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Abstract The mass-radius relations for white dwarfs are investigated by solving the Newtonian as

well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the elec-

tron gas to be non-interacting. We find that the Newtonian limiting mass of 1.4562 M⊙ is modified

to 1.4166 M⊙ in the general relativistic case for 4
2He (and 12

6 C) white dwarfs. Using the same general

relativistic treatment, the critical mass for 56
26Fe white dwarfs is obtained as 1.2230 M⊙. In addition, de-

parture from the ideal degenerate equation of state (EoS) is accounted for by considering Salpeter’s EoS

along with the TOV equation, yielding slightly lower values for the critical masses, namely 1.4081 M⊙

for 4
2He, 1.3916 M⊙ for 12

6 C and 1.1565 M⊙ for 56
26Fe white dwarfs. We also compare the critical den-

sities for gravitational instability with the neutronization threshold densities to find that 4
2He and 12

6 C

white dwarfs are stable against neutronization with the critical values of 1.4081 M⊙ and 1.3916 M⊙,

respectively. However, the critical masses for 16
8 O, 20

10Ne, 24
12Mg, 28

14Si, 32
16S and 56

26Fe white dwarfs are

lower due to neutronization. Corresponding to their central densities for neutronization thresholds, we

obtain their maximum stable masses due to neutronization by solving the TOV equation coupled with

the Salpeter EoS.

Key words: equation of state — hydrodynamics — instabilities — relativistic processes — stars: white

dwarfs

1 INTRODUCTION

Following the formulation of Fermi-Dirac statistics,

Fowler (1926) treated the electron gas in Sirius B as

a degenerate non-relativistic gas and found no limit-

ing mass for the star. However, Anderson (1929) and

Stoner (1929) considered the electron gas as relativistic

and found the existence of a limiting density, although

their treatments were heuristic. Chandrasekhar (1931b,a,

1935, 1939) obtained the limiting mass of 0.91 M⊙ ini-

tially by treating the degenerate electron gas as relativis-

tic, and subsequently he succeeded in formulating the

theory of white dwarfs to full generality. He employed

Newtonian gravity and an equation of state (EoS) valid

for the entire range of electron velocities (including rel-

ativistic velocities) of the degenerate Fermi gas to obtain

the equation of hydrostatic equilibrium. He thus obtained

equations in the form of the Lane-Emden equation with

index 3 and solved the differential equations numerically

to obtain the limiting mass of 1.44 M⊙. Chandrasekhar

& Tooper (1964) also considered the problem in the gen-

eral relativistic framework to study the instability of a

radially pulsating white dwarf to yield the critical mass

of 1.4176 M⊙. Anand (1965) studied the effect of ro-

tation on a white dwarf and showed that the value of

limiting mass increases to 1.704 M⊙. Qualitative argu-

ments given by Landau & Lifshitz (1980) suggest that the

inter-particle Coulomb interaction is negligible in a white

dwarf. Using the method of Bohm & Pines (1951), Singh

(1957) demonstrated that the correction to the electron

density due to electron-electron interaction is small and

can be treated as negligible. On the other hand, Salpeter

(1961) reconsidered the problem to account for Coulomb

effects, Thomas-Fermi correction, exchange energy and

correlation energy, and found that the EoS departs mea-

surably from the ideal degenerate case.
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In deriving the general relativistic equation of

equilibrium for compact stars, Tolman (1939) and

Oppenheimer & Volkoff (1939) showed how the

Newtonian equation of hydrostatic equilibrium is mod-

ified into what is known as the Tolman-Oppenheimer-

Volkoff (TOV) equation. They considered the energy-

momentum tensor for a perfect fluid in the Einstein’s

field equation and solved for the metric for the interior

of the star. This resulted in a set of three differential

equations in four unknown functions, which are incom-

plete unless provided with the EoS. While Tolman ob-

tained the interior solution for a few different analyti-

cally tractable cases, Oppenheimer and Volkoff numer-

ically solved those equations for massive neutron cores

by taking the full EoS and treating it as a non-interacting

Fermi (neutron) gas.

In this paper, we consider the hydrostatic equilib-

rium of white dwarfs and obtain the mass-radius re-

lationship by solving the TOV equation. It is found,

for large values of central densities, that the Newtonian

limit of 1.4562 M⊙ is decreased to 1.4166 M⊙ for 4
2He

(and 12
6 C) white dwarfs in the general relativistic treat-

ment, assuming the electron gas to be ideally degener-

ate. Furthermore, the critical mass for 56
26Fe white dwarfs

is found to be 1.2230 M⊙ in the same formulation. We

also consider the effect of Coulomb interaction and other

types of interactions by considering the Salpeter EoS in

the same general relativistic formulation to obtain the

critical masses of 1.4081 M⊙ for 4
2He, 1.3916 M⊙ for

12
6 C and 1.1565 M⊙ for 56

26Fe white dwarfs.

We have also obtained the critical densities for grav-

itational instability directly from the solution of the TOV

equation coupled with Salpeter EoS and compare them

with the neutronization thresholds. We find that 4
2He and

12
6 C white dwarfs are stable against neutronization with

the critical values of 1.4081 M⊙ and 1.3916 M⊙ respec-

tively, whereas for 16
8 O, 20

10Ne, 24
12Mg, 28

14Si, 32
16S and 56

26Fe

white dwarfs, the critical masses for stability are smaller

due to neutronization. For these white dwarfs, we have

also obtained the maximum stable masses due to neu-

tronization by solving the TOV equation coupled with

the Salpeter EoS corresponding to their central densities

for neutronization thresholds.

The rest of the paper is organized as follows. In

Section 2, we outline the derivation of the TOV equa-

tion for a perfect fluid in equilibrium in general relativ-

ity. The problem of white dwarfs is taken up by con-

sidering the EoS of cold degenerate electron gas. We

also include the case of Salpeter EoS to account for the

non-ideal nature of the electron gas. The non-linear cou-

pled differential equations so obtained are solved numer-

ically in Section 3, where the equations following from

Newtonian gravity are also solved for the purpose of

comparison. The mass-radius relationships obtained in

the two cases are also compared. In Section 4, the in-

stabilities due to gravitation and inverse beta decay are

examined. The critical masses for neutronization thresh-

olds are computed for a few relevant stars by solving the

TOV equation coupled with Salpeter EoS. The numerical

results are presented with a few relevant plots and tables.

2 GENERAL RELATIVISTIC HYDROSTATIC

EQUILIBRIUM

The interior of a spherically symmetric star is described

by

ds2 = eνdt2 − eλdr2 − r2dθ2 − r2 sin2 θ dφ2,

where ν and λ are functions of the radial distance r for

the static case. The matter inside the star is considered to

be a perfect fluid with energy-momentum tensor

Tαβ = (ε + p)uαuβ − pgαβ ,

where p is the pressure and ε = ρc2 is the mass-

energy density. Tolman (1939) and Oppenheimer &

Volkoff (1939) considered the corresponding Einstein’s

field equations in the interior part of the star and solved

them with the boundary condition of the Schwarzschild

solution in the exterior region. They obtained

eν(r) =

(

1 −
G

c2

2M

R

)

exp

[

−2

∫ p(r)

0

dp

p + ε(p)

]

,

e−λ = 1 −
G

c2

2m(r)

r

and
dp

dr
= −

ε(r) + p(r)

2

dν

dr
.

These solutions lead to the well-known TOV equation,

namely

dp(r)

dr
= −

G

c2

ε(r) + p(r)

r(r − 2G
c2 m(r))

[

m(r) +
4π

c2
p(r)r3

]

(1)

with
dm(r)

dr
=

4π

c2
ε(r)r2. (2)

Equations (1) and (2), together with the EoS of mat-

ter ε = ε(p), determine the hydrostatic equilibrium for

an isotropic general relativistic non-rotating fluid sphere.



A. Mathew & M. K. Nandy: General Relativistic Calculations for White Dwarfs 61–3

In a white dwarf, the electrons can be treated as an

ideal degenerate Fermi gas to a good approximation. The

corresponding EoS is given by the parametric forms

ε(ξ) = 32µeH
3me

K sinh3 ξ
4f(ξ),

p(ξ) = 1
3K

(

sinh ξ − 8 sinh ξ
2 + 3ξ

)

,

f(ξ) = 1 + 3me(sinh ξ−ξ)

32µeH sinh3 ξ
4

− me

µeH ,

(3)

where ξ = 4 sinh−1( pF

mec ), K =
πm4

ec5

4h3 , µe = A/Z is

the number of nucleons per electron and H is the atomic

mass unit. These equations are valid for all values of elec-

tron velocities, including extreme relativistic velocities.

Substituting the set of Equations (3) in Equations (1) and

(2), the following differential equations are obtained.

dm

dr
= 4π

32µeH

3me

K

c2
r2 sinh3 ξ

4
f(ξ),

dξ

dr
= −

32 GµeH

mec2(cosh ξ − 4 cosh ξ
2 + 3)r

[

sinh3 ξ

4
f(ξ) +

me

32µeH

(sinh ξ − 8 sinh
ξ

2
+ 3ξ)

]

×
[

m(r)

+
4πK(sinh ξ − 8 sinh ξ

2 + 3ξ)r3

3c2

]

[

r −
2Gm(r)

c2

]−1

. (4)

The two differential equations in (4) are valid when

the electron gas is treated as an ideal degenerate Fermi

gas. A more realistic treatment must include interactions

among the electrons and nuclei. Salpeter (1961) con-

sidered this situation and included the Coulomb effects,

Thomas-Fermi correction, exchange energy and correla-

tion energy to arrive at an EoS, given by

εCoul = −
9

10

(

4

9π

)1/3

α Z2/3 sinh4 ξ

4
,

εTF = −
162

175

(

4

9π

)2/3

α2 Z4/3 sinh3 ξ

4
cosh

ξ

4
,

εex = −
3

128π
α

(

12ξ sinh
ξ

2
− 16 cosh

ξ

2

−2e
ξ
4 cosh3 ξ

4
− 3ξ2 + 18

)

,

εcorr = α2 sinh3 ξ

4
(

0.0115 + 0.031 loge

[

α sinh−1 ξ

4

]

)

(5)

in the units of 32
3 K , and

pCoul = −
16

5

(

4

9π

)1/3

α Z2/3 sinh4 ξ

4
,

pTF = −
576

175

(

4

9π

)2/3

α2 Z4/3 sinh5 ξ

4
sech

ξ

4
,

pex =
α

2π

[

cosh ξ + 8 cosh
ξ

2
− 6ξ sinh

ξ

2

+
3

2
ξ2 − 9 −

4

3
tanh

ξ

4

(

sinh ξ

−2 sinh
ξ

2
− 3ξ cosh

ξ

2
+ 3ξ

)]

,

pcorr = −
32

9
0.0311 α2 sinh3 ξ

4
(6)

in the units of K , where Z is the number of protons and

A is the total number of nucleons in a nucleus.

3 NUMERICAL SOLUTIONS

We shall solve the TOV equations for two cases, namely,

the ideal degenerate case and the non-ideal case, in this

section.

3.1 Ideal Degenerate Case

When the electron gas is assumed to form an ideal de-

generate Fermi gas, the TOV equations given by the set

of Equations in (1) and (2) are coupled with the EoS

given by the set of Equations in (3). The resulting equa-

tions in (4) can be made dimensionless by introducing di-

mensionless variables x = r/Rscale and u = m/Mscale.

They reduce to the forms

du

dx
= x2 sinh3

(

ξ

4

)

f(ξ), (7)

dξ

dx
= −

1

(cosh ξ − 4 cosh ξ
2 + 3)x

[

sinh3 ξ

4
f(ξ)

+
me

32µeH

(

sinh ξ − 8 sinh
ξ

2
+ 3ξ

)]

[

u(x) +
me

32µeH

(

sinh ξ − 8 sinh
ξ

2
+ 3ξ

)

x3
]

[

x −
me

16µeH
u(x)

]−1

. (8)

We have chosen the values Rscale = 2.3788µ−1
e ×

108 cm and Mscale = 1.6475 µ−2
e ×1032 g so that the pre-

factors in Equations (7) and (8) are normalized to unity.

As an analytical solution is not possible, we employ the

fourth-order Runge-Kutta scheme [Press (1988)] to inte-

grate them simultaneously. Solutions to these equations
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Table 1 Mass, Radius, Central Density ρ0 and Central Pressure p0 for Various Values of ξ0 for 4
2He White Dwarfs

ξ0

( pF

mec

)

0

Mass Radius ρ0 p0

(M⊙) (km) (2 × 1010 g cm−3) (2 × 1028 dyn cm−2)

(1) (2) (3) (4) (5) (6)

2.35 0.6219 0.2957 12538.45 2.3425 × 10−5 3.9601 × 10−7

6.20 2.2496 0.9576 6015.35 1.1091 × 10−3 1.3233 × 10−4

15.28 22.7911 1.4166 1029.87 1.1581 1.6164

19.00 57.7878 1.3890 436.95 19.0131 66.9168

∞ ∞ 0.4583 52.23 ∞ ∞

are computed for several initial values of ξ0 at the cen-

ter of the star. Integration is carried out from the value

u = 0, ξ = ξ0 at x = 0 (center) to x = xb (surface)

where ξb = 0 (which makes p = 0), and u = ub. The

first four entries in Table 1 display the results obtained in

the range 1.0 ≤ ξ0 ≤ 19.0.

In the limit ξ → ∞, Equations (7) and (8) reduce to

the simple forms

du

dx
=

3me

64µeH
x2eξ, (9)

dξ

dx
= −

me

8µeH

1

x(x − me

32µeH 2u)

(

u +
me

64µeH
x3eξ

)

.

(10)

From Equations (3), the ratio of central pressure to cen-

tral mass-energy density for the limiting case ξ → ∞

turns out to be p
ε = 1

3 , which represents a sphere of

fluid with infinite density and pressure at the center.

Equations (9) and (10) can be solved exactly to yield

u = 48
7

(

µeH
me

)

x and eξ = 1024
7

(

µeH
me

)2
1
x2 . From this

solution, we get the initial condition (the ξ0 value) to in-

tegrate Equations (7) and (8) from ξ = ξ0 (center) to

ξ = 0 (surface). An analysis of Equations (7) and (8)

shows that they are well approximated by Equations (9)

and (10) for ξ ≥ 55 for 4
2He white dwarfs. The EoS

p
ε = 1

3 is also approached closely for ξ ≥ 55. The last

row in Table 1 corresponds to ξ0 = 55.

To compare these results of numerical integration

with results following from Newtonian gravity, we also

numerically integrate the following (Newtonian) equa-

tions.
du

dx
= x2 sinh3 ξ

4
, (11)

dξ

dx
= −

u(x) sinh3 ξ
4

(cosh ξ − 4 cosh ξ
2 + 3)x2

. (12)

The mass-radius relationships for 4
2He white dwarfs

following from the numerical integrations of the TOV

equations [(7) and (8)] and the Newtonian equations

[(11) and (12)] are compared in Figure 1. It is seen that

the two mass-radius curves coincide for small values of

ξ0. This is due to the fact that the TOV equation reduces

to the Newtonian equation for small values of central

densities as a result of negligible contribution from the

internal energy and smallness of the metric correction

(2GM/c2R). For small values of ξ0, the EoS reduces to

the form p = Cρ5/3 and the mass-radius relation behaves

as M ∼ R−3 in the right-hand part of the plot.

For higher values of central densities, the TOV curve

starts to deviate from the Newtonian curve, as seen to-

wards the left-hand part of the plot. Thus, for large ξ0,

there is a departure from the non-relativistic M ∼ R−3

behavior for both Newtonian and TOV cases. We also

find that the critical mass is lower for the TOV case than

the Newtonian case, with values being 1.4166 M⊙ and

1.4562 M⊙ respectively.

3.2 Non-ideal Case

A realistic treatment of the electron gas must include var-

ious types of interactions among the particles. We there-

fore consider the Salpeter EoS given by Equations (5)

and (6) and couple them with the TOV equations [(1)

and (2)]. A comparison between the ideal and non-ideal

cases for the mass-radius relations of 4
2He white dwarfs

is shown in Figure 2. As seen from the plot, the two

curves do not coincide for any value of ξ0, although the

deviation becomes smaller for higher values of ξ0. As a

result, the critical value decreases to 1.4081 M⊙, which

is about 0.6% lower than the ideal value of 1.4166 M⊙.

We also observe that a 12
6C white dwarf acquires a crit-

ical mass of 1.3916 M⊙, which is different from that of
4
2He (1.4081 M⊙) when the Salpeter EoS is taken into

account.

Table 2 displays a comparison of the critical values

of masses and radii for 4
2He, 12

6C and 56
26Fe white dwarfs.

We also solve the TOV equations [(1) and (2)] cou-

pled with the Salpeter EoS [(5) and (6)] for 16
8 O, 20

10Ne,
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Table 2 Comparison of the critical values of masses and radii for 4
2He, 12

6C and 56
26Fe white dwarfs obtained by solving the TOV

equations [(1) and (2)] coupled with the ideal EoS (3) and the Salpeter EoS [(5) and (6)].

Critical mass (M⊙) Critical radius (km)

Ideal EoS Salpeter EoS % decrease Ideal EoS Salpeter EoS % decrease

(1) (2) (3) (4) (5) (6) (7)

4
2

He 1.4166 1.4081 0.60 1029.87 1012.07 1.73
12
6

C 1.4166 1.3916 1.76 1029.87 1004.59 2.45
56
26

Fe 1.2230 1.1565 5.44 927.13 886.55 4.38

0 3000 6000 9000 12000 15000 18000
R(km)

0

0.3

0.6

0.9

1.2

1.5
M
/
M
s
u
n

TOV
Newtonian

Fig. 1 Mass-Radius relationships given by the TOV (solid curve) and Newtonian (dashed curve) cases for 4
2He white dwarfs with

ideal degenerate EoS. The data points shown encircled correspond to the first four entries in Table 1.

0 3000 6000 9000 12000 15000
R(km)

0

0.3

0.6

0.9

1.2

1.5

M
/
M
s
u
n

Ideal EoS
Salpeter EoS

1000 2000

1.36

1.38

1.4

Fig. 2 Mass-Radius relationships given by the TOV equations for 4
2He white dwarfs. The dashed curve represents the solutions

with ideal degenerate EoS and the solid curve represents the solutions with Salpeter EoS. The inset shows a magnified view around

the region of the maxima in the two cases.

24
12Mg, 28

14Si and 32
16S white dwarfs. The corresponding re-

sults are displayed in the fifth column of Table 3.

4 STABILITY OF WHITE DWARFS

In this section we shall consider gravitational instability

as well as inverse β-decay instability for white dwarfs.

4.1 Gravitational Instability

The equilibrium configuration of the star is identified

by the extremum in the energy-matter distribution curve.

The total energy of the star was previously derived by

Shapiro & Teukolsky (1983) by adding correction due
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Table 3 Critical values in general relativity and neutronization thresholds for different white dwarfs. Here ρST
c is the previous

estimate [Shapiro & Teukolsky (1983)] of the critical central density, ρTOVS
c is the critical central density obtained from the TOV

equations coupled with Salpeter EoS and ρβ is the neutronization threshold density. The gravitational critical mass MTOVS
c and

the neutronization threshold mass MTOVS

β follow from the solutions of the TOV equations coupled with Salpeter EoS for the

corresponding central densities ρTOVS
c and ρβ , respectively.

ρST
c ρTOVS

c εZ ρβ MTOVS
c MTOVS

β
% decrease

(2 × 1010 g cm−3) (2 × 1010 g cm−3) (MeV) (2 × 1010 g cm−3) (M⊙) (M⊙)

(1) (2) (3) (4) (5) (6) (7) (8)

4
2

He 1.3250 1.21150 20.596 6.85751 1.4081 — —

12
6

C 1.3250 1.22060 13.370 1.94826 1.3916 — —

16
8

O 1.3250 1.22979 10.419 0.94996 1.3849 1.3846 0.02
20
10

Ne 1.3250 1.26732 7.026 0.31036 1.3788 1.3702 0.62
24
12

Mg 1.3250 1.26730 5.513 0.15784 1.3731 1.3523 1.51
28
14

Si 1.3250 1.26728 4.643 0.09861 1.3677 1.3341 2.46
32
16

S 1.3250 1.26727 1.710 0.00370 1.3625 1.1649 14.50
56
26

Fe 1.5289 1.48186 3.695 0.05720 1.1565 1.0667 7.76

to general relativity, given by ET = Eint + ∆Eint +

ENewt + ∆EGR, where the first two terms correspond

to the internal energy and the corresponding relativis-

tic correction, the third term is the gravitational energy

in the Newtonian limit, and the fourth term is the cor-

rection due to general relativity. The hydrostatic equa-

tions (11) and (12), based on Newtonian gravity, ignore

the internal kinetic energy contribution and metric cor-

rection. Consequently, the general relativistic effects are

taken into account by adding first order corrections in the

above equation as shown. Thus, this expression for ET is

an approximate expression for energy due to the general

relativistic correction. This approximation is expected to

be good when the mass-radius ratio in the metric correc-

tion is small.

Minimizing this energy ET yields the equilibrium

condition dET

dρ0
|ρ0=ρc

= 0. Minima and maxima corre-

spond to stable and unstable equilibria, given by ∂M
∂ρ0

> 0

and ∂M
∂ρ0

< 0, respectively. For ∂M
∂ρ0

< 0, the electron de-

generate pressure is smaller than the inward gravitational

pull, causing the star to collapse continuously. The onset

of this collapse was obtained by Shapiro & Teukolsky

(1983) by setting ∂2ET

∂ρ2

0

= 0. Thus, the expression for the

onset density of gravitational instability was calculated

as

ρST
c = 2.646 × 1010

(µe

2

)2

g cm−3. (13)

At this critical value of the central density, the star

becomes unstable against gravitational pull. As noted

above, this expression for the onset density of gravi-

tational instability is based on the above approximate

expression for ET . The critical values for the central

density ρST
c for a few white dwarfs following from

Equation (13) are shown in Column (2) of Table 3.

In our present calculations, we take an alternative

route to obtain the critical values for the central density,

denoted by ρTOVS
c . Thus, we obtain the critical central

density ρTOVS
c from the solution of the full TOV equa-

tions [namely, Eqs. (1) and (2) coupled with the Salpeter

EoS given by Eqs. (5) and (6)] without making any ap-

proximations. Hence, our results are expected to be close

to exact.

The plot in Figure 3 shows the dependence of masses

on the central densities ρ0 of 4
2He and 56

26Fe white dwarfs

as a result of computation based on the TOV equation

coupled with Salpeter EoS. We see that the mass of the

star increases with increase in the central density un-

til a maximum is reached, beyond which it declines.

The positive slope ( ∂M
∂ρ0

> 0) corresponds to the sta-

ble portion whereas the negative slope ( ∂M
∂ρ0

< 0) to

the unstable portion. The plot also predicts the maxi-

mum stable masses a white dwarf can achieve, which are

very nearly 1.4081 M⊙ for 4
2He and 1.1565 M⊙ for 56

26Fe

white dwarfs. These correspond to central densities of

2.4230×1010 g cm−3 for 4
2He and 2.9637×1010 g cm−3

for 56
26Fe white dwarfs. For higher values of the densities,

the stars become unstable and collapse under their own

gravitational pull.

The occurrence of a critical mass can be clearly seen

when we plot the mass M versus radius R of the star

on linear scales. This is shown in Figure 4 for 4
2He, 12

6C

and 56
26Fe white dwarfs, where the maxima are identified

as the critical points, at masses of about 1.4081 M⊙ for
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Fig. 3 Plots of M vs loge ρ0 for 4
2He (solid curve) and 56

26Fe (dashed curve) white dwarfs obtained by solving the TOV equations [(1)

and (2)] coupled with Salpeter EoS [(5) and (6)].

4
2He, 1.3916 M⊙ for 12

6C and for 1.1565 M⊙
56
26Fe white

dwarfs. The portions towards the right of the maxima cor-

respond to stable equilibria, whereas those towards the

left correspond to instability.

The critical central densities ρTOVS
c for a few other

white dwarfs (168 O, 20
10Ne, 24

12Mg, 28
14Si and 32

16S) are also

computed numerically based on the TOV equation [(1)

and (2)] coupled with the Salpeter EoS [(5) and (6)],

and the results are shown in Column (3) of Table 3. In

comparison to ρST
c , we see that the values for ρTOVS

c

are lower in magnitude. The corresponding critical val-

ues for the masses MTOVS
c following from the TOV

equation coupled with the Salpeter EoS are displayed in

Column (6) of Table 3.

4.2 Inverse β-Decay Instability

The process of inverse β-decay, namely

A
ZX + e −→ A

Z−1Y + νe,

becomes important for high values of electron densities.

This fact was ignored when calculating the most stable

configurations admitted by gravity alone. At high elec-

tron densities, the electrons become more relativistic so

that the condition EF > εZ , where EF is the Fermi en-

ergy and εZ is the difference in binding energies of the

parent and daughter nuclei, may be satisfied for inverse

β-decay to occur.

At a sufficiently high density, the star becomes un-

stable under inverse β-decay and collapses to form ex-

tremely dense matter (this might be a mixture of neutron

rich nuclei, electrons and neutrons). The threshold den-

sity ρβ for inverse β-decay was calculated by Salpeter

(1961) by setting EF = εZ . Rotondo et al. (2011) ex-

pressed it as

ρβ =
8πµeH

3h3c3
(ε2

Z + 2mec
2εZ)3/2. (14)

The β-decay energy εZ was obtained by least square fit to

experimental data by Wapstra and Bos (1977) which was

also used by Shapiro and Teukolsky (1983), as displayed

in Column (4) of Table 3. The corresponding values of

the threshold densities ρβ following from Equation (14)

are shown in Column (5) of Table 3.

For white dwarfs whose neutronization density ρβ is

smaller than the onset density of gravitational instability

ρTOVS
c , we expect an unstable phase before reaching the

critical mass MTOVS
c obtained from general relativity.

Inverse β-decay that sets in before gravitational instabil-

ity reduces the electron density, which in turn reduces the

degeneracy pressure so that we expect a smaller value for

the critical mass than that obtained by general relativity.

Table 3 compares the critical central densities ρTOVS
c and

inverse β-decay threshold densities ρβ for white dwarfs

with different compositions.

Comparing the threshold densities given in the third

and fifth columns of Table 3, we see, for 4
2He and 12

6 C

white dwarfs, that gravitational instability sets in be-

fore neutronization instability can set in. This implies

that the critical masses for 4
2He and 12

6 C white dwarfs

are 1.4081 M⊙ and 1.3916 M⊙, respectively. For all the

other cases, threshold density ρβ for neutronization starts
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Fig. 4 Mass-radius relations for 4
2He (solid curve), 12

6C (dot-dashed curve) and 56
26Fe (dashed curve) white dwarfs obtained by

solving TOV equations [(1) and (2)] coupled with Salpeter EoS [(5) and (6)].

before the critical density ρTOVS
c for gravitational insta-

bility is reached. This implies that the critical masses

of 16
8 O, 20

10Ne, 24
12Mg, 28

14Si, 32
16S and 56

26Fe white dwarfs

must be lower than their corresponding critical mass for

gravitational instability. We compute the corresponding

masses for neutronization thresholds numerically from

the TOV equations [(1) and (2)] coupled with Salpeter

EoS [(5) and (6)], and identify them as the critical masses

MTOVS
β for stability against neutronization, which are

shown in the seventh column of Table 3.

5 CONCLUSIONS

It is seen from our above investigations that general

relativistic effects have lowered the limiting mass of a
4
2He white dwarf. In the ideal degenerate gas approx-

imation, the new value (1.4166 M⊙) obtained by solv-

ing the TOV equation is not too far from the Newtonian

limit (1.4562 M⊙). Thus the general relativistic effects

are small in the case of a white dwarf, which lowers

the limiting value by approximately 2.7%. Our calcu-

lated value of 1.4166 M⊙ is slightly different from the re-

sults obtained by Bera & Bhattacharya (2016). They ob-

tained 1.4158 M⊙ and 1.4155 M⊙ in two different gen-

eral relativistic computations, which are approximately

2.36% and 2.38% lower than their Newtonian computa-

tion value of 1.45 M⊙.

We note that the EoS is valid for all electron ve-

locities, both non-relativistic and ultra-relativistic, con-

necting the two regimes smoothly. Although initially

the inter-particle interaction was neglected by assum-

ing an EoS for an ideal degenerate electron gas, we

later incorporated it via the Salpeter EoS that includes

Coulomb effects, Thomas-Fermi correction, exchange

energy and correlation energy. When the TOV equations

are solved incorporating these corrections, the critical

mass turned out to be 1.4081 for 4
2He and 1.3916 for

12
6C white dwarfs, which are slightly lower than the ideal

value (1.4166 M⊙). We have shown these differences in

Table 3, which also include the values for the 56
26Fe white

dwarf. The maxima of the mass-radius curve (in Fig. 4

and Fig. 2) mark the onset of gravitational collapse and

the regions towards the left of the maxima correspond to

unstable regions. It is expected that the growth in density

makes the electrons more relativistic so that the condition

favoring inverse beta decay is approached.

We took account of neutronization by using

Equation (14) obtained on the basis of Salpeter’s argu-

ments. Values for the onset density ρβ so obtained for

inverse β-decay for different compositions of the star

are shown in Column (5) of Table 3. A comparison with

ρTOVS
c (shown in Column (3) of Table 3) indicates that

stars composed of lighter elements (42He and 12
6 C) are

more stable than those composed of heavier elements

(168 O, 20
10Ne, 24

12Mg, 28
14Si, 32

16S and 56
26Fe). The onset of

inverse β decay is found to start before reaching the

onset of gravitational instability in white dwarfs com-

posed of heavier elements. The maximum stable mass

MTOVS
c obtained by solving the TOV equations coupled

with Salpeter EoS for these stars (as given in Column 6
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of Table 3) no longer can be identified as their critical

masses. Consequently for these stars, we solve the TOV

equations coupled with Salpeter EoS corresponding to

the central densities ρβ to obtain the maximum stable

mass MTOVS
β as shown in the seventh column of Table 3.

Mass distribution of a large number of white dwarfs

with a wide range of masses, including low mass and

massive stars, was plotted by Bergeron et al. (2007) and

Kepler et al. (2007). The most massive non-magnetic

white dwarf observed was LHS4033 [Dahn et al. (2004);

Bergeron et al. (2007); Kepler et al. (2007)] which was

predicted to have an oxygen-neon core with a mass in the

range of 1.318 − 1.335 M⊙. This range of mass values

is compatible with our calculations, as we see from the

seventh column of Table 3.

However, recent observations of type Ia supernovae

(SNe Ia) admit white dwarfs with masses as high as

2.3 − 2.6 M⊙. Howell et al. (2006) argued that the over-

luminosity and low expansion velocities around the SN

2003fg white dwarf could be explained if it is assumed

to have a mass greater than 1.44 M⊙. Hicken et al.

(2007) presented SN2006gz as a possible SN Ia candi-

date that was identified with similar properties. Scalzo

et al. (2010) estimated the total mass of the SN 2007if

progenitor to be in the range 2.2 − 2.6 M⊙. Silverman

et al. (2011) suggested another member of the SNe

Ia class, SN2009dc, with similar peculiarities, possibly

formed from the merger of two white dwarfs.

It has been speculated that the presence of a mag-

netic field drastically modifies the situation in a compact

star due to the Landau quantization of electronic energy

levels. Gao et al. (2011) simulated electron β-capture

in a magnetar by considering electrons belonging to the

higher Landau levels in a super high magnetic field that

admit the energy threshold values for inverse β-decay to

occur. For a 4
2He white dwarf, Das & Mukhopadhyay

(2012) considered the modified EoS due to the Landau

levels of electrons in a magnetic field. They showed that

a maximum mass of 2.3 M⊙ is reached at the highest

turning point in the mass-radius relation of a 4
2He white

dwarf within the Newtonian (Lane-Emden) framework.

They indicated that the presence of high magnetic fields

can give rise to white dwarfs with masses as high as

2.3 − 2.6 M⊙ and radii around 600 km. It is interesting

to mention that Gao et al. (2013) and Zhu et al. (2016)

provided a great deal of deliberations in this direction,

particularly in the study of how the Fermi energy and the

electron degeneracy pressure change in a neutron star due

to the presence of a strong magnetic field.

Gao et al. (2013) and Li et al. (2016) indicated that,

in the presence of a strong magnetic field, electron de-

generacy pressure increases with strength of the mag-

netic field. This is because the pressure is proportional to

E4
F and the Fermi energy EF increases with the strength

of the magnetic field. Consequently, the number density

ne (and hence the matter density), being determined by

the Fermi energy, also increases with the magnetic field.

Thus, with respect to the non-magnetic case, a greater

matter density near and away from the center could

be supported against gravitational pull by the increased

pressure gradient in the presence of a strong magnetic

field.

It may also be remarked that soft gamma ray re-

peaters (SGRs) and anomalous X-ray pulsars (AXPs)

were thought to be magnetars until a recent exception

was observed in SGR 0418+5729 which was found to be

inconsistent with the magnetar model of SGRs and AXPs

based on neutron stars. Malheiro et al. (2012) showed

that the observed upper limit on the spin down rate of

SGR 0418+5726 is in accordance with a model based on

a massive fast rotating highly magnetized white dwarf. It

may thus be speculated that their masses would be higher

than 1.4562 M⊙ due to the effect of strong magnetic

field.
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