
RAA 2017 Vol. 17 No. 8, 85 (12pp) doi: 10.1088/1674–4527/17/8/85

c© 2017 National Astronomical Observatories, CAS and IOP Publishing Ltd.

http://www.raa-journal.org http://iopscience.iop.org/raa

Research in
Astronomy and
Astrophysics

Cosmological neutrino simulations at extreme scale

J. D. Emberson1,2,3, Hao-Ran Yu4,1,5, Derek Inman1,6, Tong-Jie Zhang5,7, Ue-Li Pen1,8,9,10,

Joachim Harnois-Déraps11,12 , Shuo Yuan13, Huan-Yu Teng5, Hong-Ming Zhu14, Xuelei Chen14 and
Zhi-Zhong Xing15,16

1 Canadian Institute for Theoretical Astrophysics, University of Toronto, M5S 3H8, ON, Canada;

emberson@astro.utoronto.ca
2 Department of Astronomy & Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada
3 ALCF Division, Argonne National Laboratory, Lemont, IL 60439, USA
4 Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing 100871, China
5 Department of Astronomy, Beijing Normal University, Beijing 100875, China; tjzhang@bnu.edu.cn
6 Department of Physics, University of Toronto, Toronto, ONtario M5S 1A7, Canada
7 School of Physics and Electric Information, Shandong Provincial Key Laboratory of Biophysics, Dezhou

University, Dezhou 253023, China
8 Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada
9 Canadian Institute for Advanced Research, Program in Cosmology and Gravitation

10 Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada
11 Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
12 Scottish University Physics Alliance, Institute for Astronomy, University of Edinburgh, EH9 3HJ, Scotland, UK
13 Department of Astronomy, Peking University, Beijing 100871, China
14 Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of

Sciences, Beijing 100012, China
15 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
16 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Received 2016 November 2; accepted 2017 April 15

Abstract Constraining neutrino mass remains an elusive challenge in modern physics. Precision mea-

surements are expected from several upcoming cosmological probes of large-scale structure. Achieving

this goal relies on an equal level of precision from theoretical predictions of neutrino clustering.

Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role

in this process. We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the

challenges associated with pushing to the extreme scales demanded by the neutrino problem. We high-

light code optimizations made to exploit modern high performance computing architectures and present

a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in

single precision to roughly 9 bytes. We scale the neutrino problem to the Tianhe-2 supercomputer and

provide details of our production run, named TianNu, which uses 86% of the machine (13 824 compute

nodes). With a total of 2.97 trillion particles, TianNu is currently the world’s largest cosmological N-

body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale.

We finish with a discussion of the unanticipated computational challenges that were encountered during

the TianNu runtime.

Key words: cosmology: theory — large-scale structure of universe — methods: numerical

1 INTRODUCTION

The standard model of particle physics predicts the ex-

istence of three neutrino flavors: electron, muon and

tau. These flavors exist as superpositions of three mass

eigenstates, with the generic prediction of the stan-

dard model claiming each eigenstate has identically zero

85–2 J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale

mass. However, various extensions of the standard model

exist for which the mass eigenstates can be non-zero

(Lesgourgues & Pastor 2006). In this case, Pontecorvo

(1958) showed it is possible that flavor is not conserved,

allowing neutrinos to oscillate between flavor with time.

This phenomenon was firmly established by observations

of the flux of electron neutrinos from the Sun that were

roughly three times smaller than expected based on so-

lar models (Ahmad et al. 2002). The resolution is such

that electron neutrinos, the only flavor produced in the

Sun, oscillate between muon and tau during their pas-

sage through the Sun, leading to a suppressed flux of

electron neutrinos when they arrive at Earth (Wolfenstein

1978; Mikheyev & Smirnov 1985). The existence of neu-

trino oscillations has also been verified from the flux of

electron and muon neutrinos produced from cosmic ray

collisions in Earth’s atmosphere (Fukuda et al. 1998).

Efforts related to understanding these atmospheric and

solar neutrino oscillation experiments were awarded the

2015 Nobel Prize in physics for their confirmation of

massive neutrinos.

Constraining the absolute mass hierarchy of neu-

trinos is a challenging problem in physics. Oscillation

experiments imply that at least two of the three neu-

trino eigenstates are massive, with minimum masses

of roughly 10 and 50 meV (Capozzi et al. 2016).

Unfortunately, these experiments are only sensitive to

the mass-squared splittings between mass eigenstates

and cannot be used to infer the hierarchy of individ-

ual neutrino masses. This leaves many open questions

into the nature of these fundamental particles. To this

end, particle physicists have devised numerous experi-

ments that aim to place constraints on individual neutrino

masses including observations of the β decay of tritium

(Kraus et al. 2005; KATRIN collaboration 2001), or from

the possibility of neutrinoless double-β decay (Agostini

et al. 2013; The Exo-200 Collaboration et al. 2014) in the

event that neutrinos are Majorana particles.

Cosmologists have also been working hard to con-

strain the neutrino mass hierarchy. Relic neutrinos pro-

duced shortly after the Big Bang are second only to

photons as the most abundant particle in the universe.

As such, they have the potential to impact cosmological

phenomena including the cosmic microwave background

(CMB) and large-scale structure (LSS). Currently, the

best constraints on neutrino mass come from the Planck

CMB satellite, with an upper bound on the sum of neu-

trino mass of
∑

mν < 194 meV (Planck Collaboration

et al. 2016). Future LSS experiments such as Euclid

(Amendola et al. 2013) and LSST (LSST Dark Energy

Science Collaboration 2012) are expected to reduce this

upper bound to the ∼ 40 meV level using precision

measurements of the matter power spectrum (Costanzi

Alunno Cerbolini et al. 2013). Another potential LSS

probe involves measuring the dipole asymmetry in the

matter density field that results from the relative flow be-

tween cold dark matter (CDM) and neutrinos (Zhu et al.

2014, 2016; Inman et al. 2015).

In preparation of these upcoming probes, theorists

must make predictions about the effect of massive neu-

trinos on LSS within the non-linear regime where ana-

lytic calculations regarding the growth of structure break

down. They are thus forced to rely on the use of cosmo-

logical structure formation simulations. Such simulations

have a mature history in cosmology, with the earliest

N-body schemes being implemented in the 1970s (e.g.,

Peebles 1970; Miyoshi & Kihara 1975; White 1976;

Aarseth et al. 1979). The general picture is that of a

set of point particles evolving under their mutual grav-

itational interaction with some combination of particle-

mesh (PM), particle-particle (PP) and tree algorithms

used for the force calculation. Since their first incep-

tion, cosmological N-body simulations have been widely

adopted and optimized for high performance comput-

ing (HPC) environments, with the current state-of-the-art

simulations now reaching the trillion-particle scale for

the pure CDM case (Skillman et al. 2014; Habib et al.

2016).

Cosmological N-body simulations that self-

consistently coevolve CDM and neutrino particles have

only recently begun to mature in scale (e.g., Brandbyge

et al. 2008; Viel et al. 2010; Bird et al. 2012; Villaescusa-

Navarro et al. 2013; Inman et al. 2015; Castorina et al.

2015). The main technological challenge in this case

is that neutrinos are thermally hot, having velocity

dispersions several orders of magnitude greater than that

of CDM. This thermal motion suppresses the ability of

neutrinos to gravitationally clump on small scales and

tends to distribute them more uniformly throughout the

simulation volume compared to CDM. As a result, a

tremendous amount of shot noise exists on small scales

that can only be reduced by increasing the particle count

to large numbers. Any attempt to simulate the non-linear

interaction between CDM and neutrinos in a large

cosmological volume must overcome this computational

burden. Fortunately, some of this burden is alleviated

when scaled to a large number of parallel tasks since the

near homogeneity of neutrinos leads to a computational

load that is significantly more balanced than the pure

CDM case. Hence, the cosmological neutrino problem is

perfectly suited for modern HPC.

J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale 85–3

We focus here on optimizing the cosmological N-

body code CUBEP3M (Harnois-Déraps et al. 2013) for

the extreme scale demanded by the neutrino problem.

We highlight specific code changes relevant for both the

neutrino case as well as the more general class of cosmo-

logical simulations. Our method is applied to Tianhe-2

which, as of submission, ranks second on the Top 500

list of supercomputers1. Our production run uses 13824

compute nodes of Tianhe-2 (86% of the machine) to

evolve 69123 CDM particles and 138243 neutrino parti-

cles in a cubic volume of width 1200 h−1 Mpc. We name

this simulation TianNu, or “Neutrino Sky.” With a total

of 2.97 trillion particles, TianNu is the largest cosmolog-

ical N-body simulation performed to date and is two or-

ders of magnitude larger than previous cosmological neu-

trino simulations. As TianNu was hitherto the most com-

putationally ambitious simulation performed on Tianhe-

2, we were given two weeks of dedicated access to scale

our problem and debug any potential issues with the ma-

chine. We discuss here the unforeseen challenges that

were uncovered as we pushed to the current limit of sci-

entific computing.

This paper is organized as follows. In Section 2 we

provide an overview of the cosmological N-body prob-

lem and document the optimizations made to CUBEP3M

to adapt its usage for extreme-scale HPC. These include

the implementation of an MPI pencil decomposition in

the long-range PM force solver, the addition of memory-

efficient nested OpenMP parallelism in the short-range

PM and PP force evaluations, and a novel method of

data compression relevant for cosmological simulations.

Section 3 presents a weak scaling analysis on the Tianhe-

2 and provides details of our production run. We fin-

ish with a discussion of the various technical challenges

that were encountered while utilizing 86% of the ma-

chine. The conclusions of our work are summarized in

Section 4.

2 NUMERICAL METHOD AND

OPTIMIZATIONS

2.1 Code Overview

We begin with a brief overview of the methodology em-

ployed by the cosmological code CUBEP3M used in this

study. The text presented here is meant to provide back-

ground information that will augment the code optimiza-

tions described in the proceeding subsections. We refer

the reader to previous works (Harnois-Déraps et al. 2013;

Inman et al. 2015) for a more thorough analysis of the

1 https://www.top500.org/lists/2016/06/

code structure and technical algorithms relevant to both

the pure CDM and neutrino cases.

Cosmological simulations are parameterized by the

physical volume they resolve and the number of particles

they contain. The volume is generally represented as a

periodic cube of side length L and the number of parti-

cles expressed as an integer cubed, Np = n3
p.

In the case of CUBEP3M, the domain is decomposed

into cubes of equal volume, with each cube assigned to a

single MPI task. With this setup, the number of MPI tasks

assigned to the problem is constrained to be a cubed inte-

ger, Nmpi = n3
mpi. We refer to this top level of cubic do-

main decomposition as nodes since the usual operation of

the code assigns one MPI task per compute node. Within

each node exists a second level of cubic subdivision, into

equal volume elements called tiles. Calculations within

each node’s volume are done simultaneously over tiles

using OpenMP threads, as described in more detail be-

low. The user is free to choose the number of tiles within

each node, with the ideal strategy to make this an integer

multiple of the number of threads available to each MPI

task. Figure 1 shows a two-dimensional representation of

the decomposition into tiles within a single MPI domain.

The objective of cosmological simulations is to

evolve particles from an initial configuration at an early

cosmic time to the present epoch. At each time step, the

key quantity to compute is the three-dimensional gravi-

tational force field. This is achieved in CUBEP3M using

both PM and PP methods. Hybrid codes combining mul-

tiple force schemes like this are common in cosmological

applications. Another common choice is to substitute a

tree algorithm in place of the PM method used here. We

opt for a PM method since it is much faster for nearly

homogeneous particle distributions, as is especially the

case with cosmological neutrinos. Additional advantages

of the PM method over tree algorithms include reduced

memory overhead and ease of parallelizability. The PP

force increases resolution below the mesh scale where

the PM force loses range.

In the PM scheme, the gravitational force is found

by solving the Poisson equation

∇2φ(x) = 4πGρ(x). (1)

Here φ is the gravitational potential at spatial (comov-

ing) coordinate x, ρ is the matter density field and G is

the gravitational constant. The density field is computed

by interpolating particles onto a uniform cubic mesh con-

taining Ng = n3
g cells. The result is then Fourier trans-

formed and the potential is solved via

φ̃(k) = −
4πG

k2
ρ̃(k), (2)

85–4 J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale

Fig. 1 Two-dimensional representation of the domain decomposition into tiles within a single node (i.e., MPI task) of the overall

simulation. In this example, we split the node into two tiles per dimension, with boundaries of the tiles denoted by solid black lines.

The extents of the short-range PM force and PP force (see text) are constrained within the range of an individual tile so that OpenMP

threads can be used to cycle over all tiles on a node. A small buffer region (indicated by dotted grey lines) is used to ensure accurate

force calculation near tile boundaries. The solid blue line highlights the bottom left tile with its corresponding buffer highlighted in

red. MPI communications are minimized by requiring their use only during the long-range PM force calculation and at the end of

each time step when particles are passed between neighboring nodes.

where k is a Fourier mode. The gravitational force in

Fourier space is related to the potential as

F̃ (k) = −imφ̃(k)k, (3)

where m is the particle mass and i is the imaginary unit.

The three components of force in real space are obtained

from three inverse Fourier transforms of Equation (3).

CUBEP3M splits the PM force computation into two

terms: a long-range force term and a short-range force

term. The former is computed on a coarse mesh contain-

ing n3
g = (np/2)3 cells2 while the latter uses a mesh that

is a factor of 4 times finer in each dimension. The long-

range force is solved over the global simulation volume

using Fourier transforms evaluated in parallel over all

MPI tasks while the latter is solved on the local mesh of

each individual tile. This approach minimizes MPI com-

munication where coarse resolution elements are suffi-

cient in the long-range force calculation while maintain-

ing high resolution on the small scales that depend only

on rank-local shared memory.

The utility of the PM scheme is its speed, with the

Fourier transforms being order O(NglogNg). The down-

2 In the case of our neutrino simulations, np here refers to the num-

ber of neutrino particles which we normally choose to be 8 times greater

than the number of CDM particles. This is chosen out of the necessity of

suppressing the high level of neutrino shot noise that results from their

thermal motion. Both CDM and neutrino particles are interpolated to

the same mesh when computing PM forces.

side is the force is heavily suppressed below the mesh

scale. In CUBEP3M, this is remedied by appending the

short-range PM force with a PP force calculation below

the grid scale. The PP force is evaluated using a direct

pairwise summation

Fi = Gmi

∑

j 6=i

mj

xj − xi

|xj − xi|3
, (4)

where Fi is the force on particle i at spatial location xi.

The sum is performed over all particles within the same

grid cell as particle i and is of order O(η2
p) where ηp

is the typical number of particles within one cell of the

short-range interpolation mesh. In order to avoid artifi-

cial scattering in the N-body problem, the PP force is

truncated below some chosen scale called the softening

length, rsoft.

In CUBEP3M, the softening length is normally cho-

sen to be 0.05 times the average inter-particle spacing;

that is, rsoft = L/(20np).

2.2 MPI Pencil Decomposition

The first stage in our force evaluation is the long-range

PM force. As described above, this is solved using MPI

Fourier transforms evaluated on the global interpolation

mesh containing n3
g = (np/2)3 cells. Previously, this

was achieved using the FFTW library (Frigo & Johnson

J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale 85–5

2005) with a one-dimensional MPI slab decomposition.

This setup divides the global interpolation mesh into

Nmpi planes of size

ng × ng × (ng/n3
mpi).

Hence, the problem becomes constrained by the require-

ment that the number of cells per side, ng, be an integer

multiple of the total number of MPI tasks, n3
mpi. This

constraint scales poorly since the number of MPI tasks is

proportional to the three-dimensional problem size and

can thus quickly exceed the number of interpolation cells

in one dimension.

To remedy this issue, we have modified CUBEP3M

so that the long-range parallel Fourier transforms are

handled using the publicly available P3DFFT library

(Pekurovsky 2012). P3DFFT employs a two-dimensional

pencil decomposition where the interpolation mesh is di-

vided into Nmpi pencils of size

ng × (ng/nmpi) × (ng/n2
mpi).

The decomposition constraint is significantly alleviated

with the requirement that ng be an integer multiple of

only n2
mpi rather than n3

mpi. An added advantage of the

pencil decomposition is that the number of MPI commu-

nications decreases by a factor of nmpi when transform-

ing data between cubic nodes and pencils. In particular,

a slab (pencil) decomposition requires n2
mpi (nmpi) MPI

communications corresponding to each of the individual

nodes a given slab (pencil) intersects in the xy plane. The

pencil decomposition thus requires larger but fewer MPI

communications.

2.3 Nested OpenMP Parallelism

Unlike the long-range PM force, short-range PM and

PP forces are local quantities that can ignore suffi-

ciently distant parts of the simulation volume. The region

within which these forces operate can be completely iso-

lated within individual tiles. In this case, the short-range

PM force is evaluated using an interpolation mesh and

Fourier transforms local to each tile while the PP force

is evaluated by looping over each cell in the mesh and

identifying its constituent particle pairs. A small buffer

region around each tile is used to ensure that the force

is accurately computed for particles near the boundary

of the tile (see Fig. 1). With this setup, no communica-

tion between tiles is necessary and we perform the loop

over tiles using OpenMP threads with dynamic schedul-

ing used to minimize load imbalance.

Previously, each tile would be assigned only one

thread, meaning the number of active tiles at any mo-

ment equals the number of OpenMP threads. In the usual

operation of the code, this number is equal to the number

of cores on a single compute node, or an integer multiple

of this if hyper-threading is possible. Since each active

thread must store its local interpolation mesh (as well

as other arrays dedicated to the PP force calculation),

this approach can become expensive in modern HPC ar-

chitectures where the strategy is to maximize the num-

ber of cores on a single node. To maximize parallel effi-

ciency with finite memory, we have incorporated nested

OpenMP parallelism into CUBEP3M so that each tile may

be handled by multiple threads. The memory overhead

of the tile is assigned to the master thread while nested

threads perform the particle interpolations, Fourier trans-

forms and PP forces in parallel. This change allows us to

maximize core usage, especially at late times in the sim-

ulation when the PP force easily dominates the compute

time as clustered objects form.

Figure 2 provides an overview of the nested OpenMP

parallelism within each tile. The first stage is the calcu-

lation of a linked list defined on a mesh with the same

resolution as the long-range PM interpolation mesh. The

linked list is essential in accelerating particle access in

the interpolation stages as well as the PP force evalua-

tion. Next, we use “mt” master threads to perform the

dynamic scheduling over all num tile tiles. Each mas-

ter thread initializes an array, rho, which is used to store

the three-dimensional density interpolation on the local

mesh of the tile containing ng cells. Another set of arrays

pertaining to the PP force evaluation is also initialized

by each master thread. The balance between the number

of master and nested threads is dictated by the memory

overhead associated with each master thread. The short-

range PM force calculation is composed of the density

interpolation, three Fourier transform calls (one per di-

mension), and the inverse force interpolation. Each of

these routines is parallelized using “nt” nested threads

with data written only to the local arrays initialized by

the master thread. More specifically, the density interpo-

lation involves a threaded loop over all cells in the linked

list with a stride in the outer loop used to prevent race

conditions that may occur when writing to rho with a

cloud-in-cell interpolation. The stride is important since

it avoids potentially slow thread locks. The inverse force

interpolation involves a similar threaded loop over all

cells in the linked list. The Fourier transforms are evalu-

ated using the threaded versions of the one-dimensional

FFTW3 routines. The final stage in each tile is the PP

85–6 J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale

subroutine compute_tile_forces
call link_list

!$omp do num_threads(mt)
do tile = 1, num_tiles

thread = omp_get_thread_num() + 1

rho(1:ng, 1:ng, 1:ng, thread) = 0
call density_interpolation(nt,thread)

call Fourier_transforms(nt,thread)
call inverse_force_interpolation(nt,thread)
call pp_force(nt,thread)

enddo
!$omp end do

end subroutine compute_tile_forces

Fig. 2 Pseudocode showing the usage of nested OpenMP threading within each tile to maximize parallel efficiency on many-core

systems with limited memory. Here “mt” represents the number of master threads while “nt” is the number of nested threads

available to each master thread. The initialization of the “rho” array provides an example of the memory overhead associated with

each master thread. Nested OpenMP loops exist in each of the subroutine calls with data written only to those arrays initialized by

the master thread. All threaded regions employ dynamic scheduling to minimize load imbalance. The calculation of the linked list

prior to looping over tiles accelerates particle lookup in the interpolation and PP stages.

force which again involves a loop over each cell in the

linked list. Each stage shown in Figure 2 uses dynamic

scheduling of OpenMP threads to minimize load imbal-

ance.

2.4 Data Compression

Our final consideration involves data compression. It is

generally important for any application to store snapshots

at various stages during runtime for both checkpointing

and data analysis. In cosmological simulations, the rele-

vant information usually involves the position and veloc-

ity of each particle. This amounts to 24 bytes per parti-

cle for a three-dimensional problem represented in single

precision. Simulations now reaching the trillion-particle

scale thus require tens of TB for a single particle snap-

shot. This is a formidable challenge from the standpoint

of both runtime I/O as well as data storage and handling.

We have devised a new method of data compression

relevant for cosmological simulations. The first stage is

to construct a linked list based on particle positions in the

global simulation volume. We use a cubic mesh contain-

ing n3
g = (np/2)3 cells for this purpose. In our case, this

step is already done prior to the force evaluations (see

Fig. 2) and thus requires no additional work. Particle in-

formation is written for each cell in the linked list in an

ordered fashion, as follows. First, we write the number

of particles in the given cell as an unsigned 1-byte in-

teger3. Next, for each particle in the cell, we write its

three components of position and velocity. Positions are

3 If the number of particles in the cell is equal to or larger than 255,

we first write 255 and then write the actual number as a 4-byte integer.

compressed by converting them to unsigned 1-byte in-

tegers that represent their digitized offset from the local

origin of that cell. Since particles are written in a cell-

ordered format this guarantees that positions are stored

with a precision of L/(256ng) = L/(128np). This trun-

cation is roughly six times finer than the force resolution

of the simulation specified by rsoft so that it should have

minimal impact on subsequent dynamics when used as a

restart. Velocities are more difficult to compress due to

their unstructured distribution within the simulation vol-

ume. We choose to compress velocities into 2-byte in-

tegers representing their index within a histogram con-

taining 216 equally spaced bins ranging from −vmax to

vmax. Here vmax is the maximum (absolute) particle ve-

locity across all ranks and is stored in the header of the

output file.

This process reduces the particle footprint from 24

bytes to roughly 9 bytes. In our method, each MPI task

writes its local volume to separate files in the cell-ordered

format described above. In addition, different particle

species (i.e., CDM, neutrinos) are written to separate files

so the species type of each particle does not need to be

stored. In this case, it is important to compute vmax for

each species separately since they may have vastly dif-

ferent characteristic velocities. For our purposes here, it

is sufficient to store only position and velocity informa-

tion. More sophisticated compression algorithms would

need to be devised for storing additional quantities (e.g.,

particle identification tags).

We have tested the error associated with a single

compression as well as the accumulation of error that

results from restarting multiple times from compressed

J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale 85–7

−0.04

−0.02

0.00

0.02

0.04

P
c
o
m
p

δ
/P

δ
−

1

Single

Cumulative

10−1 100 101

k [h/Mpc]

−0.04

−0.02

0.00

0.02

0.04

P
c
o
m
p

v
/P

v
−
1

−0.04

−0.02

0.00

0.02

0.04

P
c
o
m
p

δ
/P

δ
−

1

Single

Cumulative

10−1 100 101

k [h/Mpc]

−0.04

−0.02

0.00

0.02

0.04

P
c
o
m
p

v
/P

v
−
1

Fig. 3 Relative difference between density (top panels) and velocity (bottom panels) power spectra between an uncompressed

simulation (Pδ,v) and a simulation that restarted from a series of 10 compressed snapshots (P
comp

δ,v). Both simulations have iden-

tical initial conditions and contain 5763 CDM plus 11523 neutrino particles in a box of side length 100 h
−1 Mpc. The left plot

corresponds to CDM while the right plot corresponds to neutrinos. Solid black lines denote the relative difference in power at the

final output which includes the cumulative error from all 10 compressed restarts. For comparison, the dotted blue line shows the

relative difference in power that results from compressing the final output of the uncompressed simulation. The shaded grey regions

in the right panels highlight the scales for which fluctuations in the neutrino measurements are dominated by shot noise rather than

compression error.

data. For this purpose, we performed two simulations

with identical initial conditions pertaining to a cosmolog-

ical setup with 5763 CDM and 11523 neutrino particles

in a box of side length 100 h−1 Mpc. The first simulation

ran to completion without any data compression. The

second simulation repeatedly wrote and restarted from

compressed data in order to gauge the total accumula-

tion of error at the final output. In this case, we tested 10

compressed restarts occurring at redshifts

z = {5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5}.

Figure 3 compares density and velocity power spec-

tra between the two simulations for the final output at

redshift z = 0. The left panels correspond to CDM and

show sub-percent agreement in the density power spec-

tra for the entire range in k which extends to half the

Nyquist frequency, kNyq/2 = 18 h/Mpc, of the 11523

mesh used to sample power. The CDM velocity power

is also sub-percent up to about kNyq/3 with 2% fluctu-

ations on the smallest scales. For comparison, the dot-

ted blue line shows the relative difference in power that

results from compressing the final snapshot of the un-

compressed simulation. Interestingly, the solid black and

dotted blue lines are in good agreement suggesting that

the majority of the error is associated with a single com-

pression, rather than accumulation of error from repeated

restarts.

Neutrino power spectra are shown in the right pan-

els of Figure 3. The agreement on the largest scales is

similar to the CDM case, but large deviations clearly

dominate on small scales. However, these deviations are

not related to the compression itself, but are rather at-

tributed to neutrino shot noise. The dashed grey regions

highlight the scales for which k > knoise where knoise

is the scale at which the Poisson power, Pnoise = 1/n̄,

overtakes the cosmological density power, Pδ . Here n̄

is the mean number density of neutrinos. Density and

velocity power spectra are intrinsically noisy on scales

smaller than knoise meaning that deviations seen in the

compressed data are not particularly meaningful. Note

that CDM does not run into this issue since the CDM

density power is larger than Pnoise on all scales resolved

by the simulation. As discussed before, the high level of

neutrino shot noise is precisely what makes these simu-

lations expensive.

In summary, we find sub-percent agreement in den-

sity power spectra for scales k . knoise. Velocity power

exhibits a similar level of agreement, but only up to

scales k . kNyq/3, with percent-level deviations emerg-

85–8 J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale

ing on smaller scales. The algorithm presented here is

well suited for both CDM and neutrinos though other

factors such as shot noise must be combated in the lat-

ter case. The agreement between the single-compression

case and the test case containing 10 compressed restarts

indicates that compression has little effect on subsequent

measurements of statistical quantities such as density and

velocity power spectra. While individual particle trajec-

tories are likely to be more discrepant, cosmological ob-

servations are statistical in nature and thus afford rela-

tively relaxed constraints on compression. This motivates

the question of how much precision is required for stor-

ing positions and velocities within simulation memory.

We note that a memory-light version of CUBEP3M has

been developed (Yu & Pen 2017, in prep.) that can use

adjustable precision (8- or 16-bit) for position and veloc-

ity, and will address the usage of reduced precision in

cosmological applications.

3 RESULTS

3.1 Weak Scaling

We begin this section with an investigation of the scal-

ing performance of our cosmological neutrino simula-

tions on Tianhe-2. We compare our scaling analysis to

a single-node simulation that coevolves 2883 CDM par-

ticles and 5763 neutrino particles in a periodic box of

side length 50 h−1 Mpc. We assign a single MPI task to

this node with 24 OpenMP threads implemented to uti-

lize each of the 24 CPU cores available on the node. Four

of these threads are assigned as master threads that cycle

over tiles (see Fig. 2), with each master thread spawning

six nested threads to handle the inner force computations

local to the tile. The MPI domain is divided into 63 tiles

with each assigned a mesh containing (192 + 2nbuf)
3

cells for computing the short-range PM force and PP

force. Here nbuf = 24 is the size of the buffer region

used to ensure correct forces near the boundary of the

tile. The long-range PM force is computed on the global

2883 mesh.

CUBEP3M is designed for weak scaling: if we hold

the workload per process fixed, the wall-clock time re-

quired per time step should be roughly the same when

we increase the number of processors in proportion to

the problem size.

Figure 4 shows the scaling efficiency as we weakly

scale the single-node job described above. The weak

scaling efficiency is defined to be t̄0/t̄step where t̄step
is the average wall-clock time of each time step and t̄0 is

the value of t̄step for the single-node case.

Figure 4 shows results for scaled versions of the

single-node case on n3
mpi = 23, 43, 83 and 243 nodes

of Tianhe-2 (recall that CUBEP3M constrains the number

of MPI tasks to be a perfect cube). Processor workload

is held fixed by increasing the total particle count and

simulation volume in proportion to n3
mpi. In this way, the

spatial resolution is constant and each simulation probes

the same degree of non-linear physics.

The code portrays a high degree of weak scaling ef-

ficiency all the way up to 243 nodes where t̄0/t̄step =

72%. Each scaling trial contains the first 400 time steps

from the start of neutrino initialization at z = 5 (see

below). Hence, each run contains a fair amount of load

imbalance in the CDM component as these particles

have already evolved into the relatively clustered regime.

Neutrinos, on the other hand, are dispersed roughly

equally throughout the volume and remain this way for

the duration of the simulation due to their thermal mo-

tion. This latter fact tends to promote a relatively bal-

anced workload across ranks. The high degree of scal-

ing efficiency seen here is an encouraging result for the

prospect of cosmological neutrino simulations.

3.2 TianNu Simulation

The rightmost point in Figure 4 corresponds to our pro-

duction simulation, TianNu, containing 69123 CDM par-

ticles and 13 8243 neutrino particles in a periodic box of

side length 1200 h−1 Mpc. TianNu was run on 13 824

compute nodes with an equal number of MPI ranks and

24 OpenMP threads per rank. This work is primarily fo-

cused on the computational aspects of preparing our code

and running at scale on Tianhe-2. However, since large-

scale neutrino simulations have emerged only relatively

recently in the field, we will provide here some further

background information in regards to our neutrino imple-

mentation. We point the interested reader to Inman et al.

(2015) for more details about our initialization strategies

and for a validation of our methods.

The most important difference in our strategy com-

pared to pure CDM setups is the fact that neutrinos are

initialized at a later time than CDM. This is done entirely

from a practical standpoint and is sourced by safeguards

in the code that limit the maximum distance a particle can

travel in a single time step. At the time of CDM initial-

ization, neutrinos in the mass range of interest are highly

relativistic, meaning they move much faster than CDM

and their inclusion would slow down the simulation by

an enormous amount. Our solution is to remove neutri-

nos in the early stages of the simulation while including

J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale 85–9

Fig. 4 Weak scaling efficiency of our cosmological neutrino simulations on Tianhe-2. In these trials, each node initially contains

2883 CDM particles and 5763 neutrino particles in a periodic box of side length 50h
−1 Mpc. CDM is first evolved in isolation

from z = 100 to z = 5 with neutrinos added next. In each trial, we record the mean time step, t̄step, of the first 400 steps after

neutrinos are added and compare the results to the single-node case. We find a weak scaling efficiency of 72% on 13 824 nodes

(86% of the machine), corresponding to our production run, TianNu.

their contribution to the background expansion as a rela-

tivistic species.

In the case of TianNu, CDM particles were initial-

ized at z = 100 and evolved in isolation to z = 5 for a

total of 549 time steps. Neutrinos were then added into

the mixture4 and the two components evolved together

until z = 0 for a total of 1918 time steps5. The choice of

the neutrino initialization redshift is justified by the fact

that, on the scales of interest, neutrinos are still within the

linear regime of structure formation at z = 5, so their ini-

tial displacements and velocities are properly computed

at that time. The majority of the simulation was spent in

the co-evolution stages (z ≤ 5), accounting for 87% of

the total wall-clock time. TianNu consumed an effective

runtime of 52 hours though the actual amount of human

time that elapsed from start to finish was much longer,

due to various obstacles addressed in the next subsection.

One important point worth noting is that unphysical

particle coupling can occur in multi-species simulations

when unlike particle pairs are placed initially close to-

gether (e.g., Yoshida et al. 2003; Angulo et al. 2013).

This could have a potential impact on our simulation

since some neutrinos may by chance be placed initially

4 TianNu simulates neutrinos of mass mν = 0.05 eV, which at

z = 5 have a mean speed of 〈v〉 = 0.06c (c is the speed of light), and

thus are still modestly relativistic but now computationally tractable to

include in the simulation.
5 See http://cita.utoronto.ca/∼haoran/thnu/movie.html for an ani-

mation depicting the evolution in the two components followed by a

flythrough of the simulation volume.

close to CDM particles at z = 5; however, we expect this

to be rare, given that CDM has evolved away from its ini-

tial lattice configuration at z = 5. In addition, the large

initial velocities of neutrinos should provide thermal sup-

port that protects them against artificial coupling. In any

case, our targeted science is focused on moderately large

scales which should remain robust to any such issues. To

date, the analysis of TianNu resulted in two companion

papers (Yu et al. 2016; Inman et al. 2016) that present

results on non-linear cosmological neutrino physics.

3.3 Computational Challenges

One of the difficulties associated with performing

extreme-scale simulations is the unanticipated technical

setbacks that inevitably occur when a large fraction of the

machine is used coherently at once. Some problems are

relatively easy to overcome with software changes while

others involve external factors that require more careful

consideration. We present here the main technical chal-

lenges that we encountered as we scaled our simulation

to use 86% of Tianhe-2. These problems are not specific

to the cosmological problem at hand and are thus relevant

to the general field of scientific computing.

Our first setback involved an apparent bug in the MPI

library. We discovered this bug during an MPI Alltoall

call used to transpose data in the long-range PM force

calculation. The bug was discovered early in our scaling

tests and seemed to be related to a single precision in-

85–10 J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale

teger overflow within the MPI library. In our particular

case, we were attempting to send and receive n elements

of type MPI Real where n > 229 − 1. This resulted in a

segmentation fault on Tianhe-2 as well as various other

machines we tested using different MPI implementations

(i.e., Intel MPI, Open MPI and MVAPICH). We deduced

that this error was caused by an internal calculation of the

number of bytes being sent/received represented as a sin-

gle precision integer. This was checked by changing the

data type to MPI Double which failed for n > 228 − 1.

We were unable to remedy the problem by compiling in

double precision and found this bug to be a generic fea-

ture of all MPI routines, not just MPI Alltoall. Presently,

the bug seems to be fixed, at least with Intel MPI v4,

which we have explicitly checked at the time of writing.

At the time, our workaround was to manually replace

the MPI Alltoall call with pairwise send/receive com-

munications using MPI Send and MPI Recv. The mes-

sage buffers were broken into pieces such that no in-

dividual piece exceeded 231 − 1 bytes. Initially, we at-

tempted to use multiple non-blocking communications

with MPI Isend and MPI Irecv, but found this created

too much network strain, leading to frequent system

crashes when running TianNu. Blocking pairwise com-

munication resulted in much more stable data transmis-

sion, especially when using a large number of MPI ranks.

For this reason, we suspect our workaround is still better

suited for extreme-scale applications, despite the fact that

the initial bug prompting us to abandon MPI Alltoall has

since been fixed. This, of course, depends on how inter-

nal communications are handled in MPI Alltoall, though

we now prefer the option of being able to explicitly make

this choice in our code. In any event, we urge computa-

tional scientists to think carefully about communications

when scaling their code, as this was one of our main

sources of grief.

The next setback we encountered involved runtime

I/O. While we were only mainly interested in storing

particle data at the final output for analysis purposes, it

was important to checkpoint frequently during runtime

to ensure that progress was maintained in the event of

system crashes. Using our compressed data format, each

TianNu checkpoint was roughly 25 TB in total size, with

this divided into several files for each MPI task. We expe-

rienced a variety of issues while attempting to checkpoint

in TianNu. The most common was a system crash when

one or more nodes failed during write, resulting in an in-

complete checkpoint. In more insidious cases, the check-

point was seemingly successful and the code evolved

forward, but further inspection showed some files to be

incompletely written. These were particularly difficult

problems to debug since they required a large problem

size to occur frequently.

Our attempt to circumvent these issues involved

writing checkpoints to shared memory. This was

achieved by writing to the local dev/shm temporary

filesystem on each node. After all nodes completed this

write, we used 100 background processes to sequentially

log into each of the 13 824 compute nodes and offload

their checkpoint to the main filesystem while the simula-

tion proceeded forward. This process is somewhat analo-

gous to the operation of a burst buffer. Indeed, we found

that using effectively only 100 processes to checkpoint

put considerably less pressure on the filesystem, result-

ing in much more reliable I/O. This also significantly

reduced the amount of time spent checkpointing since

writing to shared memory is a relatively quick opera-

tion. Obviously, this is not a robust solution in all cases

since it requires having sufficient memory to store a full

checkpoint, and that the time between subsequent check-

points is longer than the time required to offload to the

filesystem. In the end, we still encountered problems

with this implementation, notably having trouble log-

ging into some of the compute nodes at times. We are

still working to perfect our I/O implementation for future

runs.

The final computational challenge we faced involved

environmental factors. During our time on Tianhe-2, we

had teams in both China and Canada, which allowed for

nearly continuous monitoring of TianNu. Interestingly,

the team in Canada had systematically more success in

evolving the simulation forward. The reason was an in-

creased level of system instability during Chinese day-

time hours which lead to frequent system crashes that

hindered progress. Tianhe-2 technical staff speculated

that this was due to increased ambient temperatures and

more strain on the electric grid during Chinese daytime

hours. Accordingly, system crashes were somewhat alle-

viated during our second week on Tianhe-2 when rainfall

and cooler weather in Guangzhou seemed to be corre-

lated with improved system stability. Regardless of the

cause, external factors such as system instabilities are

difficult to prepare for and have no clear solution. In our

case, the only workaround was patience and persistence.

4 CONCLUSIONS

Pushing the cosmological neutrino problem to extreme

scales is a nontrivial process. A number of modifi-

cations to the cosmological code CUBEP3M were re-

quired to maximize performance on Tianhe-2. These in-

J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale 85–11

cluded adopting a two-dimensional pencil decomposi-

tion for parallel MPI Fourier transforms and implement-

ing nested OpenMP parallelism to maximize multicore

usage while maintaining memory flexibility. With these

modifications, we achieved 72% weak scaling efficiency

on 13 824 nodes (331 776 CPU cores) of Tianhe-2. Our

production simulation, named TianNu, consumed an ef-

fective runtime of 52 hours on 86% of the machine and

pushed the cosmological neutrino problem forward by

two orders of magnitude in scale.

Data compression has become an increasingly im-

portant factor from the standpoint of runtime perfor-

mance as well as data storage and portability. We have

devised a novel method of data compression relevant

for cosmological particle simulations. Our scheme pro-

vides a compression factor of 4× and 2× in memory

over single-precision positions and velocities, respec-

tively, while maintaining sub-percent accuracy in density

and velocity power spectra for the vast majority of scales

resolved in the simulation. This is true when compress-

ing a single snapshot and also when evolving particles

forward in time from multiple previously compressed

restarts.

Unanticipated challenges tend to emerge when scal-

ing code to new limits. In our case, we encountered both

software and hardware problems. Two of these fall into

the group of usual suspects: communication and I/O. An

initial bug in the MPI library discovered early in our scal-

ing tests prompted us to break apart MPI Alltoall com-

munications into buffers no larger than 231−1 bytes. This

turned out to be beneficial during the TianNu runtime

since we could explicitly enforce blocking and pairwise

communication; other communication strategies were

found to be unstable. Runtime I/O also proved finicky on

extreme scales and required a makeshift burst-buffer ap-

proach where checkpoints were written to RAM and of-

floaded to disk in the background. We are still working on

a more robust solution for future applications. Finally, we

experienced a high degree of time variability in machine

performance due to local external factors. This is a con-

siderably intractable problem and cases like this should

be kept in mind when preparing for extreme-scale simu-

lations.

The main challenge facing cosmological neutrino

simulations can be summed up by two competing ef-

fects. On the one hand, large cosmological volumes are

needed to acquire sufficient statistics to detect subtle neu-

trino effects on LSS. On the other hand, the thermal mo-

tion of neutrinos demands high particle number density

to suppress their shot noise on small scales. These fac-

tors can only be reconciled by running at extreme scale.

This work attempted to highlight the challenges associ-

ated with exploiting modern scientific computing to elu-

cidate our understanding of neutrinos.

Acknowledgements We acknowledge the Special

Program for Applied Research on Super Computation

of the NSFC-Guangdong Joint Fund (the second phase).

We thank Prof. Yifang Wang of IHEP for his great initial

support of our project, and Prof. Xue-Feng Yuan for

his kind and invaluable assistance during our time on

Tianhe-2. JDE, DI and ULP gratefully acknowledge

the support of the National Science and Engineering

Research Council of Canada. Work at Argonne National

Laboratory was supported under the U.S. Department

of Energy contract DE-AC02-06CH11357. HRY ac-

knowledges General Financial Grant No. 2015M570884

and Special Financial Grant No. 2016T90009 from

the China Postdoctoral Science Foundation. JHD ac-

knowledges support from the European Commission

under a Marie-Skłodwoska-Curie European Fellowship

(EU project 656869). XC acknowledges support from

MoST 863 program 2012AA121701, NSFC grant

11373030 and CAS grant QYZDJ-SSW-SLH017.

TianNu was performed on the Tianhe-2 supercomputer

at the National Super Computing Center in Guangzhou,

at Sun Yat-Sen University. This work was supported

by the National Natural Science Foundation of China

(Grant Nos. 11573006, 11528306, 10473002 and

11135009), the National Basic Research Program of

China (973 program) under grant No. 2012CB821804

and the Fundamental Research Funds for the Central

Universities. The simulations used in the error analysis

of the data compression algorithm were performed on

the GPC supercomputer at the SciNet HPC Consortium.

SciNet is funded by: the Canada Foundation for

Innovation under the auspices of Compute Canada; the

Government of Ontario; the Ontario Research Fund -

Research Excellence; and the University of Toronto.

References

Aarseth, S. J., Turner, E. L., & Gott, III, J. R. 1979, ApJ, 228,

664

Agostini, M., Allardt, M., Andreotti, E., et al. 2013, Physical

Review Letters, 111, 122503

Ahmad, Q. R., Allen, R. C., Andersen, T. C., et al. 2002,

Physical Review Letters, 89, 011301

Amendola, L., Appleby, S., Bacon, D., et al. 2013, Living

Reviews in Relativity, 16, 6 (arXiv:1206.1225)

Angulo, R. E., Hahn, O., & Abel, T. 2013, MNRAS, 434, 1756

85–12 J. D. Emberson et al.: Cosmological Neutrino Simulations at Extreme Scale

Bird, S., Viel, M., & Haehnelt, M. G. 2012, MNRAS, 420,

2551

Brandbyge, J., Hannestad, S., Haugbølle, T., & Thomsen, B.

2008, J. Cosmol. Astropart. Phys., 8, 020

Capozzi, F., Lisi, E., Marrone, A., Montanino, D., & Palazzo,

A. 2016, Nuclear Physics B, 908, 218

Castorina, E., Carbone, C., Bel, J., Sefusatti, E., & Dolag, K.

2015, J. Cosmol. Astropart. Phys., 7, 043

Costanzi Alunno Cerbolini, M., Sartoris, B., Xia, J.-Q., et al.

2013, J. Cosmol. Astropart. Phys., 6, 020

Frigo, M., & Johnson, S. G. 2005, Proceedings of the IEEE,

93, 216

Fukuda, Y., Hayakawa, T., Ichihara, E., et al. 1998, Physical

Review Letters, 81, 1562

Habib, S., Pope, A., Finkel, H., et al. 2016, New Astron., 42, 49

Harnois-Déraps, J., Pen, U.-L., Iliev, I. T., et al. 2013, MNRAS,

436, 540

Inman, D., Emberson, J. D., Pen, U.-L., et al. 2015,

Phys. Rev. D, 92, 023502

Inman, D., Yu, H.-R., Zhu, H.-M., et al. 2016,

arXiv:1610.09354

KATRIN collaboration. 2001, hep-ex/0109033

Kraus, C., Bornschein, B., Bornschein, L., et al. 2005,

European Physical Journal C, 40, 447

Lesgourgues, J., & Pastor, S. 2006, Phys. Rep., 429, 307

LSST Dark Energy Science Collaboration. 2012,

arXiv:1211.0310

Mikheyev, S. P., & Smirnov, A. Y. 1985, Yadernaya Fizika, 42,

1441 (Sov. J. Nucl. Phys. 42, 913 (1986))

Miyoshi, K., & Kihara, T. 1975, PASJ, 27, 333

Peebles, P. J. E. 1970, AJ, 75, 13

Pekurovsky, D. 2012, SIAM Journal on Scientific Computing,

34, C192

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016,

A&A, 594, A13 (arXiv:1502.01589)

Pontecorvo, B. 1958, Soviet Journal of Experimental and

Theoretical Physics, 6, 429

Skillman, S. W., Warren, M. S., Turk, M. J., et al. 2014,

arXiv:1407.2600

The Exo-200 Collaboration, Albert, J. B., Auty, D. J., et al.

2014, Nature, 510, 229

Viel, M., Haehnelt, M. G., & Springel, V. 2010, J. Cosmol.

Astropart. Phys., 6, 015

Villaescusa-Navarro, F., Bird, S., Peña-Garay, C., & Viel, M.

2013, J. Cosmol. Astropart. Phys., 3, 019

White, S. D. M. 1976, MNRAS, 177, 717

Wolfenstein, L. 1978, Phys. Rev. D, 17, 2369

Yoshida, N., Sugiyama, N., & Hernquist, L. 2003, MNRAS,

344, 481

Yu, H.-R., Emberson, J. D., Inman, D., et al. 2016,

arXiv:1609.08968

Zhu, H.-M., Pen, U.-L., Chen, X., & Inman, D. 2016, Physical

Review Letters, 116, 141301 (arXiv:1412.1660)

Zhu, H.-M., Pen, U.-L., Chen, X., Inman, D., & Yu, Y. 2014,

Physical Review Letters, 113, 131301

