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Abstract The second order perturbation effect of gravitational radiation damping on the periastron

advance of binary stars is studied. The second order analytic solution is obtained based on the first order

theory in the 2014 article by Li. Theoretical results show that secular variation exists in the periastron

advance of binary stars in the second order theory, but secular variation does not exist in the first order

perturbation theory. Numerical results for two compact binary stars (PSR J0737–3039 and M33 X-7)

are given, demonstrating the theoretical significance even though the effect is very small.
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1 INTRODUCTION

It is important and significant to study the secular ef-

fect of gravitational radiation damping on the time and

space variation of the periastron of binary stars. The

time variation refers to the time variation of periastron

passage. The space variation of periastron refers to the

advance of periastron. Lincoln & Will (1990) deduced

from the equation for time variation of periastron pas-

sage that there is no secular variation of longitude of pe-

riastron ω, but only relativistic periastron advance in 5/2

post-Newtonian (PN) (gravitational-radiation emission)

of first order perturbation theory. Li (2011) obtained the

secular and periodic solutions of the time variation of

periastron passage for binary stars. Moreover, Li (2009)

studied gravitational radiation damping and the orbital

evolution of compact binary pulsars by using the first

perturbation method presented in Walker & Will (1979).

In that paper, the author only obtained the periodic vari-

ation of longitude of periastron and not secular varia-

tion, that is, there is no periastron advance in first order

perturbation theory for 5/2 PN. Li (2014) also studied

gravitational radiation damping and the orbital evolution

of compact binary stars by using the first perturbation

method presented in Lincoln & Will (1990). However,

in that paper the author obtained periodic variation and

cases without secular variation of the longitude of peri-

astron, that is, there is no periastron advance in first order

perturbation theory for 5/2 PN.

It is necessary to examine the existence of secular

variation of the orbit or periastron advance of binary stars

in second order perturbation theory. The associated re-

sults demonstrate the existence of secular variation in the

orbital elements of a binary star system in second order

perturbation theory.

2 A METHOD FOR SOLVING THE

PERTURBATION EQUATIONS IN HIGH

ORDER PERTURBATION THEORY

It is necessary to research and explore how high order

perturbation theory is related to the stability of a binary

star system or the solar system. The most important con-

sideration is the secular variation of orbital elements in

high order perturbation theory. Some authors investigate

this topic, such as the book Brouwer & Clemence (1961).

Perturbation equations describing time as an inde-

pendent variable may be written as

dσ

dt
= F (a, e, . . .), (1)

where σ denotes one of the orbital elements, a is the

semi-major and e is the eccentricity.

Equation (1) can be transformed into an equation

with true anomaly f as the independent variable from
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the case of time being an independent variable

dσ

df
= F0(a0, e0, . . .). (2)

The perturbation order of the orbital elements may be

written as

σ = σ(0) + σ(1) + σ(2) + σ(3)+ . . . , (3)

∴

dσ

df
=

dσ(0)

df
+

dσ(1)

df
+

dσ(2)

df
+

dσ(3)

df
+ . . . , (4)

dσ

df
= F0 +

∂F0

∂a0
(δa(1) + δa(2) + . . .)

+
∂F0

∂e0
(δe(1) + δe(2) + . . .)

+ . . .+
1

2

∂2F0

∂a2
0

(δa(1) + δa(2) + . . .)2. (5)

Comparing Equation (4) with Equation (5), we find that

dσ(0)

dt
= 0, (6)

dσ(1)

dt
= F0(a0, e0, . . .), (7)

dσ(2)

dt
=

∂F0

∂a0
δa(1) +

∂F0

∂e0
δe(1) + . . . , (8)

dσ(3)

dt
=

∂F0

∂a0
δa(2) +

∂F0

∂e0
δe(2)

+ . . . +
1

2

∂2F0

∂a2
0

δa(2) +
1

2

∂2F0

∂e2
0

+ · · · . (9)

The purpose of this paper is to investigate the secular ef-

fect of second order perturbation on the longitude of pe-

riastron, i.e. letting σ = ω

dω(1)

df
= F0{a0, e0, . . .}, (10)

dω(2)

df
=

∂F0

∂a0
δa(1) +

∂F0

∂e0
δe(1) + . . . , (11)

d̟(2)

df
=

dω(2)

df
+

dΩ(2)

df
. (12)

Integrating Equation (11), we yield

∆ω(2) =

∫ f

f0

(

dω(2)

df

)

df, ̟ = ω + Ω, (13)

where ω is the argument of periastron and ̟ is the lon-

gitude of periastron.

3 RESULTS FOR THE FIRST ORDER

PERTURBATION EFFECT OF

GRAVITATIONAL RADIATION DAMPING ON

THE ORBIT OF BINARY STARS

Results for the first order perturbation effects have been

given by Li (2014) and related results are listed as fol-

lows.

The formula for relative acceleration with 5/2 PN

was provided by Lincoln & Will (1990)

a = (m/r2)
[

(−1 + A)n + BV

]

. (14)

For gravitational emission, we take

a5/2 = (m/r2)
[

(−1 + A5/2)n̄ + B5/2V

]

, (15)

where m = m1+m2 and r denotes the distance between

the two binary stars. n and V denote the unit vectors of

the radial direction and the relative velocity vector re-

spectively.

Resolving the perturbation acceleration a into the

radial component R5/2, the transverse component S5/2

perpendicular to R5/2 in the orbital plane and the com-

ponent W5/2 normal to the orbital plane, we obtain (Li

2014)

R5/2 =
8

15
η

(m

r

)3
(

m

p

)
1

2

p−1

×e sin f
(

14 + 6e2 + 20e cosf
)

, (16)

S5/2 = − 8

15
η
m3

r4

(

m

p

)
1

2

(12+3e2+15e cosf), (17)

W5/2 = 0. (18)

Here η = µ/m, µ = m1m2

m and G = c = 1. These

parameters have been defined in Lincoln & Will (1990).

p = a(1 − e2), f denotes the true anomaly, and a and e

denote the semi-major axis and eccentricity respectively.

We substitute R5/2, S5/2 and W5/2 from

Equations (16)–(18) into Gaussian equations (16)–

(22) in Li (2014), which were derived from Lincoln &

Will (1990) and Brouwer & Clemence (1961). We also

change independent variable time t to an independent

true anomaly f to transform the Gaussian equations by

using r2 df
dt = (mp)1/2. Then, by integrating Gaussian

equations (16)–(22), we obtain the results for the first

order perturbation effects in 5/2 PN as follows (Li 2014).

δa(1) = A0(f − f0) +

3
∑

i=1

Ai(sin if − sin if0), (19)
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δe(1) = E0(f − f0) +

3
∑

i=1

Ei(sin if − sin if0), (20)

δω(1) =
4

∑

i=1

Wi(cos if − cos if0), (21)

δε
(1)
0 =

4
∑

i=1

Hi(cos if − cos if0), (22)

δλ(1) = n(t − t0) + δε
(1)
0 , (23)

δi(1) = δΩ(1) = 0. (24)

The coefficients of the secular terms are

A0 = − 8

15
ηm5/2p

−3/2
0 (1 − e2

0)
−2(24 + 73e2

0), (25)

E0 = − 8

15
η

(

m

p0

)5/2 (

38e0 +
121

8
e2
0

)

. (26)

The amplitudes of the periodic terms are

A1 = − 8
15ηm5/2p

−3/2
0 (1 − e2

0)
−2(102e0 + 18e2

0),

A2 = − 76
3 ηm5/2p

−3/2
0 e2

0(1 − e0)
−2,

A3 = − 8
15ηm5/2p

−3/2
0

16
3 e2

0(1 − e0)
−2,

A4 = 0.



































(27)

E1 = − 8
15η

(

m
p0

)5/2

(24e0 + 91
2 e2

0),

E2 = − 8
15η

(

m
p0

)5/2

(7e0 + 12e2
0),

E3 = − 8
15η

(

m
p0

)5/2
65
12e2

0,

E4 = 0.











































(28)

W1 = 8
15η

(

m
p0

)5/2

(24 + 81
4 e2

0 + 17
2 e3

0)/e0,

W2 = 8
15η

(

m
p0

)5/2
1
2 (33 + 7e0 + 33

4 e2),

W3 = 8
15η

(

m
p0

)5/2
1
3

(

57
4 e0 + 17

2 e3
0

)

,

W4 = 8
15η

(

m
p0

)5/2
15
32 e2

0.











































(29)

H1 = 8
15η

(

m
p0

)5/2

[

24e0+ 81

4
e3

0

1−e2

0
+
√

1−e2

0

+ (1 − e2
0)

1/2(28e0 + 12e3
0)

]

,

H2 = 8
15η

(

m
p0

)5/2

[

33e2

0
+7e3

0

2[(i−e2

0
)+
√

1−e2

0
]
+ 10e2

0(1 − e2
0)

1/2

]

.

H3 = 8
15η( m

p0

)5/2 1
6

(

57

2
e3

0
+17e4

0

1−e2

0
+
√

1−e2

0

)

H4 = 8
15η

(

m
p0

)5/2
(

15
32

) e4

0

(1−e2

0
+
√

1−e2

0
)











































































(30)

where p0 = a0(1 − e2
0).

Expressions (19)–(30) indicate that there are both

secular and periodic variations for the semi-major axis

and the eccentricity, but there is only periodic variation

for the argument of periastron ω in first order perturba-

tion theory; that is, there is neither secular variation of

the longitude of periastron, ̟ nor periastron advance for

5/2 PN in first order perturbation theory.

4 SECULAR SOLUTION FOR LONGITUDE OF

PERIASTRON IN SECOND ORDER THEORY

Because there is no secular variation (shift) for the longi-

tude of periastron in the first order theory, it is necessary

to examine the secular variation (shift) for the longitude

of periastron in second order theory.

First, one must write down the first order Gaussian

equations for the longitude of argument ω with the

anomaly as an independent variable by using Gaussian

equations (Lincoln & Will 1990)

e
dω

dt

(1)

= (p/m)1/2
{

− R5/2 cos f +

(

1 +
r

p

)

sin fS5/2

}

+ e(r/p) cos i sin fW5/2. (31)

By substituting Equations (16)–(18) for R5/2, S5/2 and

W5/2 respectively into the above Gaussian equation and

using df
dt = (mp)1/2/r2, the first order Gaussian equa-

tion with true anomaly as an independent variable for ω

has been derived by Li (2014)

dω(1)

df
=

dω(1)

dt

dt

df

= − 8

15
η(m/p)5/2 1

e

{(

24 +
81

4
e2 +

17

2
e3

)

× sin f + e

(

33 + 7e +
33

4
e2

)

sin 2f

+e

(

57

4
e +

17

2
e2

)

sin 3f

+
15

8
e3 sin 4f

}

. (32)

For brevity, we write down the first order equation above

in the following form (
∑

form)

dω(1)

df
=

3
∑

i=1

Ri sin if

= F0(a0, e0, ω0, . . . , ε0, f), (33)
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where

R1 = − 8
15η

(

m
p0

)5/2

(24 + 81
4 e2

0 + 17
2 e3

0)/e0,

R2 = − 8
15η

(

m
p0

)5/2

(33 + 7e0 + 33
4 e2

0),

R3 = − 8
15η

(

m
p0

)5/2

(57
4 e0 + 17

2 e2
0),

R4 = − 8
15η

(

m
p0

)5/2
15
8 e2

0 = −η
(

m
p

)5/2

e2
0.











































(34)

The second order equation for the longitude of periastron

can be written according to Equation (7).

dω(2)

df
=

∂F0

∂a0
δa(1) +

∂F0

∂e0
δe(1) +

∂F0

∂i0
δi(1)

+
∂F0

∂ω0
δω(1) +

∂F0

∂Ω0
δΩ(1)

+
∂F0

∂ε0
δε(1). (35)

∂F0

∂a0
=

3
∑

i=1

Qi sin if, (36)

where

Q1 = 8
15ηm5/2p

−7/2
0

5
2 (1 − e2

0)(24 + 81
4 e2

0 + 17
2 e3

0)/e2,

Q2 = 8
15ηm5/2p

−7/2
0

5
2 (1 − e2

0)
(

33 + 7e0 + 33
4 e2

0

)

,

Q3 = 8
15ηm5/2p

−7/2
0 (1 − e2

0)
(

51
4 e0 + 17

2 e2
0

)

,

Q4 = ηm5/2p
−7/2
0 (1 − e2

0)e
2
0.



































(37)

∂F0

∂e0
=

3
∑

i=1

Ni sin if. (38)

Here































N1 = − 8
15η( m

p0

)5/2
[

299
4 + 33e0 + 365

4 e2
0 + O(e3)

]

,

N2 = − 8
15η( m

p0

)5/2
[

7 + 363
2 e0 + 35e2

0 + O(e3)
]

,

N3 = − 8
15η( m

p0

)5/2
[

57
4 + 17e0 + 285

4 e2
0 + O(e3)

]

,

N4 = −7η( m
p0

)5/2e0,

(39)

where p0 = a0(1 − e2
0).

∂F0

∂ω0
=

∂F0

∂i0
=

∂F0

∂Ω0
=

∂F0

∂ε0
= 0,

(δω = δi = δΩ = δε0 = 0). (40)

The expressions in Equation (19) with (36) yield

∂F0

∂a0
δa(1) =

4
∑

i=1

Qi sin if

{

A0(f − f0)

+
4

∑

i=1

Ai(sin if − sin if0)

}

, (41)

4
∑

i=1

QiAi(f − f0) sin if =

4
∑

i=1

QiAif sin if −
4

∑

i01

QiAif0 sin if.

Here

4
∑

i=1

QiAif0 sin if =Periodic terms,

4
∑

i=1

QiAi sin if0 sin if =Periodic terms,

4
∑

i=1

QiAi sin2if =
1

2

4
∑

i=1

QiAi(1 − cos 2f)

=
1

2

4
∑

i=1

QiAi −
1

2

4
∑

i=1

QiAi cos 2if. (42)

We take the secular term

1

2

4
∑

i=1

QiAi

and the term
4

∑

i=1

AiQif sin if,

∂F0

∂a
δa(1) =

1

2

4
∑

i=1

AiQi +

4
∑

i=1

AiQif sin if. (43)

Similarly the expressions in Equation (20) with

Equation (38) give

∂F0

∂e0
δe(1) =

4
∑

i=1

N sin if

[

E0(f − f0) +

4
∑

i=1

Ei(sin if − sin f0)
]

,

∂F0

∂e0
δe(1) =

1

2

i
∑

i=1

NiEi +

4
∑

i=11

NiEif sin if. (44)
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In addition, Equations (21)–(24) with Equation (40)

generate

∂F0

∂ω0
δω(1) =

∂F0

∂i0
δi(1) =

∂F0

∂Ω0
δΩ(1)

=
∂F0

∂ε0
δε(1) = 0. (45)

Substituting Equations (43), (44) and (45) into

Equation (35), one obtains

dω(2)

df
=

1

2

( 4
∑

i=1

AiQi +

4
∑

i=1

NiEi

)

+

( 4
∑

i=1

AiQif sin if

+
4

∑

i=1

NiEif sin if

)

. (46)

Integrating the above equation from 0 to 2π

δω(2) =
1

2

( 4
∑

i=1

AiQi +

4
∑

i=1

NiEi

)
∫ 2π

0

df

+

(
∫ 2π

0

4
∑

i=1

AiQif sin fdf

+

∫ 2π

0

4
∑

i=1

NiEif sin fdf

)

. (47)

We use the formula for integration

∫

x sin xdx = sinx − x cosx.

The integration

∫ 2π

0

4
∑

i=1

AiQif sin ifdf =

4
∑

i=1

AQ
1

i2

[

sin if − if cos if

]2π

0

= −2π

4
∑

i=1

AiQi

i
. (48)

Similarly

∫ 2π

0

4
∑

1=1

NiEif sin i = −2π

4
∑

i=1

NiEi

i
. (49)

The result of the integration (47) is

δω(2) = π

( 4
∑

i=1

AiQi +

4
∑

i=1

NiEi

)

−2π

( 4
∑

i=1

Ai

Qi
i +

4
∑

i=1

NiEi

i

)

,

or

δω(2) =

[

π
4

∑

i=1

AiQi

(

1 − 2

i

)

+ π
4

∑

i=1

NiEi

(

1 − 2

i

)

]

(rad cycle−1), (50)

ω̇(2) =

[

π
4

∑

i=1

AiQi

(

1 − 2

i

)

/P + π
4

∑

i=1

NiEi

(1 − 2

i
)/P

]

(rad yr−1), (51)

where P is the orbital period.

δ̟ = δω + δΩ = δω, ˙̟ = ω̇ + Ω̇ = ω̇.

∴ δΩ = Ω̇ = 0, (52)

where ̟ and ω are the longitudes of periastron and argu-

ment respectively.

5 NUMERICAL RESULTS FOR THE SECULAR

EFFECT OF GRAVITATIONAL RADIATION

DAMPING ON PERIASTRON ADVANCE IN

SECOND ORDER PERTURBATION THEORY

In this paper we choose two compact binary star systems.

One is PSR J0737–3039 and the other is black hole bi-

nary star M33 X-7. Their data are listed in Table 1.

The right hand side of Equations (16) – (18) needs to

be multiplied by c5 (light speed) and m should be multi-

plied by G (Gravitational constant).

ηm5/2 = (m1m2

m2 )m5/2 = m1m2.

m1/2 = G5/2

c5 m1m2(m1 + m2)
1/2

= 2.2835 × 1013(For PSR J0737− 3039)

= 8.5883 × 1016(For M33 X − 7).
(53)

p0 = a0(1 − e2
0)

= 8.7019× 1010(For PSR J0737− 3039)

= 2.9405× 1012(For M33 X − 7). (54)
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Table 1 Table for data on PSR J0737–3039 and M33 X-7

Pulsar P (d) A (R⊙) M1 (M⊙) M2 (M⊙) e Reference

PSR J0737–3039 0.10225 1.26 1.34 1.25 0.0878 Willems et al. 2004, Burgay et al. 2003

M33 X–7 3.4500 42.4 15.65 70.00 0.0185 Orosz et al. 2007

Table 2 Numerical values for the amplitudes of periodic terms for PSR J0373–3039

Amplitude Ai × 10−4 Ei × 10−15 Qi × 10−23 Ni × 10−13

i = 1 −23.8290 −1.3401 +47.5940 −9.1810

i = 2 −1.7468 −0.3855 +3.4493 −1.2651

i = 3 −0.1986 −0.0227 +0.0485 −0.8924

i = 4 0 0 +0.0003 −0.0628

Table 3 Numerical Values for the Amplitudes of Periodic Terms for M33 X-7

Amplitude Ai × 10−1 Ei × 10−15 Qi × 10−27 Ni × 10−15

i = 1 –1.7178 –1.4119 +73621 –231.7082

i = 2 –0.0146 –4.1082 +33.1253 –31.8699

i = 3 –0.0002 –0.0056 +4.9418 –44.4767

i = 4 0 0 +0.0003 –0.7462

Here m1, m2 and a0 are expressed in the units of solar

mass M(M⊙), M⊙ = 1.989 × 1033 g, and solar radius

a(R⊙). R⊙ = 6.9599×1010 cm, G = 6.67×10−8 (cgs)

and c = 2.9979× 1010 cm s−1.

Substituting data for the values of Equations (53)–

(54) and M1 (M⊙), M2 (M⊙) and e0 into Equations (27),

(28), (37) and (39), we obtain Tables 2 and 3.

Expanding the terms in Equations (50) and (51) for

4
∑

i=1

AiQi

(

1 − 2

i

)

and
4

∑

i=1

NiEi

(

1 − 2

i

)

yields

4
∑

i=1

AiQi(1 − 2
i ) = A1Q1(1 − 2

1 ) + A2Q2(1 − 2
2 )

+ A3Q3(1 − 2
3 ) + A4Q4(1 − 2

4 )

=
4
∑

i=1

AiQi(1 − 2
i )

= −A1Q1 + 1
3A3Q3 + 1

2A4Q4.
(55)

The next expression is similar to the above expression

4
∑

i−1

NiEi(1 − 2

i
) = −N1E1+

1

3
N3E3+

1

2
N4E4. (56)

Substituting Equations (55) and (56) into Equations (50)

and (51), we obtain that

δ̟(2) =

[

π(−A1Q1 +
1

3
A3Q3 +

1

2
A4Q4) + π(−N1E1

+
1

3
N3E3 +

1

2
N4E4)

]

(rad cycle−1). (57)

˙̟ (2) =
[

π(−A1Q1 +
1

3
A3Q3 +

1

2
A4Q4)

+π(−N1E1 +
1

3
N3E3 +

1

2
N4E4)

]

/P (rad yr−1) . (58)

We can substitute the values of A1, A3, A4, Q1, Q3, Q4,

E1, E3, E4, N1, N3 and N4 into Table 2, Table 3 and

P (d) in Table 1.

Then, we can apply these results for PSR J0737–

3039 and M33 X–7 in Equations (57) and (58) to obtain

the second order secular solutions for periastron advance

of pulsars or black holes that are part of binary systems

as shown in Table 4.

6 DISCUSSION

(1) It is important to study the secular advance of peri-

astron in binary star systems, because the period of
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Table 4 The second order secular solutions for the periastron advance of PSR J0737–3–039

and M33 X–7 compared with the first order solution of the previous paper (Li 2014).

Binary Star δ̟(1) ˙̟ (1) δ̟(2) ˙̟ (2)

(rad cycle−1) (rad yr−1) (rad cycle −1) (rad yr−1)

PSR J0737–3039 0 0 6.55 × 10−24 2.34 × 10−20

M33 X–7 0 0 3.97×10−23 4.21×10−21

Notes: The first order values of δ̟(1) and ˙̟ (1) have been given in a previous article (Li 2014).

advance of the apsidal line is determined by the sec-

ular advance of periastron in binary stars. As is well

known, there is not a secular advance of periastron

in first order perturbation theory (Li 2009, 2014). It

is necessary for us to study and explore whether or

not there is a secular advance of periastron in sec-

ond order perturbation theory; the work highlighted

in this paper is such an attempt. We obtain the associ-

ated theoretical and numerical results. According to

Burgay et al. (2005), pulsars A and B in the system

PSR J0737–3039 will coalesce due to the emission

of gravitational waves in a merger time of 85 Myr.

In Table 4 for PSR J0737–3039, 2.34 ×
10−20(rad yr−1)× 85× 106yr = 1.99× 10−12 rad

is increased within the time 85 Myr. This effect is so

small that we cannot measure it. Even though this ef-

fect is very small, it still has theoretical significance,

especially as this paper demonstrates that there is

secular advance of periastron in second order per-

turbation theory.

(2) The result obtained by Lincoln & Will (1990) for the

gravitational radiation reaction in the first order per-

turbation theory was used to derive equation 2.11b

for 1 PN (relativistic term), 2 PN and 5/2 PN for ω.

We write the differential equation (2.11b) for ω in

the following form.

e
dω

dt
=

m

p

[

3e +

3
∑

i=1

Ai cos if

]

+
(m

p

)2

[

[

e(7 + 5η − 7η2) − 1

8
e3(2 − 2η + 48η2)

]

+

5
∑

i−1

Bi cos if

]

+
(m

p

)5/2

( 4
∑

i=1

Ci sin if

)

.

They integrate the equation above and take the secu-

lar terms, which yield

∆ω = O
(m

p

)

+ O
(m

p

)2

+ O
(m

p

)5/2

= 6m/p + O

(

m

p

)2

.

Here the first term is the relativistic periastron ad-

vance (secular terms + periodic terms); the second

term is the 2 PN periastron advance (secular terms +

periodic terms); the third term is the 5/2 PN (gravi-

tational radiation reaction), and

O
(m

p

)5/2

=
(m

p

)5/2
( 4

∑

i=1

Ci

i
cos if

)

for which these periodic terms disappear in ∆ω.

Because these terms are periodic terms and not sec-

ular terms, there exist secular variable terms in 1 PN

and 2 PN, but no secular terms exist and only peri-

odic terms exist in 5/2 PN in first order theory.

This implies that there is no secular term or there

is no periastron advance but there are only periodic

terms in the first order perturbation theory for 5/2

PN.

(3) We can compare the results of Li (2009, 2014) with

those from Lincoln & Will (1990) in terms of first

order theory for 5/2 PN theory. Li (2009, 2014) con-

cludes that there are not secular variable terms and

there are only periodic variable terms for ∆̟ in first

order theory. This is consistent with the result ob-

tained by Lincoln & Will (1990) in the first order

theory. However, in the present paper, Li obtains the

secular variable term for ∆̟ in second order pertur-

bation theory. Moreover, there is no secular variable

term in the first order perturbation theory. It must ap-

pear in the second order perturbation theory.
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