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Abstract Varying speed of light (VSL) has been used in cosmological models in which the physical

constants vary over time. On the other hand, the Dvali, Gabadadze and Porrati (DGP) brane world model,

especially its normal branch, has been extensively discussed to justify the current cosmic acceleration.

In this article we show that the normal branch of DGP in VSL cosmology leads to a self-accelerating

behavior and therefore can interpret cosmic acceleration. Applying statefinder diagnostics demonstrates

that our result slightly deviates from the ΛCDM model.
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1 INTRODUCTION

We know that any physical theory consists of at least

one or more free parameters, called fundamental con-

stants. These parameters have been measured in ob-

servations and compared with theoretical predictions.

Aside from some recent observational results which

show the possibility of tiny variations in these con-

stants, one can assume a varying constant theory and deal

with its consequences (Chand et al. 2004; Bahcall et al.

2004; Drinkwater et al. 1998; Ubachs & Reinhold 2004;

Petitjean et al. 2004; Bertotti et al. 2003).

Varying constant theories have been proposed and

studied in literature. For instance, the Brans-Dicke grav-

ity theory (Brans & Dicke 1961), which is an exten-

sion of the standard general theory of relativity, con-

siders a varying Newtonian constant G by means of a

scalar field. The Barrow-Magueijo theory (Barrow &

Magueijo 2005) varies the electron-proton mass ratio

µ ≡ me/mp, via a change in electron mass using a

scalar field. The Bekenstein-Sandvik-Barrow-Magueijo

scenario (Bekenstein 1982; Sandvik et al. 2002) con-

siders variations in the fine structure constant α, driven

again with a scalar field. Also, one model has recently

attracted a great deal of attention, the varying speed of

light (VSL) theory, which as a cosmological model may

be considered as a competitor to inflation, since it can

solve some cosmological problems and provides a theory

of structure formation. One can regard the VSL theory

(Moffat 1993; Magueijo 2000; Magueijo 2003; Barrow

& Magueijo 2000) as a result of a varying-α theory, be-

cause of the relation between α and c, α = e2/~c. If

α varies, e, ~ or c, or a combination of them, has to be

varied.

Although constancy of the speed of light is the foun-

dation of the theory of relativity and apparently it has

been verified through many experiments, such as the

Michelson-Morely experiment, one can still consider a

VSL theory in the sense that the results of such experi-

ments must still hold at the appropriate scale in this part

of the Universe and at this time.

On the other hand, a large amount of recent stud-

ies investigate the effects of extra dimensions in our

Universe (Sami 2003; Farajollahi & Ravanpak 2011;

Nojiri & Odintsov 2000; Bouhmadi-López et al. 2010).

In the simplest model of higher dimensional gravity,

called brane cosmology, we assume our four dimensional

(4D) world to be a brane embedded in a five dimen-

sional (5D) spacetime (Randall & Sundrum 1999b,a).

The Dvali, Gabadadze and Porrati (DGP) model is a spe-

cial case of brane cosmology in which the 4D Universe

is embedded in a 5D Minkowskian bulk (Dvali et al.

2000). According to how one can embed the 4D brane

into the 5D Minkowskian bulk, the DGP model includes

two separate branches which are distinguished with a pa-

rameter ǫ = ±1. The case ǫ = +1 is dubbed a self-
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accelerating branch, since it can show late time accelera-

tion without any dark energy component (Deffayet 2001;

Deffayet et al. 2002). However, the case ǫ = −1, called

a normal branch, needs a dark energy component for late

time acceleration. The most important feature of the DGP

model is its self-accelerating branch which suffers from

the ghost problem (Nicolis & Rattazzi 2004; Koyama &

Maartens 2006). Thus, it will be very interesting if one

can modify the normal branch in such a way that it be-

comes self-accelerating. Bouhmadi-López (2009), using

a f(R)-brane in the DGP model, changed the normal

branch to a self-accelerating one.

The effects of variation of physical constants, in the

context of different higher dimensional theories, have

been investigated in recent years. In Brax et al. (2003);

Germani & Sopuerta (2003), varying constant theories

in brane cosmology and in a string-inspired brane world

model have been studied respectively. The varying-G

scenario in brane cosmology is the main feature in

de Leon (2002); Amarilla & Vucetich (2010). VSL in

brane cosmology and in a brane-induced Friedmann-

Robertson-Walker Universe has been studied, respec-

tively, in Youm (2001) and Alexander (2000). Also, Steer

& Parry (2002) examined VSL in a brane scenario from

a different point of view. However, varying constant the-

ories in the context of a DGP brane world model have

not been investigated and the results and consequences

of such a model are not clear yet.

In this manuscript we apply the VSL scenario in

the DGP brane world cosmology. Our aim is to study

the effect of this modification on the normal branch of

the DGP model to find out if the integration of these

two could lead the normal branch to be self-accelerating.

This paper is outlined as follows. In Section 2, we ob-

tain our model equations in the presence of a varying-

c. We should note that variation can be spatial or tem-

poral, or both. Here, we only discuss variation with re-

spect to time. In Section 3, by assuming a widely used

function for c(t), we compare the normal DGP model in

the presence of a constant c with a time dependent c(t).

We constrain our model parameters under which the nor-

mal branch will be self-accelerating in a varying-c theory.

Section 4 includes conclusions and remarks.

2 DGP VARYING SPEED OF LIGHT THEORY

We start the DGP cosmologies within the framework of VSL theories with the metric

ds2 = −n2(t, y)c2(t)dt2 + a2(t, y)γijdxidxj + b2(t, y)dy2, (1)

where γij is the metric of a three dimensional maximally symmetric space with a constant curvature k, and xi are the

coordinates on the spatial slices. The a(t, y) is the cosmological scale factor on the brane and b(t, y) can be considered

to be the scale factor along the extra dimension. Also, we have assumed that the speed of light is only a function of

time, c(t).

Since in the VSL theories the Lorentz invariance becomes clearly broken, it is postulated that there exists a

preferred Lorentz frame in which the action is similar to a usual Lorentz invariant action with a constant c, replaced

by a field c(xµ). It is called the principle of minimal coupling. In other words, c varies in the local Lorentzian frames

associated with cosmological expansion. This effect is a special relativistic effect and not a gravitational one. So, as

proposed in Albrecht & Magueijo (1999), c(t) does not introduce any corrections to the Einstein tensor for the above

metric in this preferred frame and then we can derive the non-vanishing components of the 5D Einstein tensor as
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ȧṅ

an

)

− 3
k

a2
, (5)

where dot and prime respectively mean derivative with respect to time t and y.
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In obtaining the above equations, we have assumed that the radius of the extra space is stabilized, i.e., ḃ = 0. Also,

we have considered that the y-coordinate is defined to be proportional to the proper distance along the y-direction with

b being the constant of proportionality, i.e., b′ = 0. According to these assumptions, we have defined the y-coordinate

such that b = 1.

By assuming all the matter fields are confined on the brane and using junction conditions, after some calculations

we reach

H2 +
kc2(t)

a2(t)
=

(

√

8πG

3
ρ +

1

4r2
c

+
ǫ

2rc

)2

(6)

and

2Ḣ + 3H2 +
kc(t)2

a2
= −

3H2 + 3kc(t)2

a2 − 2ǫrc

√

3H2 + kc(t)2

a2 8πG

1 − 2ǫrc

√

3H2 + kc(t)2

a2

(7)

as the effective Friedmann equations on the 4D brane. Here, ρ and p are energy density and pressure of the matter

fields respectively, G is the gravitational constant and rc is the crossover length scale which separates 4D and 5D

regimes of the model.

The violation of energy conservation is a general fea-

ture of the VSL theory. It can be seen via combining the

above two Friedmann equations that

ρ̇ + 3H

(

ρ +
p

c2(t)

)

=
3kc(t)ċ(t)

4πGa2(t)
. (8)

For ċ(t) 6= 0, the conservation of energy is destroyed.

So, any change in the speed of light may be con-

sidered as a source of matter creation. To solve this

problem, the following two solutions have been pro-

posed. (1) We can modify the energy momentum Tµν

(Shojaie & Farhoudi 2006) by including other physi-

cal terms or varying gravitational constant G(t), such

that G(t)c(t)−4 = const (Barrow & Magueijo 2000).

Thus, the energy-momentum remains conserved. (2) We

can neglect the energy-momentum conservation, and re-

gard variation in the speed of light as a source of mat-

ter creation (Shojaie & Farhoudi 2006). In this paper, we

adopt the latter and in the next section discuss the conse-

quences.

3 THE NORMAL DGP BRANCH IN VSL

Let us investigate the effect of VSL in the normal branch

of the DGP model. We start with the Friedmann equation

of the normal branch in the original DGP, in which the

speed of light c is a constant,

H2 +
kc2

a2(t)
=

(

√

8πG

3
ρ +

1

4r2
c

−
1

2rc

)2

, (9)

where ρ is ordinary matter. Therefore, in the limit of late

time, we can neglect it and the equation reduces to

H2 +
kc2

a2(t)
= 0, (10)

or, in terms of the new variable Ωk = −k/(a2H2), to

H2 =
Ωk0H

2
0 c2

a2(t)
, (11)

where the subscript, ‘zero’, represents the present value

of parameters. Integrating this equation gives us the be-

havior of the scale factor at late time as

a(t) = (
√

Ωk0cH0)t. (12)

Regardless of the values of Ωk0 and H0, this relation

shows no acceleration at late time.

Now, we apply the same procedure in the presence

of a varying c(t). With regard to Equation (9), we obtain

at late time

H2 +
kc2(t)

a2(t)
= 0, (13)

or

H2 =
Ωk0H

2
0 c2(t)

a2(t)
. (14)

In the following we assume the widely used expression

for c(t) to be (Barrow & Magueijo 2000)

c(t) = c0a
n(t) = c0(1 + z)−n, (15)

where c0 is the current value of the speed of light and

n is a constant where for n → 0; c(t) approaches the

constant speed of light limit. This is called the Machian

scenario which has significant advantages compared to

the phase transition scenario in which the speed of light

varies abruptly at a critical temperature (Moffat 1993;

Albrecht & Magueijo 1999). Also, since ċ/c = nȧ/a, the

speed of light decreases with time for n < 0, and grows

for n > 0. Inserting Equation (15) in Equation (14), one

obtains

H2 =
Ωk0H

2
0 c2

0a
2n(t)

a2(t)
. (16)
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Fig. 1 The behavior of deceleration parameter versus redshift

for different values of VSL-DGP parameter n. The case n = 0
is related to an ordinary DGP model with constant speed of

light. For n > 0, the late time acceleration is obvious.

Integration leads to

a(t) =
([

√

Ωk0c0H0(1 − n)
]

t
)

1

1−n

, (17)

where regardless of the values of Ωk0, H0 and c0, one

can find the deceleration parameter as

q = −
äa

ȧ2
= −n. (18)

According to Akarsu & Dereli (2012), the Universe

would display power-law accelerating expansion for

−1 < q < 0, exponential or de Sitter expansion for

q = −1 and super-exponential expansion for q < −1.

We know that our Universe is experiencing an acceler-

ated expansion phase, so with attention to Equation (18),

the normal DGP branch with a time VSL described by

Equation (15) can naturally lead to late time accelera-

tion for n > 0. It approaches a power-law, de Sitter or

super-exponential acceleration for 0 < n < 1, n = 1

and n > 1, respectively. The latter is related to the case

when the Universe ends with a Big Rip (Caldwell et al.

2003). The result of an ordinary normal DGP model with

a constant speed of light is covered when n = 0 (see

Fig.1).

4 STATEFINDER DIAGNOSTIC

The statefinder diagnostic is an approach that can distin-

guish different dark energy models. In this approach, two

new geometrical variables related to the third derivative

Fig. 2 The evolution of the statefinder parameter r versus s, in

the non-flat VSL-DGP model with n = 1. There is a very small

deviation from point (1, 0), related to the ΛCDM model. This

confirms the closeness and analogous nature of the two models.

of the scale factor with respect to time play a crucial role

(Sahni et al. 2003). In a non-flat Universe these variables

are defined as

r =
˙̈a

aH3
= q + 2q2 −

q̇

H
,

s =
r − Ωt

3(q − 1/2)
,

(19)

where Ωt = 1−Ωk. We can rewrite the above equation in

terms of the equation of state parameter of dark energy,

wd, and its first time derivative as

r = Ωt +
9

2
wd(1 + wd)Ωd −

3

2

ẇd

H
Ωd,

s = 1 + wd −
1

3

ẇd

wdH
.

(20)

Thus, for the flat ΛCDM model, in which wd = −1,

we have (r, s) = (1, 0). As mentioned, the pair (r, s) is

usually used to discriminate different dark energy mod-

els. Also, one can compare the (r, s) trajectories of these

models with each other and study their deviation from

the ΛCDM model.

In our model, for late time we have

r = −n + 2n2, (21)

where we have used Equation (18). So, we conclude that

only for the case n = 1 does our model approach the

ΛCDM model and in a power-law acceleration 0 < n <

1, or in a super-exponential acceleration n > 1, the
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Fig. 3 The evolution of the statefinder parameters r and s versus redshift, in the non-flat VSL-DGP model with n = 1.

model deviates from the ΛCDM model. Figure 2 illus-

trates the trajectories belonging to the VSL-DGP model

with n = 1. The range of change for the statefinder

parameters, especially r, is small, as can be seen from

Figure 3. This means that our model has a tiny departure

from the ΛCDM model. Also, the curve r(s) approaches

the fixed point (1, 0) at late time.

5 CONCLUSIONS

In this article we investigated VSL theory in the context

of the normal branch of DGP brane cosmology. With this

aim, we considered a time dependent speed of light de-

scribed by c0a
n(t). We derived the modified Friedmann

equations of the model. In comparison with the ordi-

nary DGP model and in late time approximation, we con-

cluded that our model can experience a late time accel-

eration for n > 0. We found that our model may lead

to a power-law acceleration for 0 < n < 1, an expo-

nential acceleration for n = 1 and also may end up with

a Big Rip for n > 1. Using the statefinder diagnostic,

we found that only the exponential or de Sitter expansion

approaches the ΛCDM model.
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