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Abstract A multi-model integration method is proposed to develop a multi-source and heterogeneous

model for short-term solar flare prediction. Different prediction models are constructed on the basis of

extracted predictors from a pool of observation databases. The outputs of the base models are normal-

ized first because these established models extract predictors from many data resources using different

prediction methods. Then weighted integration of the base models is used to develop a multi-model

integrated model (MIM). The weight set that single models assign is optimized by a genetic algorithm.

Seven base models and data from Solar and Heliospheric Observatory/Michelson Doppler Imager lon-

gitudinal magnetograms are used to construct the MIM, and then its performance is evaluated by cross

validation. Experimental results showed that the MIM outperforms any individual model in nearly every

data group, and the richer the diversity of the base models, the better the performance of the MIM. Thus,

integrating more diversified models, such as an expert system, a statistical model and a physical model,

will greatly improve the performance of the MIM.

Key words: methods: statistical — Sun: activity — Sun: magnetic fields — Sun: photosphere — Sun:

flares

1 INTRODUCTION

There is a great demand for accurate flare prediction be-

cause of the effect of large solar flares on local “space

weather.” Much effort has been devoted to improving

short-term flare predictions.

One aspect of the work is to find more informative

predictors. McIntosh (1990) proposed the McIntosh clas-

sification of sunspots to reflect the morphological charac-

teristics of active regions and developed an expert system

called Theophrastus to predict solar flares. This classifi-

cation scheme and system were widely applied to later

research. Bornmann & Shaw (1994) used multiple lin-

ear regression analyses to decrease the original McIntosh

classification parameters from 17 to 10 while still ensur-

ing accuracy of the observed flare rates. Gallagher et al.

(2002) evaluated prediction rate using McIntosh classifi-

cation, and then forecasted the occurrence of daily flares

by assuming a Poisson distribution for the waiting time

of X-ray flares. Cui et al. (2006) presented three kinds

of predictors to describe the nonpotentiality and com-
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plexity of the photospheric magnetic field: the maximum

horizontal gradient, the length of the neutral line and the

number of singular points. Yu et al. (2010a) implemented

a model that uses multiple-resolution predictors resulting

from the decomposition of a sequence of predictors into

four frequency bands using a maximal overlap discrete

wavelet transform. This model reflects the trend and the

changing rate of the emerging flux regions. Huang et al.

(2010) constructed a C4.5 decision tree model based on

predictor teams that are extracted from a dataset using

rough set theory. The predictor teams used in the en-

semble model not only efficiently reduce redundancy but

also heighten the profitability of the information. Huang

et al. (2013) constructed a metric to depict the positional

relationship between active regions and predicted active

longitudes, which enhance the performance of solar flare

prediction. Volobuev et al. (2016) proposed that a gen-

eralized Laplacian could help predict strong flares and

found that the maximum Laplacian is located near the

active region polarity inversion line.

Another aspect of flare prediction is to construct

more powerful models. Bradshaw et al. (1989) con-
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structed a three-layer back-propagation neural network

named TheoNet to forecast flares. Wang et al. (2008)

proposed new measurements based on solar magnetic

field observations that provide more information than

what can be provided by measurements based on sunspot

group classification and then set up a solar flare fore-

casting model supported by an artificial neural network.

Wheatland (2004) proposed a Bayesian approach that re-

fines the prediction of an occurrence of a large flare dur-

ing a subsequent period by using the historical record of

flares within an active region together with phenomeno-

logical rules on flare statistics. Yu et al. (2010b) pre-

sented an innovative Bayesian approach to flare predic-

tion supported by feature extraction that compared two

prediction models using raw sequential data and feature-

extracted data, respectively, and obtained a more com-

prehensive method. Li et al. (2007) presented a flare

prediction model based on a support vector machine

(SVM) combined with the k-nearest neighbors method.

Qahwaji & Colak (2007) suggested a hybrid system

that combines SVM and cascade-correlation neural net-

works based on the McIntosh classification so as to

convert every relevant extracted sunspot to a numeri-

cal format. Colak & Qahwaji (2009) presented an au-

tomated hybrid computer platform (ASAP) for short-

term prediction of significant solar flares using Solar and

Heliospheric Observatory (SOHO)/Michelson Doppler

Imager (MDI) images. Huang et al. (2010) proposed

a flare prediction model based on sequential data by

using a sliding window method to build the dynamic

characteristics of the prediction model and then pro-

posed multiscale predictors of the photospheric magnetic

field. Li & Zhu (2013) considered the evolution of so-

lar active regions and used sequential sunspot data to

predict solar flares. Ahmed et al. (2013) applied ma-

chine learning and feature-selection algorithms to a set

of magnetic feature properties to determine the abil-

ity to predict solar flares and the relationship between

these magnetic properties and the occurrence of flares.

Bloomfield et al. (2012) used X-ray flares measured by

the Geostationary Operational Environmental Satellite

(GOES) and McIntosh group classifications to determine

the Poisson probabilities for different flare magnitudes.

Muranushi et al. (2015) developed the UFCORIN plat-

form for studying and automating the prediction of space

weather, including solar flares. Shin et al. (2016) focused

on the flux of strong flares and proposed models to fore-

cast the daily maximum flux of strong flares (M- and X-

class) using multiple linear regression and artificial neu-

ral network methods.

Many methods and theories have been used to pre-

dict solar flares; however, the physical mechanism of

flare eruption is so complex that no one model can ex-

tract enough information and physical features from ob-

servations to use for flare prediction. Only one or a lim-

ited number of terms can be considered in the frame-

work of a single model and then lead to good accuracy

in prediction. However, if existing models could be inte-

grated, the resulting model would include different terms

with respect to the mechanism of flare eruption and dif-

ferent observed data. Thus, this hybrid model not only

would be better at predicting solar flares but also, more

importantly, would have greater adaptability and general-

izing performance. This paper presents a multi-model in-

tegrated model (MIM) based on a global optimal search-

ing method that takes advantage of individual models, in-

cluding the physical model, the expert system model, ma-

chine learning model, statistical model, etc. Seven clas-

sifications were chosen to train and analyze the observed

data. The MIM combines the outputs of different classi-

fiers using a genetic algorithm such that the final output

is a weighted average of different methods which empha-

size different aspects they consider.

This paper is structured as follows: Experimental

data are briefly explained in Section 2. In Section 3,

implementation of the multi-model integration method

and the construction of the model are introduced. In

Section 4, base models are selected, experimental pro-

cesses are explained and results are presented. Section

5 compares and analyzes the results. Finally, Section 6

presents conclusions and discusses further research.

2 DATA

The strength of a solar flare is defined in terms of five lev-

els: A, B, C, M and X , and the influence of flares is de-

termined by them. The total importance of a flare within

a certain interval is conventionally a linear sum of those

five levels

Itot =
∑

C + 10 ×
∑

M + 100 ×
∑

X. (1)

Equation (1) considers the influence of all the flares

within the forward-looking period. For example, if an ac-

tive region produces C1.2, C2.3, M4.1 and X1.2 flares

within 48 hours, the Itot = (1.2+2.3)+10×4.1+100×

1.2 = 164.5 (Wang et al. 2008). Generally, a prediction

model considers the eruptions of flares with significance

above a threshold as a “flaring” class. Here the thresh-

old is 10. It means that the definition of “flaring” versus

“non-flaring” is the total importance above M1.0.

The predictors that are used in this experiment are

the maximum horizontal gradient (|∇hBz |m), the length
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of neutral line (L) and the number of singular points (η).

They are extracted from active regions in SOHO/MDI

full disk longitudinal magnetograms with a pixel size of

2′′ and noise level of 20 G. Active regions are selected

using the following two criteria:

(1) At least one X-ray flare whose magnitude ≥C1.0 is

produced in these active regions.

(2) The locations of active regions are within 30◦ of the

solar disk center.

In general, large flares receive more attention so

the first criterion aims to focus on active regions

above a certain threshold. The second criterion re-

duces the impact of projection effects. The active

regions are manually extracted from a rectangular

patch on the magnetogram. The locations of the ac-

tive regions associated with solar flare events are ob-

tained from Solar Geophysical Data solar event reports

(http://www.solarmonitor.org/index.php). A rectangular

patch is used to select the active region. When two ac-

tive regions are in the same patch, they are considered as

one active region. Data are collected from 1996 April 15

to 2008 April 2 and the time interval of data sampling is

96 minutes from successive magnetograms.

Figure 1 shows a SOHO/MDI magnetogram (2011

January 11). There is a statistical relationship between

observed data from photospheric magnetic field and solar

flare productivity which is called a priori information in

the field of probability and machine learning methods.

Generalization performance could be improved by using

them in a prediction model. Cui et al. (2006) pointed out

three predictors (the maximum horizontal gradient, the

length of neutral line, the number of singular points) and

productivity of a solar flare can be fitted by a sigmoid

relationship

Y = A2 +
A1 − A2

1 + exp [(X − X0)/W ]
, (2)

where Y is the flare productivity defined by the ratio of

the number of flaring samples to the number of total sam-

ples, and X is the value of the predictor. A1, A2, X0

and W are estimated from the curve-fitting process. Their

values, which are shown in Table 1, are those when the

threshold is M1.0. The data are preprocessed using the

sigmoid function to set up a relatively simple model.

In this study, we divided the dataset into ten groups

based on different active regions. Data should not be

trained and tested at the same time if they are from the

same active region because such data have similar statis-

tical properties and physical features. Therefore, the use

of groups of data from different active regions for cross

validation is practical and the results are more credible.

3 MULTI-MODEL INTEGRATED MODEL

The MIM was constructed by training different base

models and then combining the output of each model

in a particular way to yield the final result. The learn-

ing strategy of a base model is a search for optimization,

so the solution space of the MIM is reduced, which helps

approach the best results. An MIM can be constructed

using observed data of different physical mechanisms,

different predictors, or various models only if a better-

adapted technique is found that can combine the individ-

ual models, refine the effective information and optimize

the results. The logical relationship of the model is “data

and predictors-based models combination final result.”

Figure 2 shows the structure of the model.

3.1 Construction of MIM

The MIM has been validated as a useful application in

solar flare prediction because of the diversity of single

models. It can be well explained by two aspects. Firstly,

on the side of machine learning and data mining tech-

niques, structures of data have great influences on the

performance of different learning methods. For example,

a decision tree learning model can form a number of “IF-

THEN” rules like a tree after training data so it seems to

be a practical model with clear logics and regulations if

the rules of data are clear as well. However, a neural net-

work model would be better compared with a decision

tree when there are messy, massive and irregular data that

need to be trained. A neural network is a typical “black

box” model which can adaptively set up a huge model

with unreadable black rules by itself. It is convenient

and easy to train this kind of data, not a complex and

slow process of model construction by decision tree, even

overfitting. As another example, assume that attributes of

data are mutually independent and a naive Bayes model

can perform perfectly, otherwise, it will be far less de-

sirable than the performance of the Bayesian network.

Secondly, on the side of physical observation of a solar

flare, relationships between solar flare productivity and

observed data are diverse as well as predictors estimated

from the same observation. For example, the maximum

horizontal gradient (|∇hBz|m), the length of neutral line

(L) and the number of singular points (η) are extracted

from active regions in SOHO/MDI full disk longitudinal

magnetograms while the magnetic shear (Ls), the cur-

rent (Itot) and the current helicity (Htot) are from active

regions in vector magnetograms. McIntosh sunspot clas-

sification divides the shapes of sunspots into seven cat-

egories and extracts McIntosh parameters, which act as

proxies for the magnetic properties. It is reasonable to
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Fig. 1 (left) SOHO/MDI full-disk magnetogram obtained on 2011 January 11; (right) an active region on the magnetogram.

Table 1 Values of Parameters in Sigmoid Functions

Threshold Forward-looking period Predictor A1 A2 X0 W

Itot = 10 48 (h) |∇hBz |m 0.164 0.738 0.360 0.066

L 0.062 0.848 763.08 382.97

η –0.196 0.730 9.343 22.663

analyze the mechanism of flare eruption from a holistic

perspective and apply it to a prediction model and it is

available for multiple models.

The MIM combines base models via the linear sum

of their outputs. The weights of these models are opti-

mized by a genetic algorithm, and the fitness function is

changed with the optimization index to obtain a good re-

sult.

3.2 Weighted Integration of Multiple Models Based

on a Genetic Algorithm

The ultimate purpose of the MIM is to enhance the

strength and eliminate the weakness of the base models

that it comprises, so the technique used to combine them

and the guarantee of desirable results are significant in

the performance of the MIM. We used a weighted mean

of the output of the individual models and a genetic algo-

rithm in combining them, and optimized the final output.

This proved to be an efficient approach to combining the

base models.

Due to different data resources and predictors gen-

erated together with various modeling constructions, the

effectiveness of based models for flare prediction may

not be completely the same. Thus the output normaliza-

tion of each selected base model before weight assign-

ment is necessary which ensures implementation of in-

tegration. After base models have been built, normalized

outputs of base models for one sample x can be described

as
h1(x), h2(x), . . . , hT (x);

hi(x) ∈ {−1, 1}, i = 1, 2, . . . , T.
(3)

Each model i labels x as “flaring” or “non-flaring,” as

explained above, where 1 means a sample is assigned to

“flaring” class and −1 means a sample belongs to “non-

flaring” class.

A standard and easy-to-realize scheme of base model

integration is needed after base model normalization be-

cause of the heterogeneity of base models and complex-

ity of the interconnection among them. Weighted inte-

gration for base models by using a genetic algorithm can

be easily applied in the process because the relationship

of base models for flare prediction can be described by

weight assignment and the genetic algorithm acts to op-

timize weights for yielding a better prediction result of

MIM.

Genetic algorithm search procedures are loosely

based on the principal of natural selection: they “evolve”

good feature subsets by using random perturbations of a

current list of candidate subsets. Although different im-

plementations of genetic algorithms vary in detail, they

typically share the following structure: The algorithm op-

erates by iteratively updating a pool of hypothesized so-

lutions, called the population. At each iteration, all mem-
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Fig. 2 Schematic diagram of the MIM.

bers of the population are evaluated according to the fit-

ness function. A new population is then generated by

probabilistically selecting the most fit individual from the

current population. Some of these selected individuals

are carried forward into the next generation population

intact. Others are used as the basis for creating new off-

spring individuals by applying genetic operations such as

crossover and mutation. Figure 3 illustrates a diagram of

how a genetic algorithm operates.

In this case, evolution of the population updates

weights for a better result of the MIM but the outputs of

base models will not change when the weights change.

Thus, initializing the population in terms of encoding

only depends on weights.

Using double encoding (double precision floating

point numbers in a population) to initialize a population

(chrom) is described as

WChrom =









α11 α12 . . . α1T

α21 α22 . . . α2T

. . . . . . . . . . . .

αm1 αm2 . . . αmT









,

T
∑

i=1

αki = 1, k = 1, 2, . . . , m,

(4)

where m stands for the number of individuals in the pop-

ulation and each gene i = 1, 2, . . . , T in an individual

stands for the weight of the single model.

Then in the process of constructing fitness function

f = Obj(h, WChrom) and evaluating individuals, the fit-

Fig. 3 Diagram illustrating how a genetic algorithm operates.

ness value is described as

f =









f1

f2

. . .

fm









. (5)
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The fitness function is constructed as follows:

The sample is assigned to the class in the MIM which

is based on the weighted mean of single models and the

subscript T is also the number of models we selected

H(x) =

{

1, if
∑T

i=1
αihi(x) > 0, i = 1, 2, . . . , T ;

−1, otherwise .
(6)

Here 1 means a sample is assigned to “flaring” class and

−1 means a sample belongs to “non-flaring” class, the

same as above. The element in (α1, α2, . . . , αT ) is the

weight of each model.

Testing results for each sample (xi, yi) by those base

models h1(x), h2(x), . . . , hT (x) compose a matrix

h =









h11(x) h12(x) . . . h1T (x)

h21(x) h22(x) . . . h2T (x)

. . . . . . . . . . . .

hn1(x) hn2(x) . . . hnT (x)









, (7)

where n is the number of total samples. The final output

of the MIM can be described as

H = WChrom × hT

=









H1(x1) H1(x2) . . . H1(xn)

H2(x1) H2(x2) . . . H2(xn)

. . . . . . . . . . . .

Hm(x1) Hm(x2) . . . Hm(xn)









. (8)

As expatiated above, each individual has a classifi-

cation for each data sample, so the fitness number is esti-

mated by H according to performance evaluation such as

area under curve (AUC) and Heidke Skill Score (HSS),

which will be introduced in Section 4.

After determining the initial population (chrom) and

fitness function, selection, mutation and recombination

are generally taken into consideration to optimize the

population to achieve optimal performance. A stochastic

universal sampling method is used to select an individual

with high fitness value and individuals mutate with a uni-

form random probability while two matched individuals

are recombined by the two-point crossover method.

A stochastic universal sampling method is an update

of the roulette rule which can select all the individuals

of the next generation in an iteration. Points are evenly

distributed on a representation of a roulette wheel, the

number of which is equal to the population size. Uniform

mutation is defined such that an original encoded gene

of an individual is replaced by a random value from a

certain range, which then turns into a new genetic code.

Two-point crossover refers to two intersecting points se-

lected in a couple of matched individuals and encoded

data between them being subsequently exchanged with

each other. Assume that a couple is A and B:

A : (αA1, αA2, . . . , αAT ); B : (αB1, αB2, . . . , αBT )

There are (T − 1) possible positions for cross points

which are between two adjacent codes. The first point is

between α2 and α3, and another is between α5 and α6.

After recombining, two individuals are turned into:

A′ : (αA1, αA2, αB3, αB4, αB5, αA6, . . . , αAT );

B′ : (αB1, αB2, αA3, αA4, αA5, αB6, . . . , αBT ) .

New population (Chrom) W 2

Chrom
is reborn when

selection, mutation and recombination are completed in

the first generation. Result T 2 can be estimated based

on W 2

Chrom
and then the second generation ends and

W 3

Chrom
is generated. This cycle repeats before ap-

proaching the maximum number of generations and T g

is the final result of the MIM.

4 EXPERIMENT AND RESULTS ANALYSIS

4.1 Performance Evaluation

Three predictors, observed data of which are the maxi-

mum horizontal gradient (|∇hBz|m), the length of neu-

tral line (L) and the number of singular points (η), are

turned into to solar flare productivity through the sigmoid

relationship in Equation (2). A solar flare prediction can

be treated as a binary classification task, therefore, after

training each sample there are four different possible out-

comes shown in Table 2. We consider flaring samples as

the Positive class and non-flaring samples as the Negative

class. Samples correctly classified as “Positive” are de-

fined as “True Positive” (TP) and those incorrectly classi-

fied as “Positive” are defined as “False Positive” (FP). In

turn, samples correctly predicted as “Negative” are called

“True Negative” (TN) while samples wrongly predicted

as “Negative” are called “False Negative” (FN) (Witten

& Frank 2005).

Based on the confusion matrix explained above,

there are definitions of TP rate and TN rate which mea-

sure the accuracy of prediction. TP rate is the ratio of

the number of samples which are correctly classified as

Positive to the number of samples that belong to the ac-

tual Positive class

TP rate =
TP

TP + FN
. (9)

TN rate is the ratio of the number of samples that are

correctly classified as Negative to the number of samples

that belong to the actual Negative class

TN rate =
TN

TN + FP
. (10)
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Table 2 Different Outcomes of Two-class Prediction

Predicted positive class Predicted negative class

Actual positive class True Positive False Negative

Actual negative class False Positive True Negative

False alarm rate

H
it
 r

a
te

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Az

Fig. 4 Schematic diagram of AUC. Surface of the area is ROC

and the area of the shadow is AUC.

Imbalanced data can be measured by AUC which is

area under the Receiver Operating Characteristic (ROC)

curve. The ROC curve is a plot of the FPrate on the X

axis versus the TPrate on the Y axis. It shows that the

differences between the FPrate and the TPrate are based

on different rules. HSS is usually used to quantify the

performance which can be defined with

HSS =
PC − E

1 − E
. (11)

PC =
TP + TN

N
,

E =
(TP + FN)(TP + FP) + (TN + FP)(TN + FN)

N2
,

(12)

where PC is accuracy of prediction and E is accuracy of

a random forecast (Jolliffe & Stephenson 2012).

4.2 Base Model Selection

Attempts have been made to combine physical models,

expert system models and statistical models with ma-

chine learning models, but more advanced techniques are

needed. We explored combining various machine learn-

ing models to show that multiple models provide a dis-

tinctly better performance. Two characteristics that de-

termine the outcome of the MIM are the accuracy and

the variety of base models. The seven base models of the

MIM were based on naive Bayes, SVM, Bayes network,

C4.5 decision tree, radial basis function network, mul-

tilayer perceptron method and sequential minimal opti-

mization method.

A Bayesian network together with the naive Bayes

algorithm forms a good base on which to build proba-

bilistic reasoning models. Bayesian learning algorithms

that can be used to calculate explicit probabilities for

hypotheses are among the most practical approaches to

certain types of learning problems. Bayesian inference is

based on the assumption that attributes are conditionally

independent and it uses Bayes theorem. In contrast to the

naive Bayes algorithm, a Bayesian network allows the

assumption of conditional independence to be applied to

a subset of variables in the naive Bayes algorithm. A di-

rected acyclic graph depicts the relationships between the

attributes and simplifies the evaluation of the joint proba-

bility density function. When the conditional probability

table for attributes is explicit, the setup of the network is

complete.

SVM is an algorithm that emphasizes structural risk

minimization theory. An SVM can operate like a linear

model to obtain the description of a nonlinear boundary

of a dataset using a nonlinear mapping transform. A ker-

nel function converts input in low-dimensional space to

output in higher-dimensional space. A classifier that uses

a sequential minimal optimization method can dramat-

ically improve the performance of quadratic program-

ming in an SVM model. The LibSVM classifier is an-

other technique for obtaining SVM classification.

The perceptron learning rule is built by a hyperplane

alone, with a group of weights assigned to each attribute,

including an extended attribute equal to 1. Data are clas-

sified into one class when the sum of the weights of

an attribute is a positive number and into another class

when the sum is a negative number. The attributes are

reweighted if the samples are classified incorrectly un-

til the classification is correct. However, nonlinear sepa-

rated data will result in nonconvergence of the classifica-

tion function. A multilayer perceptron classifier can han-

dle data that are linearly inseparable by constructing a

network of perceptron classifiers that defines the nonlin-

ear boundary of the dataset. A radial basis function net-

work is another kind of feed forward network that uses
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a Gaussian function as its activation function and a sig-

moid function to transform the classification.

The C4.5 decision tree is an extension of the ID3

algorithm. It determines the affiliations of the nodes by

using an information gain ratio. Use of the post-pruning

rule improves the generation performance of the C4.5

model. C4.5 can discretize continuous attributes while

the ID3 decision tree is restricted to discrete attribute

processing. C4.5 can also handle training examples with

missing attribute values.

4.3 Performance of Multi-Model Integrated Model

We use ten-fold cross validation (Kohavi et al. 1995) to

validate performance of single models and the MIM. The

dataset is decomposed into ten folds based on different

active regions, nine folds are trained by models and one

fold is applied to test them in turn until each fold has been

used as test data once in cross validation. Ten groups of

prediction outcomes are recorded for the individual mod-

els and the MIM.

The performances of individual models and the

MIM as determined by different evaluation methods,

i.e., TPrate, TNrate, AUC and HSS, are compared in

Tables 3–6. The results of the ten groups and their means

are given. The performance of the MIM in eight and

seven groups was the best for TPrate and TNrate eval-

uations, respectively. Likewise, the performance of the

MIM in seven and five groups was the best for AUC and

HSS evaluations, respectively.

5 ANALYSIS OF EXPERIMENTAL RESULTS

AND DISCUSSION

5.1 Influence of Base Model Diversity on

Performance of MIM

An MIM, acting as a combination of single models, will

outperform individual models through theoretic analysis

below. Firstly, physical phenomena related to a solar flare

have been described and translated into different values

of several predictors. Each model shows great power in

classification of a flare. Some of them were used in con-

struction of flare prediction before and proved to be desir-

able techniques. Secondly, individual models using dif-

ferent methods reflect diversity in training data and mak-

ing rules. It means not only the structure of the models

is different, but various results of prediction they support

as well. More importantly, difference in results is of great

importance in combination and integrated decision while

the same results are insignificant in multiple models no

matter if they are true or false.

AUC and HSS measure the accuracy of the base

models while entropy E, as a correlation metric, mea-

sures their diversity. A high correlation among the indi-

vidual models shows they lack diversity and a low corre-

lation shows they are very diverse. If the models are un-

paired, entropy (Kuncheva 2004) is a measurement that

can be applied to individual models

Div =
1

N

N
∑

j=1

1

L − ⌊L/2⌋
min

{

L
∑

i=1

yj,i, L −

L
∑

i=1

yj,i

}

(13)

where N is the number of total samples and L is the num-

ber of single models. ⌊a⌋ is the biggest integer that is less

than a and yj,i are the oracle outputs by individual mod-

els hi for every sample j = 1, 2...N . It seems that if the

predictions of the sample are the same, the returned value

of Div will be 0, so the larger the value of E is, the more

diverse single models are.

The diversity of the base models for which the data

were divided into ten active region groups is presented in

Table 7.

To demonstrate the above conclusion, Figure 5

shows the diversity of the base models and the optimiza-

tion gain of the MIM over that of the base models. The

top panel shows the diversity of the base models for the

ten data groups and the middle and bottom panels show

the average AUC and HSS optimization gain with the

MIM versus that of seven base models for the same ten

data groups, respectively. The average AUC and HSS

gains with the MIM are defined as follows

gainAUC = AUCMIM − AUCbase models,

gainHSS = HSSMIM − HSSbase models.
(14)

The linear correlation between diversity and the MIM

gain of AUC and HSS is shown in Figure 6.

There are three main reasons that can explain better

results of the MIM. Firstly, the base models have good

performance in testing, which all have an accuracy above

0.6. Secondly, the diversity of models is good. Several

algorithmic methods are used in constructing prediction

models and the generalization performance of MIM is far

superior to that of single models.

In Figure 5, the diversity and average gain for AUC

and HSS have similar behavior and in Figure 6 there is

a significant linear correlation between diversity and op-

timization gain of AUC and HSS, i.e., greater diversity

leads to higher gain and less diversity leads to lower gain.

Thirdly, the genetic algorithm which is used in optimiza-

tion of weights is able to search for the global optimal

solution without making rules during processing; there-

fore, it can automatically find a group of weights for each
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Table 3 Performance of Individual Models and MIM Using TPrate

RBFN SVM C4.5 SMO BayesNet NaiveBayes Multi-perceptron MIM

1 0.6379 0.6538 0.6305 0.6559 0.629 0.6357 0.6284 0.6612

2 0.6851 0.6953 0.6953 0.7221 0.6908 0.6895 0.7297 0.7297

3 0.5839 0.569 0.5749 0.5764 0.5968 0.579 0.5619 0.5928

4 0.5751 0.5904 0.5941 0.6094 0.5876 0.5826 0.6068 0.6155

5 0.626 0.617 0.6212 0.5861 0.6313 0.6047 0.6091 0.6317

6 0.5835 0.5529 0.5544 0.5578 0.596 0.5762 0.5763 0.5925

7 0.6657 0.6784 0.649 0.6585 0.6601 0.6372 0.6647 0.6809

8 0.5886 0.6251 0.6462 0.6092 0.6591 0.6196 0.6374 0.652

9 0.6202 0.6578 0.6508 0.6235 0.6814 0.6387 0.6407 0.6814

10 0.5929 0.6383 0.6389 0.6185 0.6553 0.6349 0.6428 0.6574

Mean 0.61589 0.6278 0.62553 0.62174 0.63874 0.61981 0.62978 0.64951

Table 4 Performance of Individual Models and MIM Using TNrate

RBFN SVM C4.5 SMO BayesNet NaiveBayes Multi-perceptron MIM

1 0.8213 0.8372 0.8139 0.8393 0.8124 0.8191 0.8118 0.8446

2 0.8685 0.8787 0.8787 0.9055 0.8742 0.8729 0.9131 0.9131

3 0.7673 0.7524 0.7583 0.7598 0.7802 0.7624 0.7453 0.7762

4 0.7585 0.7738 0.7775 0.7928 0.771 0.766 0.7902 0.7989

5 0.8094 0.8004 0.8046 0.7695 0.8147 0.7881 0.7925 0.8151

6 0.7669 0.7363 0.7378 0.7412 0.7794 0.7596 0.7597 0.7759

7 0.8491 0.8618 0.8324 0.8419 0.8435 0.8206 0.8481 0.8643

8 0.772 0.8085 0.8296 0.7926 0.8425 0.803 0.8208 0.8354

9 0.8036 0.8412 0.8342 0.8069 0.8648 0.8221 0.8241 0.8648

10 0.7763 0.8217 0.8223 0.8019 0.8387 0.8183 0.8262 0.8408

Mean 0.7993 0.8112 0.8089 0.8051 0.8221 0.8032 0.8132 0.8323

Table 5 Performance of Individual Models and MIM Using AUC

RBFN SVM C4.5 SMO BayesNet NaiveBayes Multi-perceptron MIM

1 0.7296 0.7455 0.7222 0.7476 0.7207 0.7274 0.7201 0.7529

2 0.7768 0.787 0.787 0.8138 0.7825 0.7812 0.8214 0.8214

3 0.6756 0.6607 0.6666 0.6681 0.6885 0.6707 0.6536 0.6845

4 0.6668 0.6821 0.6858 0.7011 0.6793 0.6743 0.6985 0.7072

5 0.7177 0.7087 0.7129 0.6778 0.723 0.6964 0.7008 0.7234

6 0.6752 0.6446 0.6461 0.6495 0.6877 0.6679 0.668 0.6842

7 0.7574 0.7701 0.7407 0.7502 0.7518 0.7289 0.7564 0.7726

8 0.6803 0.7168 0.7379 0.7009 0.7508 0.7113 0.7291 0.7437

9 0.7119 0.7495 0.7425 0.7152 0.7731 0.7304 0.7324 0.7731

10 0.6846 0.73 0.7306 0.7102 0.747 0.7266 0.7345 0.7491

Mean 0.70759 0.7195 0.71723 0.71344 0.73044 0.71151 0.72148 0.74091

base model and approach the best-matched fusion strat-

egy.

5.2 Performance of Other Multiclass Models

Other typical ensemble classification methods, such as

the AdaBoost and MultiBoost algorithms, can be ap-

plied to prediction models. The AdaBoost algorithm is

used to construct a “strong” classifier by linearly combin-

ing “simple” and “weak” classifiers using reweighting.

It often dramatically improves the performance of weak

classifiers but it sometimes overfits. AdaBoost optimizes

the solution with each iteration, in which the weights of

trained samples misclassified by a weak classifier are in-

creased and the weights of samples correctly classified

are decreased. The next classifier uses the new data dis-
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Table 6 Performance of Individual Models and MIM Using HSS

RBFN SVM C4.5 SMO BayesNet NaiveBayes Multi-perceptron MIM

1 0.3191 0.3621 0.2962 0.3684 0.3123 0.3651 0.4087 0.3925

2 0.4906 0.5154 0.4874 0.554 0.4706 0.4985 0.5647 0.5537

3 0.2667 0.2588 0.2695 0.2651 0.2813 0.2751 0.2699 0.2976

4 0.2453 0.2841 0.2775 0.3178 0.2607 0.2782 0.2706 0.3183

5 0.3453 0.3545 0.3409 0.2944 0.3558 0.3491 0.3755 0.3786

6 0.1838 0.18 0.1698 0.18 0.2185 0.2205 0.1768 0.2258

7 0.3384 0.3764 0.3497 0.3364 0.3212 0.3269 0.2925 0.3733

8 0.205 0.3028 0.3087 0.2662 0.3257 0.2995 0.2521 0.3195

9 0.2848 0.4007 0.3587 0.3303 0.4563 0.394 0.3186 0.437

10 0.2659 0.3735 0.4056 0.3339 0.424 0.3935 0.4034 0.4246

Mean 0.29449 0.34083 0.3264 0.32465 0.34264 0.34004 0.33328 0.37209

Table 7 Diversity of Base Models

Data groups 1 2 3 4 5 6 7 8 9 10

Div 0.112 0.085 0.079 0.116 0.107 0.093 0.111 0.110 0.141 0.106

Fig. 5 Diversity of base models and average AUC and HSS gain of the MIM.

tribution and the process is repeated. MultiBoost com-

bines AdaBoost with wagging. It is able to harness both

the high bias of AdaBoost and the variance reduction by

wagging.

However, the performance of MIM was better than

that of AdaBoost and MultiBoost, as seen in Table 8. One

reason for this result is that the AdaBoost and MultiBoost

methods use the greedy method, a local searching opti-

mization algorithm that can guarantee the best solution

in every iteration but it often cannot achieve a global op-

timal solution. A genetic algorithm is a global searching

optimization method that yields better results than other

algorithms in a solar flare prediction model. Another

reason that the performance of the MIM is better than
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Fig. 6 Linear correlation between diversity and AUC and HSS gain.

Table 8 Performance of Different Multiclass Models

AdaBoostM1 MultiBoostAB Voting MIM

AUC 0.719 ± 0.043 0.701 ± 0.054 0.725 ± 0.041 0.741 ± 0.042

HSS 0.321 ± 0.082 0.311 ± 0.103 0.342 ± 0.087 0.372 ± 0.090

AdaBoost and MultiBoost is that the latter two construct

several base models using one classifier such as a deci-

sion tree. The differences among the three models are in

the distribution of data and their weighting, not the clas-

sification methods. This means that the diversity of mul-

tiple models may be worse than that of models that use

different classifiers. The MIM not only performs better

than other multiclass models but it also is extremely ver-

satile and extensible, and other prediction models such as

an expert system or a statistical model can be integrated

into it. The voting average of a multiclass model is taken

into consideration and compared with the weighted aver-

age of the model after optimization. Due to the random

matched fusion of a voting average, its performance will

not be better than that of weighted average fusion.

6 CONCLUSIONS

It is difficult to find a model that can preserve comple-

mentary information in SOHO/MDI full-disk longitudi-

nal magnetograms and also be used in classification or in

the construction of readable rules to integrate several in-

dividual models into a “strong” model and obtain a good

result. The MIM uses a genetic algorithm to avoid this

drawback. The weights of the individual models, which

are automatically created by the genetic process, act as a

relationship among the models. The process of searching

for an optimal solution can be viewed as integrating the

best rules of the individual models without human par-

ticipation. The rules set up by the models are unreadable

but they are available to the MIM for it to achieve a better

result than the individual models. Once the initial values,

optimization direction and optimization objects are de-

termined, the relationship among the individual models

can be constructed.

To demonstrate the improvement in performance of

the MIM, the models and classifiers were studied in light

of data mining techniques. If the MIM comprises phys-

ical models, expert models and statistical models, their

diversity would greatly improve the MIM and the MIM

would perform better. Future work includes integrating

more models into the hybrid system and increasing the

generalization performance of the model.
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