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Abstract Recently, a very strong correlation between the central surface density of stars and dynamical

mass in 135 disk galaxies has been obtained. It has been shown that this central-surface-densities relation

agrees very well with Modified Newtonian Dynamics (MOND). In this article, we show that if we

assume the baryons have an isothermal distribution and dark matter exists, then it is possible to derive

by means of the Jeans equation an analytic central-surface-densities relation connecting dark matter

and baryons that agrees with the observed relation. We find that the observed central-surface-densities

relation can also be accommodated in the context of dark matter provided the latter is described by an

isothermal profile. Therefore, the observed relation is consistent with not only MOND.

Key words: (cosmology:) dark matter

1 INTRODUCTION

Recent empirical fits indicate a very strong correlation

between the central surface density of stars Σ0
∗ and dy-

namical mass Σ0
D in 135 disk galaxies (Lelli et al. 2016).

The central-surface-densities relation can be described

by a double power law (Lelli et al. 2016)

Σ0
D = Σ0

[

1 +
Σ0

∗

Σcrit

]α−β [

Σ0
∗

Σcrit

]β

, (1)

where α, β, Σcrit and Σ0 are fitted parameters.

Generally speaking, high surface brightness galaxies give

Σ0
D/Σ

0
∗ ≈ 1 while low surface brightness galaxies sys-

tematically deviate from unity. The observed scatter is

small overall (∼ 0.2 dex) and largely driven by obser-

vational uncertainties (Lelli et al. 2016). This result is

surprising because there is no obvious reason why the

central surface density of stars strongly correlates with

the dynamical mass.

Recently, Milgrom (2016) applied Modified

Newtonian Dynamics (MOND) to derive this relation

analytically. By using quasilinear MOND (QUMOND),

we can obtain the expression in Milgrom (2016)

Σ0
D = ΣMS(Σ0

B/ΣM), (2)

where

S(y) =

∫ y

0

ν(y′)dy′,

ν(y′) is the interpolating function of the theory, Σ0
B is

the baryonic central density and ΣM ≈ 138M⊙ pc−2 is

a constant. Two different asymptotes give

Σ0
D = Σ0

B

for

Σ0
B ≫ ΣM

and

Σ0
D = (4ΣMΣ0

B)1/2

for

Σ0
B ≪ ΣM

respectively. Milgrom (2016) claims that if Σ0
B can fully

represent Σ0
∗, the relation in Equation (1) can be ex-

plained by this universal MOND relation.

It has been suggested that a wide range of observa-

tional data, including the rotation curves of galaxies and

the Tully-Fisher relation, are consistent with MOND’s

predictions but not for the cold dark matter (CDM) model

(Milgrom 1983; Sanders 1999; Sanders & McGaugh
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2002; McGaugh 2012). However, recent data from grav-

itational lensing and hot gas in clusters challenge the

original idea of MOND and the relativistic version of

MOND theory (the tensor vector scalar (TeVeS) model)

without any dark matter. For example, Angus (2009);

Natarajan & Zhao (2008) show that the missing mass

in galaxy clusters cannot be explained by MOND unless

> 10 eV massive neutrinos exist. Also, based on gravita-

tional lensing data, Ferreras et al. (2012) show that CDM

would be required even within the MOND/TeVeS frame-

work. Therefore, generally speaking, MOND is valid

only at small scales (such as dwarf and small galaxies).

However, MOND is suggested to be a universal theory

that can replace the CDM model on all scales. Therefore,

it should also work well in galaxy clusters, but not only

on the galactic scale. Otherwise, it is reasonable to sus-

pect that MOND is not a universal theory. Previous stud-

ies claim that CDM works well on a large scale but not

on a small scale (de Blok 2010; Boylan-Kolchin et al.

2011; Burkert 2015; Bull et al. 2016; Del Popolo &

Le Delliou 2017). This provides room to invoke other

new physics such as MOND to study the missing mass

on small scales. Therefore, if CDM also works well on

small scales, then we need not invoke new physics to ad-

dress the missing mass problem. Previously, Kaplinghat

& Turner (2002) suggested that the MOND theory may

just be a misleading coincidence. Also, Dunkel (2004)

and Chan (2013a) show that the generalized MOND

equation can be derived from Newtonian dynamics for

some specified dark matter contribution. In this article,

we show that the observed central-surface-densities rela-

tion can also be derived by using the dark matter frame-

work. We conclude that the central-surface-densities re-

lation also supports the dark matter paradigm.

2 THE CENTRAL-SURFACE-DENSITIES

RELATION

Before a galaxy evolves into a disk galaxy, the bary-

onic component is self-interacting. Since collision be-

tween baryonic matter is vigorous, the baryonic distribu-

tion would be close to an isothermal distribution (Evans

et al. 2009). The effect of gravity by the baryonic com-

ponent can be analyzed by using the steady-state Jeans

equation (Evans et al. 2009)

d(ρBσ
2)

dr
= −ρB

dψ

dr
, (3)

where ρB is the baryonic mass density, σ is the veloc-

ity dispersion of baryonic matter and ψ is the total grav-

itational potential (including baryonic matter and dark

matter). Note that the Jeans equation used here assumes

isotropy and spherical symmetry. Nevertheless, it can

also be applied in spiral galaxies if we only focus on the

cylindrical radial direction in the galactic plane. The ve-

locity dispersion would be directly proportional to the

rotational velocity (Croton 2009). Since the isothermal

distribution of baryons corresponds to the constant ve-

locity dispersion σ, by Equation (3), we get (Chan 2013a;

Evans et al. 2009)

σ2 dρB

dψ
+ ρB = 0. (4)

By substituting the solution of the above equation

ψ = ψ0 − σ2 ln ρB

into the Poisson equation, the total mass density profile is

ρ = −
σ2

4πG

[

1

r2
d

dr

(

r2
d ln ρB

dr

)]

. (5)

Let

γ = −d ln ρB/d ln r,

and we find

γ

r2
+

1

r

dγ

dr
=

4πGρ

σ2
. (6)

Since the isothermal baryonic component yields γ = 2,

we derive (Chan 2013a)

ρ =
σ2

2πGr2
. (7)

This shows that if the baryonic component follows

the isothermal distribution, the resulting total matter

density also follows the isothermal distribution, which

exhibits excellent agreement with observational data

d ln ρ/d ln r ≈ 2 (Koopmans et al. 2009; Velander et al.

2011; Grillo 2012). Note that we did not assume any

isothermality of dark matter in the first place. We only as-

sume baryons follow an isothermal distribution. Finally,

based on the above derivation, the total potential that

can yield the isothermal distribution of baryons is also

isothermal. However, astrophysicists usually assume that

dark matter follows the Navarro-Frenk-White (NFW)

profile (Navarro et al. 1997), but not an isothermal pro-

file. Even for some CDM simulations with baryons, no

isothermal profile would be generated. Most of the re-

sultant profiles are still an NFW profile, but with a shal-

lower slope near the center (Schaller et al. 2015; Chan

et al. 2015). This is because all of the simulations do not

assume an isothermal distribution of baryons. Feedback
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can substantially change the stellar and dark matter dy-

namics and shape, causing the complete system to depart

from a simple isothermal profile. This may be a reason

why most CDM simulations do not generate an isother-

mal spherical distribution. In other words, if the collision

between the baryonic matter is vigorous enough that the

baryonic distribution can keep the isothermal distribu-

tion, the dark matter density and the total density also

follow an isothermal profile. This is a result of solving

the Jeans equation.

In addition, the above result can also give a simple

explanation to the ‘Halo-disk conspiracy problem’ (why

the transition from disk to halo domination is so smooth)

(Battaner & Florido 2000; Remus et al. 2013). Since the

total mass density consists of two components, the bary-

onic matter density ρB and dark matter density ρD, we

can write

ρ = ρB + ρDM =
σ2

B

2πGr2
+

σ2
DM

2πGr2
. (8)

Here, we have used two parameters to represent the ve-

locity dispersion of baryonic matter (i.e. σ2 = σ2
B +

σ2
DM). For a baryon dominated galaxy, we have σ ≈ σB.

For a dark matter dominated galaxy, we have σ ≈ σDM.

Note that σDM is not the velocity dispersion of dark mat-

ter particles. The value of σDM is the limit for the veloc-

ity dispersion of baryonic matter in a dark matter domi-

nated galaxy. On the other hand, since the observational

data in galaxies strongly support the existence of a core

in the dark matter density profile (de Blok 2010), we

may slightly modify the dark matter density profile with-

out destroying the isothermal distribution at large r by a

cored-isothermal profile (Chan 2013a)

ρDM =
σ2

DM

2πG(r2 + r2c )

=
ρc

1 + (r/rc)2
, (9)

where ρc and rc are the central density and core ra-

dius of the dark matter profile respectively. The origin

of a dark matter core (size ∼ kpc) may be due to the

self-interaction between dark matter particles (Spergel &

Steinhardt 2000; Vogelsberger et al. 2012; Chan 2013b)

or some baryonic feedback such as supernovae (de Blok

2010; Governato et al. 2012). In fact, the existence of a

dark matter core is still a controversial issue. Some stud-

ies claim that cores do not exist in galaxies (Fattahi et al.

2016). However, most observational data seem to favor

the existence of dark matter cores (for a review, please

see de Blok 2010; Bull et al. 2016; Del Popolo & Le

Delliou 2017). Therefore, our model basically follows

this assumption. Since the Jeans equation only describes

the distribution of matter due to gravitational interaction,

the effect of core formation due to other mechanisms at

small r is not included. The small modification of the

profile here is necessary to match the assumption of the

existence of dark matter cores.

Recent studies suggest that the product of the central

density and core radius of dark matter is almost a con-

stant for many galaxies (ρcrc ≡ Σ1 ∼ 100M⊙ pc−2)

(Gentile et al. 2009; Burkert 2015). Therefore, we can

write

ρcrc = σ2
DM/(2πGrc) = Σ1.

By integrating the dark matter density in Equation (9)

for r ≤ rc, the enclosed ‘dark matter core mass’ is Mc =

0.429σ2
DMrc/G. By using this relation, we get

σ4
DM = Σ2G

2Mc, (10)

where

Σ2 = 2πΣ1/0.429 ∼ 1500M⊙ pc−2.

Let Mc = k1MDM and MB = k2MDM, where MDM

is the total dark matter mass and MB is the total bary-

onic mass. Here, we assume that the values of k1 ∼ 0.1

(Rocha et al. 2013) and k2 ∼ 0.2 (Kassin et al. 2006)

are almost constant for all galaxies. The value of k1 can

be approximately calculated by using Equation (9) and

the virial radius of a typical galaxy. The value of k2 is

close to the cosmological ratio of baryon to dark matter.

Therefore, we have

σ4
DM = Σ2G

2

(

k1

k2

)

MB = Σ3G
2MB, (11)

where

Σ3 = Σ2(k1/k2) ∼ 730M⊙ pc−2.

The above equation is a traditional form of the Tully-

Fisher relation (MB ∝ σ4) (McGaugh 2005). Therefore,

we predict that MB ∝ σ4 if the galaxy is dark matter

dominated since σ ≈ σDM. If the galaxy is baryonic mat-

ter dominated, σ ≈ σB ∝M2
B.

By combining Equation (8) and Equation (11), we

have

ρ = ρB +

√
Σ3G2MB

2πG(r2 + r2c )
. (12)
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Using the definition of the dynamical central surface den-

sity (Milgrom 2016), we get

Σ0
D = 2

∫ ∞

0

ρ0(z)dz

= Σ0
B + 2

∫ ∞

0

√
Σ3G2MB

2πG(z2 + z2
c )
dz, (13)

where ρ0(z) = ρ(R = 0, z) is the central total mass

density. Here, we work in cylindrical coordinates (R, z)

with the z-axis along the axisymmetry axis, and zc =

rc(R = 0). By integrating the above equation, we get

Σ0
D = Σ0

B +
√

Σ3G2MB/2Gzc. Let zc = az0, where z0
is the characteristic disk length such that the Newtonian

gravitational acceleration due to baryons just outside the

disk is gB = GMB/z
2
0 . Finally, we get

Σ0
D = Σ0

B +
1

a

√

Σ3π

2

√

Σ0
B
, (14)

where Σ0
B = (2πG)−1gB in Milgrom (2016). Based

on the derivation in QUMOND, ΣM = 138M⊙ pc−2

for a0 = 1.2 × 10−8 cm s−2 (Milgrom 2016). Taking

Σ3 = 730M⊙ pc−2 = 5.29ΣM, we can write the above

equation in terms of ΣM

Σ0
D = Σ0

B +

(

1.45

a

)

√

4Σ0
B
ΣM. (15)

Since a ∼ 1 (zc ∼ z0 ∼ 1 kpc), we have Σ0
D ≈

Σ0
B +

√

4Σ0
B
ΣM. For Σ0

B ≫ ΣM (baryonic matter dom-

inates the galaxy), we have Σ0
D ≈ Σ0

B. The opposite

asymptote (Σ0
B ≪ ΣM) gives Σ0

D ≈ (4ΣMΣ0
B)1/2.

These asymptotic results are identical to the results in

(Milgrom 2016). The only difference is the functional

form. Milgrom’s result gives Σ0
D = ΣMS(Σ0

B/ΣM),

where S(y) =
∫ y

0
ν(y′)dy′ (Milgrom 2016).

In Figure 1, we fit our result with the observed

data obtained from Lelli et al. (2016) and compare with

Milgrom’s result. Here, we assume that Σ0
∗ is the proxy

for Σ0
B (Σ0

∗ = Σ0
B) (Milgrom 2016). Both theories can

give the same agreement with observational data (our

model with a = 2.9 gives a better fit). Therefore, we

conclude that the observational data also support the dark

matter paradigm if dark matter has an isothermal distri-

bution, but not only using MOND theory.

3 DISCUSSION

In this article, we derive the central-surface-densities re-

lation by using the steady-state Jeans equation in the dark

matter framework. If the baryonic density distribution is

isothermal, the resultant total mass density also follows

an isothermal distribution. This result agrees with the ob-

servational data and explains why rotational curves are

flat for many galaxies (Sofue & Rubin 2001). We also

relate the dark matter density profile with the baryonic

matter content and show that Σ0
D ≈ Σ0

B +
√

4Σ0
B
ΣM.

The asymptotic relations for both regimes are identical

to Milgrom’s result. Milgrom (2016) claims that there is

no reason why Σ0
D is so well correlated with local Σ0

B

in the dark matter paradigm. However, as shown in our

derivation, the existence of a dark matter core may give

a reason why these quantities are correlated. Therefore,

the claim in Milgrom (2016) is wrong. Generally speak-

ing, both MOND and dark matter paradigms can give

the same agreement with the observed central-surface-

densities relation. In fact, some recent studies also show

a similar conclusion by using CDM models (Di Cintio &

Lelli 2016; Navarro et al. 2016).

In the derivation, there are a few constants involved:

Σ1, k1, k2 and a. Although these values are not univer-

sal constants for all galaxies, the ranges of these val-

ues are quite narrow (Gentile et al. 2009; Rocha et al.

2013; Kassin et al. 2006). For example, the value of

Σ1 = 141+82
−52M⊙ pc−2 is nearly a constant for a lumi-

nosity range of 14 magnitudes and the whole Hubble se-

quence (Gentile et al. 2009). The variations in these con-

stants among different galaxies would contribute to the

scatter in the resulting relation.

However, as mentioned in the introduction, MOND

works very poorly in galaxy clusters. Most predictions

for galaxy clusters in MOND theory do not match the

observational data, including the lensing results (Ferreras

et al. 2012). Although the failure of MOND on large

scale is not related to our discussion here, MOND, sug-

gested to be a universal theory, should work on all scales.

Therefore, it is reasonable to suspect that MOND work-

ing well in galaxies is just a coincidence. If the ob-

servational data in galaxies support both paradigms but

MOND does not work for galaxy clusters, it is reasonable

to deny MOND is an effective theory to explain the miss-

ing mass problem. Moreover, Chan (2013a) shows that

MOND is equivalent to a particular form of dark matter

density profile (isothermal distribution) in the dark mat-

ter model. It also explains why MOND works in galaxies

but not in galaxy clusters (Chan 2013a). Although many

studies have shown that the CDM model predictions for

small scale structures (e.g. in dwarf galaxies) do not

agree with observations (de Blok 2010), recent studies

have started to realize that baryonic feedback might be

an important mechanism to reconcile the discrepancies
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Fig. 1 The resulting central-surface-densities relation (log Σ0

D vs. log Σ0

∗) and the observed data with error bars (Lelli et al. 2016).

Here, we assume that Σ0

∗ is the proxy for Σ0

B (Σ0

∗ = Σ0

B) (Milgrom 2016). Red solid line: the relation in Eq. (15) with a = 1.

Green solid line: the relation in Eq. (15) with a = 2.9. Blue solid line: Milgrom’s relation (Milgrom 2016). The units of the central

surface densities are in M⊙ pc−2.

between theory and observations (Macciò et al. 2012;

Peñarrubia et al. 2012; Pontzen & Governato 2014).

Our result basically supports this argument. Provided the

dark matter and baryon distributions are described by an

isothermal sphere profile, the dark matter can also ac-

commodate the missing mass problem. It is therefore not

essential to invoke new physics (MOND) to address the

current missing mass problem.
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