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Abstract Large-scale sky surveys are observing massive amounts of stellar spectra. The large number

of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in

statistically exploring properties related to the atmospheric parameters. This work focuses on designing

an automatic scheme to estimate effective temperature (Teff), surface gravity (log g) and metallicity

[Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This

scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a

series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme;

third, three atmospheric parameters Teff , log g and [Fe/H] are estimated using the computed DNNs. The

constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden

layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively.

This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity

distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors

on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for log g,

log Teff and [Fe/H] (64.85 K for Teff), respectively. Regarding theoretical spectra from Kurucz’s new

opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for

log g, log Teff and [Fe/H] (14.90 K for Teff), respectively.

Key words: methods: statistical — methods: data analysis — stars: fundamental parameters — stars:

atmospheres — stars: abundances — techniques: spectroscopic

1 INTRODUCTION

Some large-scale sky surveys are observing and will col-

lect massive amounts of stellar spectra, for example, the

Sloan Digital Sky Survey (SDSS; York et al. 2000; Alam

et al. 2015; Ahn et al. 2012), Large Sky Area Multi-

Object Fiber Spectroscopic Telescope/Guo Shou Jing

Telescope (LAMOST; Zhao et al. 2006; Luo et al. 2015;

Cui et al. 2012), and Gaia-ESO Survey (Gilmore et al.

2012; Randich et al. 2013). The large number of stellar

spectra makes it necessary to automatically parameterize

the spectra, which will in turn help statistical investiga-

tions of problems related to atmospheric parameters.

The present work studies the problem of spectrum

parameterization. A typical class of schemes is based on

(feedforward) neural networks ((F)NNs: Willemsen et al.

2005; Giridhar et al. 2006; Re Fiorentin et al. 2007; Gray

et al. 2009; Tan et al. 2013a). In these NNs, the informa-

tion moves in only one direction, that is from the input

nodes (neurons), through the hidden nodes, and to the

output nodes (neurons). In atmospheric parameter esti-

mation, the input nodes represent a stellar spectrum, and

the output node(s) represent(s) the atmospheric param-

eter(s) to be estimated, e.g., effective temperature Teff ,

surface gravity log g and metallicity [Fe/H]. An NN is

commonly obtained by a back-propagation (BP) algo-

rithm (Rumelhart et al. 1986).

For example, Bailer-Jones (2000) studied the predic-

tion accuracy of effective temperature Teff , surface grav-

ity log g and metallicity [Fe/H] using an FNN with two

hidden layers on theoretical spectra with various resolu-

tions and signal-to-noise ratios. Snider et al. (2001) pa-

rameterized medium-resolution spectra of F- and G-type

stars using two FNN networks with one and two hidden
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layers respectively. Manteiga et al. (2010) investigated

the estimation of atmospheric parameters from stellar

spectra by extracting features using time-frequency de-

composition techniques and an FNN with one hidden

layer. Li et al. (2014) investigated the atmospheric pa-

rameter estimation problem by detecting spectral fea-

tures by LASSO first and subsequently estimating the

atmospheric parameters using an FNN with one hidden

layer.

This article investigates the spectrum parameteriza-

tion problem using a deep NN (DNN). In application,

a traditional NN usually has one or two hidden layers.

By contrast, DNNs have two typical characteristics: (1)

a DNN usually has more hidden layers; (2) two proce-

dures are needed in estimating a DNN: prelearning and

fine-tuning. This scheme has been studied extensively

in artificial intelligence and data mining, and shows ex-

cellent performance in many applications, e.g., object

recognition (Krizhevsky et al. 2012), speech recognition

(Dahl et al. 2010; Hinton et al. 2012), pedestrian detec-

tion (Sermanet et al. 2013), image segmentation (Couprie

et al. 2013), traffic sign classification (Ciresan et al.

2012), image transcription (Goodfellow et al. 2013), se-

quence to sequence learning (Sutskever et al. 2014) and

machine translation (Bahdanau et al. 2014). This work

investigated the application of this scheme in spectrum

parameterization.

In this work, Section 2 introduces the NN, DNN,

their learning algorithms and the proposed stellar param-

eter estimation scheme. Section 3 reports some experi-

mental evaluations on real and synthetic spectra. Finally,

our work is summarized in Section 4.

2 PARAMETERIZING STELLAR SPECTRA

USING A DNN

2.1 A Neural Network (NN)

This work investigated a scheme to parameterize a stellar

spectrum using a DNN. An NN consists of a series of

neurons in multiple layers.

Figure 1 is a diagram of an NN with L layers. In this

diagram, a solid circle represents a neuron, and a dashed

circle is a bias unit used in describing the relationships

between neurons.

In an NN, every neuron is a simple computational

unit and has an input and an output, z and a, respec-

tively. For example, z
(l)
k and a

(l)
k denote the input and

output respectively of the k-th neuron in the l-th layer,

where l = 1, 2, · · · , L; k = 1, · · · , nl; and nl represents

the number of neurons in the l-th layer. The relationship

between an input and an output is usually described by

an activation function g(·) on layers l = 2, · · · , L − 1

a = g(z). (1)

This work used the sigmoid function

g(z) = 1/(1 + e−z). (2)

A neuron receives signals from every neuron in the

previous layer as follows

z
(l+1)
k =

nl
∑

i=1

w
(l)
ki a

(l)
i + b

(l)
k , (3)

where l = 1, · · · , L − 1, and w
(l)
ki describe the relation-

ship between the k-th and the i-th neurons on the (l+1)-

th and l-th layers (this relationship is represented with a

line between the two neurons in Figure 1), respectively;

b
(l)
k is the bias associated with the k-th neuron in the

(l + 1)-th layer (represented with a line between the k-

th neuron and bias unit in the (l + 1)-th and l-th layers,

respectively), and nl is the number of neurons in the l-th

layer.

Generally, the first layer and the last layer are called

input and output layers, respectively; the other layers are

referred to as hidden layers. In the first layer and last

layer, the output of a neuron is the same as its input

a
(l)
k = z

(l)
k , k = 1, · · · , n1; l = 1 and L. (4)

Suppose x = (x1, · · · , xn1
)T is a representation

of a signal (e.g., a stellar spectrum). If x is an input

into an NN in Figure 1 by letting z(1) = x, then

an output a(L) = (a
(L)
1 , · · · , a

(L)
nL

) can be computed

from the last layer of this network (Eqs. (3) and (1)),

where z(1) = (z
(1)
1 , · · · , z

(1)
n1 )T. Therefore, an NN im-

plements a non-linear mapping hW ,b(·) from an input

x = (x1, · · · , xn1
)T to an output a(L) of the last layer

a(L) = hW ,b(x), (5)

where

b = {b(l)} (6)

is the set of biases,

W = {W (l), l = 1, · · · , L} (7)

the set of the weights associated with an NN in

Equation (3), bl = {b(l)
j , 1 ≤ j ≤ nl} and W (l) =

{W (l)
ji }.

To define an NN, besides L, W and b, one more set

of parameters exists

(n1, n2, · · · , nL) . (8)
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Fig. 1 A diagram of a neural network.

2.2 A BP Algorithm for Obtaining an NN

Let

S = {(x, y)} (9)

be a training set for an NN, where x = (x1, · · · , xn1
)T

can be a representation of a spectrum and y is the ex-

pected output corresponding to x. Section 3.1 discusses

more about the training set.

In an NN, some parameters W and b should be

given. These parameters are computed by minimizing an

objective function J(W , b)

J(W , b) = 1
N

∑

x∈S(1
2‖hW ,b(x) − y‖2)

+λ
2

∑L−1
l=1

∑nl

i=1

∑nl+1

j=1 (w
(l)
ji )2, (10)

where N is the sample number of the training set and λ

is a preset parameter with non-negative value controlling

weight decay effects.

The first term of Equation (10) presents empirical ev-

idence of inconsistences between the actual and expected

outputs of an autoencoder; this term ensures the NN can

be reconstructed. The second term is for regularization,

which is used to reduce possible risks of overfitting to the

training set by controlling model complexity.

To obtain our NN from a training set, we initialize

each parameter w
(l)
ij and b

(l)
i to a small random value near

zero; subsequently, two parameters W and b are itera-

tively optimized using a gradient descent method based

on the objective function J in Equation (10). This learn-

ing scheme is referred to as a BP algorithm (Rumelhart

et al. 1986; Ng et al. 2012).

2.3 Self-Taught Learning Applied to DNNs

In a BP algorithm, the parameters W and b are initialized

with a small random value. However, the obtained results

of the BP algorithm are unsatisfactory when the number

of layers in an NN is higher than 4. In this case, b =

{b(l)} and W = {W (l), l = 1, · · · , L} can be initialized

using autoencoder networks.

An autoencoder is a specific kind of NN with three

characteristics:

– There is a unique hidden layer. The number of neu-

rons in this hidden layer is denoted by nae
2 .

– The output layer has the same number of neurons as

the input layer. This number of neurons in the input

layer is denoted by nae
1 .

– The expected outputs of the NN are also its inputs.

Therefore, the parameters of an autoencoder are bae,

W ae and nae, where bae = {b(1,ae), b(2,ae)} is a set of

biases, W ae = {W (1,ae), W (2,ae)} a set of weights be-

tween neurons on different layers, and nae = (nae
1 , nae

2 )

the numbers of neurons on input layer and hidden layer.1

Therefore, to obtain a DNN (Fig. 1), the proposed

learning scheme consists of the following processes:

– Initialization using autoencoders. To initialize

the parameters W (1) and b(1) in Equations (7) and

(6), an autoencoder with (nae
1 , nae

2 ) = (n1, n2)

is established; W ae = {W (1,ae), W (2,ae)} and

bae = {b(1,ae), b(2,ae)} are obtained from a train-

ing set S(1) = {(x, x), x ∈ S} using the BP al-

gorithm (Sect. 2.2) and let W (1) = W (1,ae) and

b(1) = b(1,ae), where n1 and n2 are defined in

Equation (8). To initialize W (l) and b(l), the train-

ing set S is input into the DNN in Figure 1 to

produce the outputs S(l) from the l-th layer of the

DNN in Figure 1. Subsequently, an autoencoder with

(nae
1 , nae

2 ) = (nl, nl+1) is established, W ae =

{W (1,ae), W (2,ae)} and bae = {b(1,ae), b(2,ae)} are

obtained from the training set S(l) using the BP al-

gorithm (Sect. 2.2), and the computed W (1,ae) and

b(1,ae) are the initializations of W (1) and b(1), re-

spectively, where l = 2, · · · , L.

– Fine-tuning. The initialized W and b from the

autoencoders are optimized using a gradient de-

scent method based on the objective function J in

1 The superscript ‘ae’ is an abbreviation of ‘autoencoder’.
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Equation (10) (this optimization procedure is the

same as that in the BP algorithm: Section 2.2, Ng

et al. 2012).

2.4 Spectrum Parameterization and Performance

Evaluation

This work parameterizes stellar spectra using a DNN

with six layers; its configurations of the DNN are L =

6 and (n1, · · · , n6) = (3821, 1000, 500, 100, 30, 1)2,

where nl is the number of neurons in the l-th layer of

the DNN. In this DNN, the number of nodes in the input

is equal to that of pixels of the spectrum to be processed.

The three atmospheric parameters are estimated one by

one, therefore the output layer has one node.

Before inputting into the DNN, a spectrum is nor-

malized in this work. Suppose x is a spectrum. It is nor-

malized as follows

x =
x√
xTx

, (11)

where the superscript T is a transpose operation.

In the training set S in Equation (9), let y represent

the effective temperature corresponding to a spectrum x.

From this training set S, a DNN estimator, namely hW,h,

can be obtained for estimating Teff . Suppose that S′ is a

test set. In the present work, whether S′ can be S or not

is defined to introduce performance evaluation schemes.

Regarding S′, the performance of the estimator hW,h

is evaluated using the following three methods: mean ab-

solute error (MAE), mean error (ME) and standard devi-

ation (SD). They are defined as follows:

ME =
1

M

∑

(x,y)∈S′

e(x, y), (12)

MAE =
1

M

∑

(x,y)∈S′

|e(x, y)|, (13)

SD =

√

√

√

√

1

M

∑

(x,y)∈S′

(e(x, y) − ME)2, (14)

where M is the number of stellar spectra in S′, and e is

the deviation of the estimation from its reference value

of the stellar parameter

e(x, y) = hW,h(x) − y . (15)

These evaluation schemes are widely used in related

researches (Re Fiorentin et al. 2007; Jofré et al. 2010;

2 This configuration is chosen based on experimental experiences
using the training set.

Tan et al. 2013b), and more about them is discussed in Li

et al. (2015).

Similarly, the estimators for surface gravity log g and

metallicity [Fe/H] are obtained and evaluated.

3 EXPERIMENTS

This section evaluates the performance of the proposed

scheme on both real stellar spectra and theoretical spec-

tra.

3.1 Performance on SDSS Spectra

The experimental data set consists of 50 000 stellar

spectra randomly selected from SDSS/SEGUE DR7

(Abazajian et al. 2009; Yanny et al. 2009). The signal-

to-noise ratios of these spectra are [4.78397, 103.97]

in the G band, [8.92085, 116.329] in the R band and

[4.98563, 107.061] in the I band. The parameter ranges

of these stellar spectra are presented in Table 1(a) and

Figure 2, and their parameter reference values are ob-

tained from the SDSS/SEGUE Spectroscopic Parameter

Pipeline (SSPP; Beers et al. 2006; Lee et al. 2008a,b;

Allende Prieto et al. 2008; Smolinski et al. 2011; Lee

et al. 2011).

To parameterize the stellar spectra using the pro-

posed DNN method, these spectra should be aligned

based on rest wavelength. Therefore, all of these spectra

are shifted to their rest frames and rebinned to a common

wavelength range [3818.23, 9203.67] Å, and resampled

in log(wavelength) with step size 0.0001.

The proposed scheme is a statistical method, DNN.

The configuration, W and b, of the proposed scheme

should be estimated from some empirical data, and eval-

uated based on independent sets of observed stellar spec-

tra. The two spectral sets are referred to as a training set

and a test set, respectively. Therefore, we randomly select

20 000 spectra from the 50 000 stellar spectra as training

samples, and the others as test samples.

Regarding the SDSS test spectra, the MAEs (mean

absolute error defined in Eq. (13)) of the proposed

DNN method are 64.85 K for effective temperature Teff

(0.0048 dex for log Teff ), 0.1129 dex for abundances

[Fe/H] and 0.1477 dex for surface gravity log g. To be

comparable, therefore, the DNN is also evaluated using

ME (mean error, Eq. (12)) and SD (standard deviation,

Eq. (14)) (Table 2 (a)).

Some results are summarized in Table 2(b) from

some related works in the literature. It is shown that the

proposed DNN is accurate and excellent for stellar spec-

tral parametrization.
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Fig. 2 Coverage of atmospheric parameters associated with the selected SDSS spectra. The color of the circles indicates the

corresponding [Fe/H].

Table 1 Parameter Ranges of the Real Spectra

(a) Real spectra from SDSS DR7 (b) Theoretical spectra

Atmospheric Parameters Ranges Atmospheric Parameters Ranges

Effective Temperature Teff [4088, 9740] K Effective Temperature Teff [4000, 9750] K

Surface Gravity log g [1.015, 4.998] dex Surface Gravity log g [1, 5] dex

Metallicity [Fe/H] [–3.497, 0.268] dex Metallicity [Fe/H] [–3.6, 0.3] dex

Table 2 Experimental Results

(a) Experimental results on SDSS stellar spectra

Estimation Method Evaluation Method log Teff (dex) Teff (K) log g (dex) [Fe/H] (dex)

The Proposed

DNN

MAE 0.0048 64.85 0.1477 0.1129

ME 0.00005 0.6219 0.0149 0.0043

SD 0.0075 104.97 0.2180 0.1582

(b) Experimental results evaluated on SDSS stellar spectra summarized from some related literatures

ANN (Re Fiorentin et al. 2007) MAE 0.0126 - 0.3644 0.1949

SVRG (Li et al. 2014) MAE 0.0075 101.6 0.1896 0.1821

OLS (Tan et al. 2013b) SD - 196.5 0.596 0.466

SVRl (Li et al. 2015) MAE 0.0060 80.67 0.2225 0.1545

(c) Experimental results on synthetic stellar spectra

Estimation Method Evaluation Method log Teff (dex) Teff (K) log g (dex) [Fe/H] (dex)

The Proposed

DNN

MAE 0.0011 14.90 0.0182 0.0112

ME 0.0002 2.861 0.0029 0.0008

SD 0.0016 22.55 0.0646 0.0153

(d) Experimental results evaluated on synthetic stellar spectra summarized from some related literatures

ANN (Re Fiorentin et al. 2007) MAE 0.0030 - 0.0245 0.0269

SVRG (Li et al. 2014) MAE 0.0008 - 0.0179 0.0131

OLS (Li et al. 2015) MAE 0.0022 31.69 0.0337 0.0268
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Fig. 3 Coverage of atmospheric parameters associated with the synthetic spectra.

3.2 Evaluations using Synthetic Spectra

The proposed DNN-based scheme is further tested on

18 969 theoretical star spectra. These spectra are com-

puted using the SPECTRUM software package (v2.76)

based on Kurucz’s new opacity distribution function

(NEWODF; Piskunov et al. 2003) model.

The parameter ranges of these synthetic spectra are

listed in Table 1(b) and Figure 3. For effective tempera-

ture, these synthetic spectra are computed from 45 pa-

rameter values with step 100 K between 4000 K and

7500 K, and 250 K between 7750 K and 9750 K; for

metallicity [Fe/H], the spectra are sampled from 27 pa-

rameter values with step length 0.2 dex between –3.6 and

–1 dex, and 0.1 dex between –1 and 0.3 dex; for surface

gravity, these theoretical spectra are sampled on 17 val-

ues with step 0.25 dex.

These synthetic spectra are computed with the same

wavelength sampling as the real SDSS spectra, and the

synthetic spectra are noise-free. In this experiment, the

sizes of the training set and test set are 5000 and 13 969

respectively. On this test set, the MAE errors are 14.90 K

for effective temperature Teff (0.0011 dex for log Teff),

0.0112 dex for metallicity [Fe/H], and 0.0182 dex for

surface gravity log g. More experimental results based on

SD and ME are demonstrated in Table 2(c).

3.3 Comparison with Previous Works

Because the estimation of atmospheric parameters from

stellar spectra is a fundamental problem in large sky sur-
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veys, it has been studied extensively (Re Fiorentin et al.

2007; Jofré et al. 2010; Tan et al. 2013b; Li et al. 2014,

2015).

The atmospheric parameter estimation scheme usu-

ally consists of two procedures: representation and map-

ping. The representation procedure determines how to

represent the information contained in a spectrum, for ex-

ample, Principle Component Analysis (PCA) projections

(Jofré et al. 2010; Bu & Pan 2015). The second procedure

establishes a mapping from the representation of a spec-

trum to its parameter to be estimated.

Usually, the two procedures are optimized sepa-

rately. For example, Re Fiorentin et al. (2007) obtain the

representation of a spectrum by a PCA method and pa-

rameterize it using an FNN; Li et al. (2015) compute the

representation based on a ‘Least Absolute Shrinkage and

Selection Operator with backward selection’ (LARSbs)

method and wavelet analysis, and parameterize the spec-

trum using a Support Vector Regression method with a

linear kernel (SVRl). Tan et al. (2013b) represent a spec-

trum using its Lick line index and estimate the atmo-

spheric parameters with an ordinary least squares regres-

sion method.

On the contrary, the proposed DNN deals with the

spectrum parametrization problem in one unique opti-

mization framework. Some results in the related litera-

ture are summarized in Table 2(c) and (d). These demon-

strate that the scheme proposed in the present work has

excellent performance in stellar spectrum parametriza-

tion.

4 CONCLUSIONS

This work investigated the estimation of atmospheric pa-

rameters from stellar spectra using deep learning tech-

niques. This parameter estimation problem is commonly

referred to as the spectrum-parameterization problem or

stellar spectrum classification in related astronomical lit-

eratures.

The spectrum-parametrization problem aims to de-

termine a mapping from a stellar spectrum to its atmo-

spheric parameters to be estimated. This work investi-

gated this problem using a DNN. The proposed scheme

uses two procedures to determine the mapping: pre-

learning and fine-tuning. The pre-learning procedure ini-

tializes the structure of the deep network by analyzing

the intrinsic properties of a set of empirical data (stel-

lar spectra in this work). A fine-tuning procedure read-

justs the network based on specific needs to estimate the

atmospheric parameters. Experiments both on real and

synthetic spectra show the favorable robustness and ac-

curateness of the proposed scheme.
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