C diagram for BO Lyn. In all panels, error bars are only shown for the data with errors, and it should be mentioned that some error bars are smaller than the symbols.

used when comparing statistical models that have been fitted to a data set, see Li & Qian 2013 and the references therein for more details) indicates that there are no significant differences between model 1 and model 2. But noting that the latter has larger errors, we are inclined to believe that model 1 is better than model 2.

In the above analysis, all the weights of data points are the same. But in many analyses of other similar cases, the weights are usually set as $1/\delta^2$, where δ values are the errors in the data. Adopting this approach, we fit the data again, and find that there is no significant change in the parameter results. It should be mentioned that some data points did not include errors, and we assumed that their errors are equal to the average error (0.00154 d). However, as we mentioned in Section 2, different detection methods can introduce systematic deviations to the times of light maximum (~0.0025 d). Taking this into account, we decreased the O - C points obtained from DASCH, NSVS and CRTS by 0.0025 d and re-fit the O - C curves. The resulting parameter values were consistent with the previous results in the error range. Noting that the values of deviations are one order of magnitude smaller than that of A (~0.03 d), it can be expected that their influences on the O - C diagram are minimal.

Fig.4 Upper panel: O - C diagrams of BO Lyn using the ephemeris of Eq. (1); the solid line shows the fit based on a revised linear ephemeris and the cyclic change due to the LiTE; *Middle panel*: only the cyclic change τ is plotted for a better visualization; *Bottom panel*: Residual O - C diagram for BO Lyn. The descriptions of the symbols and error bars are the same as those in Fig. 3.

4 DISCUSSION AND CONCLUSIONS

Using the [m1]-[c1] diagram, Peña et al. (2016) suggested that the spectral type of BO Lyn varies between A5V-A8V. For an A5V star, its mass and absolute magnitude M_V are 1.86 M_{\odot} and 2.0 respectively, and for an A8V star, they are $1.66\,M_{\odot}$ and 2.4 (Adelman 2004). In the following discussion, we adopt the mean values, assuming that the mass and absolute magnitude of BO Lyn are $M_1 = 1.76 M_{\odot}$ and $\langle M_V \rangle = 2.2$ respectively. Using the mass function, we can calculate the mass of the companion M_2 . When the inclination of the binary system $i = 90^{\circ}$, the companion's mass of BO Lyn is $0.95 \pm 0.30 \, M_{\odot}$, and the distance between the companion and the pulsating star at periastron is about 5.3 ± 0.5 au. This is similar to the situation of the SX Phoenicis star KZ Hya. Fu et al. (2008) found that it has a companion with a lower limit on mass of $0.83 M_{\odot}$. After checking the b - y value and spectroscopic data, they concluded that the companion should be a degenerate companion, like a white dwarf, neutron star or black hole. The color index b - y at the time of light minimum of BO Lyn is 0.231 (at HJD 2457401.9509, see table 6 in Peña et al. 2016). If the companion were a late type main sequence star with high inclination, the combined color index b - yshould be larger than the observed value (Fu et al. 2008). Hence, this possibility can be excluded, and the companion could be an A or F type main sequence star or a degenerate star with low luminosity. If the companion were the former, its luminosity cannot be ignored, and it would decrease the observed amplitude of the pulsating star. From the spectral type (A5V-A8V, Peña et al. 2016), the amplitude of BO Lyn should be about 0.4 (= 2.4 - 2.0), but the observed V amplitude is $\Delta V = 0.23$ mag, which is smaller than that of most other HADS stars. From the following equations:

$$2.5 \log\left(\frac{L_{\max}}{L_{\min}}\right) = 0.4,\tag{7}$$

and

2

$$.5 \log\left(\frac{L_{\max} + L_2}{L_{\min} + L_2}\right) = 0.23,$$
 (8)

where $L_{\text{max}} = 13.6 L_{\odot}$ and $L_{\text{min}} = 9.4 L_{\odot}$ (obtained from absolute magnitudes, which are the luminosities of a pulsating star at light maximum and minimum), we can calculate the luminosity of the companion to be $L_2 \simeq 8.4 L_{\odot}$. This value indicates that the companion should be a late A-type main sequence star with a mass of 1.67 M_{\odot} (Drilling & Landolt 2000). Moreover, the corresponding inclination *i* is around 42°.

The companion would also cause the systematic shift in mean radial velocities. Using Equation (8) in Li & Qian (2014), we can calculate the velocity semiamplitude $K = 5.89 \pm 0.30 \,\mathrm{km \, s^{-1}}$. Kinman (1998) obtained three radial velocities of BO Lyn in February 1995. Based on these data, they found a velocity amplitude of 19 km s⁻¹ and a mean radial velocity of

11–7

 30 ± 2 km s⁻¹. From our calculation, the mean radial velocity of BO Lyn in recent years should increase about 2 km s^{-1} . However, this calculation only works when the companion is a degenerate star with low luminosity. If the companion is a late A-type star, its luminosity cannot be ignored, and it can be expected that we would see double lines in the spectra of the BO Lyn system. In order to acquire more conclusive evidence for the companion, we suggest that high temporal and spectral resolution spectroscopic observations are needed in the future.

Stellar evolution theories predict that the pulsation periods of δ Scuti stars should increase with time. However, because not only the evolution, but also other mechanisms (e.g. LiTE) would influence the pulsation periods, making the patterns in O - C diagrams more complicated. Hintz et al. (2005) provided a value of period decrease for BO Lyn, $-0.056 \,\mathrm{d}\,\mathrm{Myr}^{-1}$. But their results, based on a short range study, were only seeing part of the orbit, and not long-term period changes. In our analysis, we determined an increase in the period at a rate of $dP/dt = 3.89 \times 10^{-13} \,\mathrm{d\,cycle^{-1}}$, or $1.52 \times 10^{-3} \,\mathrm{d}\,\mathrm{Myr}^{-1}$. This result, based on the data spanning a longer time scale, can describe the O - C curves well by accounting for the periodic variation. Moreover, both the positive direction and the order of magnitude of period change are consistent with the value computed from evolutionary models (Breger & Pamyatnykh 1998; Breger 2000). Noting that model 2, which fixes β as zero, also gives reliable results, maybe the high amplitude periodic variation in the O-C diagram affects the accuracy of measurements related to the long-term period change. To confirm this, more photometric observations are also needed in the future to verify these changes.

We adopted 179 times of light maximum covering more than 100 yr to study the behavior of the pulsation period of BO Lyn. Variations in the O - C diagram show a secular increase in the pulsation period with a rate of $dP/dt = 3.89 \times 10^{-13} \,\mathrm{d}\,\mathrm{cycle}^{-1}$ and a perturbation caused by a companion star. The corresponding orbital eccentricity *e* is 0.64 and the orbital period $P_{\rm B}$ is about 34.5 yr. Assuming the mass of BO Lyn is $1.76 \, M_{\odot}$, the lower limit on the companion's mass (M_2) is obtained as $0.95 \, M_{\odot}$. We find that the observed full amplitude ($\Delta V = 0.23$) is smaller than the amplitude corresponding to spectral type A5V–A8V, which means that the luminosity of the companion should not be ignored. By calculation, the companion should be a late A-type mainsequence star, and the corresponding orbital inclination *i* is about 42° . We also suggest that high-resolution spectroscopic observations and more photometric observations are needed to check the nature of the companion and the long-term period change of BO Lyn. In this work, historical sky surveys play an important role. Valuable information can be determined from them, which can then be used to study the nature of stars.

Acknowledgements This paper makes use of data from the first public release of the WASP data (Butters et al. 2010) as provided by the WASP consortium and services at the NASA Exoplanet Archive. This effort is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Data from the OMC Archive at CAB (INTA-CSIC) are pre-processed by ISDC. The DASCH project at Harvard is grateful for partial support from NSF grants AST-0407380, AST-0909073 and AST-1313370.

This work is partly supported by the West Light Foundation of Chinese Academy of Sciences; the National Natural Science Foundation of China (Nos. 11325315 and 11573063), the Yunnan Natural Science Foundation (Nos. 2013FB084, 2014FB187 and 2017FA001) and the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (Grant No. XDB09010202). The authors thank Profs. M. Zejda and Z. Mikulášek for their presentation on those sky surveys, and also thank the referee for helpful suggestions.

References

- Adelman, S. J. 2004, in IAU Symposium, 224, The A-Star Puzzle, ed. J. Zverko, J. Ziznovsky, S. J. Adelman, & W. W. Weiss, 1
- Breger, M. 2000, in ASPC Series, 210, Delta Scuti and Related Stars, eds. M. Breger, & M. Montgomery (San Francisco: ASP), 3
- Breger, M., & Pamyatnykh, A. A. 1998, A&A, 332, 958
- Butters, O. W., West, R. G., Anderson, D. R., et al. 2010, A&A, 520, L10
- Christensen-Dalsgaard, J. 2003, Lecture Notes on Stellar Oscillations, http://astro.phys.au.dk/ jcd/oscilnotes/
- Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, ApJ, 696, 870
- Drilling, J. S., & Landolt, A. U. 2000, Normal Stars, in Allen's Astrophysical Quantities, ed. A. N. Cox (4th ed., New York: AIP Press; Springer), 381

- Fauvaud, S., Rodríguez, E., Zhou, A. Y., et al. 2006, A&A, 451, 999
- Fauvaud, S., Sareyan, J.-P., Ribas, I., et al. 2010, A&A, 515, A39
- Fu, J. N., & Sterken, C. 2003, A&A, 405, 685
- Fu, J. N., Khokhuntod, P., Rodríguez, E., et al. 2008, AJ, 135, 1958
- Grindlay, J., Tang, S., Simcoe, R., et al. 2009, in ASPC Series, 410, Preserving Astronomy's Photographic Legacy: Current State and the Future of North American Astronomical Plates, eds. W. Osborn, & L. Robbins, 101
- Han, Z.-T., Qian, S.-B., Voloshina, I., Metlov, V. G., Zhu, L.-Y. & Li, L.-J., RAA (Research in Astronomy and Astrophysics), 2016, 16, 156
- Han, Z.-T., Qian, S.-B., Voloshina, I. & Zhu, L.-Y., RAA (Research in Astronomy and Astrophysics), 2017, 17, 56
- Hintz, E. G., Bush, T. C., & Rose, M. B. 2005, AJ, 130, 2876
- Irwin, J. B. 1952, ApJ, 116, 211
- Kinman, T. D., Suntzeff, N. B., & Kraft, R. P. 1994, AJ, 108, 1722
- Kinman, T. D. 1998, PASP, 110, 1277
- Li, L.-J., & Qian, S.-B. 2010, AJ, 139, 2639

- Li, L.-J., & Qian, S.-B. 2013, PASJ, 65, 116
- Li, L.-J., & Qian, S.-B. 2014, MNRAS, 444, 600
- Liao, W.-P., Qian, S.-B., Miloslav, Z., Zhu, L.-Y. & Li, L.-J., RAA (Research in Astronomy and Astrophysics), 2016, 16, 94
- Liakos, A., & Niarchos, P. 2017, MNRAS, 465, 1181
- Liška, J., Skarka, M., Zejda, M., Mikulášek, Z., & de Villiers, S. N. 2016, MNRAS, 459, 4360
- Paparo, M., Szeidl, B., & Mahdy, H. A. 1988, Ap&SS, 149, 73
- Peña, J. H., Villarreal, C., Piña, D. S., et al. 2016, RMxAA, 52, 385
- Pollacco, D. L., Skillen, I., Collier Cameron, A., et al. 2006, PASP, 118, 1407
- Qian, S.-B., Li, L.-J., Wang, S.-M., et al. 2015, AJ, 149, 4
- Solano, E., & Fernley, J. 1997, A&AS, 122, 131
- Sterken, C. 2005, in ASPC Series, 335, The Light-Time Effect in Astrophysics: Causes and Cures of the O–C Diagram, ed. C. Sterken (San Francisco: ASP), 3
- Woźniak, P. R., Vestrand, W. T., Akerlof, C. W., et al. 2004, AJ, 127, 2436
- Yuan, J.-Z., Şenavcı, H. V., & Qian, S.-B., RAA (Research in Astronomy and Astrophysics), 2016, 16, 81
- Zhou, A.-Y. 2010, arXiv:1002.2729