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Abstract We have investigated late time acceleration for a spatially flat dust filled Universe in Brans-

Dicke theory in the presence of a positive cosmological constant Λ. Expressions for Hubble’s constant,

luminosity distance and apparent magnitude have been obtained for our model. The theoretical results

are compared with observed values of the latest 287 high redshift (0.3 ≤ z ≤ 1.4) Type Ia supernova

data taken from the Union 2.1 compilation to estimate present values of matter and dark energy parame-

ters, (Ωm)0 and (ΩΛ)0. We have also estimated the present value of Hubble’s constant H0 in light of an

updated sample of Hubble parameter measurements including 19 independent data points. The results

are found to be in good agreement with recent astrophysical observations. We also calculated various

physical parameters such as matter and dark energy densities, present age of the Universe and decelera-

tion parameter. The value for Brans-Dicke-coupling constant ω is set to be 40 000 based on accuracy of

solar system tests and recent experimental evidence.

Key words: cosmology: cosmological parameters — cosmology: observations — dark energy —

Brans-Dicke theory

1 INTRODUCTION

The two independent groups headed by Riess and

Perlmutter via Type Ia supernovae (SNe Ia) (Perlmutter

et al. 1997; Riess et al. 1998) found that our Universe is

accelerating at present. Several theories have been put

forward to explain this remarkable discovery (Spergel

et al. 2003; Bennett et al. 2003; Tegmark et al. 2004).

An exotic bizarre form of energy called dark energy is

proposed to understand the accelerating expansion. Dark

energy is expected to possess negative pressure, which

repels matter from each other and accelerates expansion

of the Universe. The simplest candidate for dark energy

is the positive cosmological constant Λ which is consid-

ered to be a source with equation of state pΛ = −ρΛ. The

standard Friedmann-Robertson-Walker (FRW) model of

the Universe with cosmological constant as a source of

dark energy is often known as the Λ-CDM cosmologi-

cal model (Copeland et al. 2006; Grøn & Hervik 2007).

Basically, the standard FRW model represents a deceler-

ating Universe but the presence of a cosmological con-

stant as a source and its specific value makes the model

accelerating. It is found that the Λ-CDM model is in good

agreement with the latest observations (Abazajian et al.

2004; Sahni & Starobinsky 2000). Recently Goswami

et al. (2015, 2016a,b) have developed Λ-CDM type mod-

els for a Bianchi type I anisotropic Universe.

Apart from the Λ-CDM cosmological model, al-

ternative explanations for the accelerated expansion in

terms of scalar fields like quintessence (Caldwell et al.

1998), K-essence (Chiba et al. 2000), phantom fields

(Caldwell 2002) and Chaplin gas (Kamenshchik et al.

2001) are available. A number of models involving the

cosmological term, especially time-varying, have been

proposed (Carvalho et al. 1992; Wetterich 1995; Arbab

1997; Padmanabhan 2001; Vishwakarma 2002; Shapiro

& Sola 2004; Choudhury & Sil 2006).

It is worth investigating the effect of a cosmologi-

cal “constant” in the Brans-Dicke (BD) theory of gravity

(Brans & Dicke 1961) which describes evolution of the

Universe in that it explains the accelerating phase of ex-

pansion in the current epoch. In a recent paper, Hrycyna
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& Szydłowski (2013) compared dynamical evolution of

the standard cosmological model from the perspective of

both BD and the general theory of relativity. Singh &

Singh (1984) investigated a cosmological model in BD

theory by considering the cosmological “constant” as a

function of scalar field φ. Pimentel (1985) obtained exact

cosmological solutions in BD theory with a uniform cos-

mological “constant.” A class of flat FRW cosmological

models with cosmological “constant” in BD theory has

also been obtained by Ahmadi-Azar & Riazi (1995). The

age of the Universe from the perspective nucleosynthesis

with term in BD theory was investigated by Etoh et al.

(1997). Azad & Islam (2003) extended the idea of Singh

& Singh (1984) to study the cosmological constant in

Bianchi type I modified BD cosmology. Recently, Qiang

et al. (2005) discussed cosmic acceleration in five dimen-

sional BD theory using interacting Higgs and BD fields.

Smolyakov (2007) investigated a model which provides

the necessary value of effective cosmological “constant”

at the classical level. Embedding general relativity with a

varying cosmological term in the five dimensional BD

theory of gravity in a vacuum has been discussed by

Reyes & Madriz Aguilar (2009).

In this paper, we have investigated late time acceler-

ation for a spatially flat dust filled Universe in BD the-

ory in the presence of a positive cosmological constant

Λ. The paper is organized as follows: In Section 2, the

BD-field equations are developed for a Universe filled

with cosmic fluid as the source of matter in spatially ho-

mogeneous and isotropic space-time. In Section 3, we

have obtained an expression for the gravitational con-

stant in terms of redshift by solving BD-field equations.

The value for the coupling constant ω is set to be 40 000

on the basis of accuracy of solar system tests and recent

experimental evidence. In this section, we have also ob-

tained an expression for Hubble’s constant and the re-

lationship between energy parameters Ωm and ΩΛ. In

Section 4, expressions for luminosity distance and ap-

parent magnitude are obtained. Estimations of energy pa-

rameters and Hubble’s constant at present are dealt with

in Sections 5 and 6 respectively. In Section 7, we ob-

tain various physical parameters such as matter and dark

energy densities, present age of the Universe and value

of the deceleration parameter based on values of (Ωm)0,

(ΩΛ)0 and H0 obtained by us. The model predicts that

acceleration in the Universe began in the past at zc =

0.6818 ∼ 7.2371 × 109 yr before the present. Finally,

conclusions of the paper are presented in Section 8. The

results of our investigation are consistent with the lat-

est large scale structure measurements by surveys like

BOSS, WiggleZ and BAO, and WMAP or Planck re-

sults for CMB anisotropies (Planck Collaboration et al.

2016, 2014; Aubourg et al. 2015; Anderson et al. 2014;

Delubac et al. 2015; Blake et al. 2012). WMAP quoted

the value of dark energy density ΩΛ = 0.7184, whereas

the combined WMAP+CMB+BAO+BOSS surveys put

ΩΛ = 0.7181. We have obtained ΩΛ = 0.704.

2 BD-FIELD EQUATION

BD field equations are obtained from the following ac-

tion

δ

∫ √
−g

{

φ (R − 2Λ) + ω
φkφk

φ

}

. (1)

The field equations are

Rij −
1

2
R + Λgij = −

8π

φc4
Tij −

ω

φ2

(

φiφj

−
1

2
gijφkφk

)

−
1

φ

(

φi;j − gij�φ
)

, (2)

(2ω + 3)�φ =
8πT

c4
+ 2Λφ . (3)

We consider spatially homogeneous and isotropic

FRW space-time given by

ds2 = c2dt2 − a(t)2
[

dr2/(1 + kr2)

+r2(dθ2 + sin2 θdφ2)
]

, (4)

where k = −1 is for a closed Universe, k = 1 is for an

open Universe and k = 0 is for a spatially flat Universe.

a(t) is the scale factor.

The energy momentum tensor is taken as that of a

perfect fluid. This is given by

Tij = (p + ρ)uiuj − pgij , (5)

where giju
iuj = 1 and ui is the 4-velocity vector.

In co-moving coordinates

uα = 0, α = 1, 2, 3 . (6)

The BD-field Equations (2) and (3) for line element (4),

are obtained as

2
ä

a
+

ȧ2

a2
+

ωφ̇2

2φ2
+2

φ̇

φ

ȧ

a
+

φ̈

φ
= −

8π

φc2
p+

kc2

a2
+Λc2 , (7)

ȧ2

a2
+

φ̇

φ

ȧ

a
−

ωφ̇2

6φ2
=

8π

3φc2
ρ +

kc2

a2
+

Λc2

3
, (8)

φ̈

φ
+ 3

φ̇

φ

ȧ

a
=

8π(ρ − 3p)

(2ω + 3)c2φ
+

2Λc2

2ω + 3
, (9)
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ρ̇

ρ
+ 3γ

˙(a)

a
= 0 , (10)

Λc2 +3
kc2

a2
= 3

ä

a
+3

ȧ2

a2
−ω

φ̈

φ
−3ω

φ̇

φ

ȧ

a
+

ωφ̇2

2φ
. (11)

where γ is an equation of state. γ = 1 is for a dust dom-

inated Universe and γ = 4/3 is for a radiation filled

Universe.

2.1 Dust Model

The Universe is (at present) dust-dominated, so we take

p = 0. We define density parameters as

Ωm =
8πρ

3c2H2φ
,

ΩΛ =
Λc2

3H2
, (12)

Ωk =
kc2

H2a2
.

We also define the decelerating parameter for scale factor

a as

q = −
ä

aH2
.

Equations (7) to (9) and (11) then become

Ωm + ΩΛ + Ωk = 1 + ξ −
ω

6
ξ2 , (13)

ΩΛ =
ω + 3

2ω
Ωm −

2ω + 3

2ω
q +

2ω + 3

6
ξ2

−
2ω + 3

2ω
ξ, (14)

Ωk = 1 −
3(ω + 1)

2ω
Ωm +

2ω + 3

2ω
q +

4ω + 3

2ω
ξ

−
ω + 1

2
ξ2, (15)

Ωm = q −
ω

3
qφ + (ω + 1)ξ −

ω

3
ξ2 , (16)

where

ξ =
φ̇

φH
& qφ = −

φ̈

φH2
. (17)

Equation (13) is the BD analogue of the density parame-

ter relationship in the CDM relativistic model.

2.2 Spatially Flat Dust Model

We consider spatially flat space (k = 0, Ωk = 0).

Equations (15) and (16) give rise to the following equa-

tion.

q − (ω + 1)qφ + (3ω + 2)ξ = 2 . (18)

Equation (18) has first integral

(ω + 1)
φ̇

φ
−

ȧ

a
=

L

φa3
, (19)

where L is the constant of integration.

3 GRAVITATIONAL CONSTANT VERSUS

REDSHIFT RELATION

The solution of Equation (19) has a singularity at a = 0

and φ = 0, so we take constant L = 0. This gives the

following power law relation between scalar field φ and

scale factor a.

ξ =
1

ω + 1
, φ = φ0

(

a

a0

)
1

ω+1

, (20)

where φ0 and a0 are values of scalar field φ and scale

factor a at present, respectively. As gravitational constant

G is the reciprocal of φ i.e. G = 1
φ

, and a0

a
= (1 + z),

where z is the redshift,

G

G0
= (1 + z)

1
ω+1 .

This relationship shows that G grows toward the past and

in fact it diverges at cosmological singularity. Radar ob-

servations, lunar mean motion and the Viking landers on

Mars (Narlikar 2002) suggest that the rate of variation

of the gravitational constant must be very slow. Recent

experimental evidence shows that ω > 40 000 (Bertotti

et al. 2003; de Felice et al. 2006). Accordingly, we con-

sider a large coupling constant

ω = 40 000 . (21)

From Equation (19), the present rate of the gravitational

constant is given by
(

Ġ

G

)

0

= −
1

ω + 1
H0 = 2.5 × 10−15 , (22)

where we have taken H0 ≃ 10−10 yr−1. Figure 1

demonstrates the fact that G/G0 varies over ω. For

higher values of ω, G/G0 grows very slowly with red-

shift, whereas for lower values of ω it grows faster.

3.1 Density Parameters

Equations (13) and (20) give

Ωm + ΩΛ = 1 +
5ω + 6

6(ω + 1)2
. (23)

For ω = 40 000, Equation (23) becomes

Ωm + ΩΛ = 1.0000208 . (24)
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Fig. 1 Variation of gravitational constant over redshift for different ω’s.

3.2 Expression for Hubble’s Constant

Integration of energy conservation Equation (10) gives

ρ = (ρ)0

(a0

a

)3

, (25)

where we have taken γ = 1 for dust matter.

Equations (12), (20), (23) and (25) give the expres-

sion for Hubble’s constant as

H =
H0

√

1 + 5ω+6
6(ω+1)2

√

(Ωm)0

(a0

a

)

3ω+4

ω+1

+ (ΩΛ)0 ,

(26)

and
a0

a
= (1 + z).

Hubble’s constant in terms of redshift is given by

H =
H0

√

1 + 5ω+6
6(ω+1)2

√

(Ωm)0(1 + z)
3ω+4

ω+1 + (ΩΛ)0 .

(27)

4 EXPRESSION FOR LUMINOSITY DISTANCE

The luminosity distance in Equation (4) is as follows

DL = a0r(1 + z).

To get the expression for luminosity distance, we con-

sider light traveling along radial direction r. It satisfies a

null geodesic given by

ds2 = c2dt2 − a(t)2dr2 = 0.

From this, we obtain

r =

∫ rs

0

dr =

∫ t0

t1

dt

a(t)
=

∫ 0

z

dz

aż
=

1

a0

∫ z

0

dz

H(z)
,

where

ż =
˙(a0

a

)

= −H
(a0

a

)

.

So, the luminosity distance DL is given by

DL =
c(1 + z)

√

1 + 5ω+6
6(ω+1)2

H0

×
∫ z

0

dz
√

[(Ωm)0(1 + z)
3ω+4

ω+1 + (ΩΛ)0]

.

(28)

4.1 Expression for Apparent Magnitude

The apparent magnitude of a source of light is related to

the luminosity distance via the following expression

m = 16.08 + 5 log10

H0DL

0.026c Mpc
, (29)
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log10

(

H0DL

c

)

= (m − 16.08)/5

+ log10(0.026 Mpc). (30)

Using Equation (28), we get the following expression for

apparent magnitude

m = 16.08 + 5 log10

( (1 + z)
√

1 + 5ω+6
6(ω+1)2

0.026
∫ z

0

dz
√

[(Ωm)0(1 + z)
3ω+4

ω+1 + (ΩΛ)0]

)

. (31)

5 ESTIMATION OF PRESENT VALUES OF

ENERGY PARAMETERS

We consider a data set consisting of 287 high redshift

(0.3 ≤ z ≤ 1.4) SNe Ia. They are the observed apparent

magnitudes along with their associated errors from the

Union 2.1 compilation (Suzuki et al. (2012)). We also

obtain a large number of theoretical data correspond-

ing to (Ωm)0 in the range (0 ≤ (Ωm)0 ≤ 1 ) from

Equations (21), (24) and (31).

In order to get the best fit theoretical data set of ap-

parent magnitudes, we calculate χ2 by using the follow-

ing statistical formula (Yadav et al. 2012).

χ2
SN =

A − B2

C
+ log10

(

C
2π

)

287
, (32)

where,

A =

287
∑

i=1

[

(m)ob − (m)th

]2

σ2
i

, (33)

B =

287
∑

i=1

[

(m)ob − (m)th

]

σ2
i

, (34)

and

C =

287
∑

i=1

1

σ2
i

. (35)

Here the sums are taken over data sets of observed and

theoretical values of apparent magnitudes for 287 SNe

Ia.

Using Equations (32)–(35), we find that for the min-

imum value of χ2 = 16.6910, the best fit present val-

ues of Ωm and ΩΛ are given by (Ωm)0 = 0.296 and

(ΩΛ)0 = 0.712.

Now we repeat the above process with luminos-

ity distance. The observed data set of luminosity dis-

tances is obtained from those of the apparent magnitude

data set given in the Union 2.1 compilation by using

Equation (28). We get a large number of data represent-

ing theoretical values of luminosity distances. These cor-

respond to (Ωm)0 in the range (0 ≤ (Ωm)0 ≤ 1 ) from

Equations (21), (24) and (28). We find that for the mini-

mum value of χ2 = 0.6545, the best fit present values of

Ωm and ΩΛ are (Ωm)0 = 0.296 and (ΩΛ)0 = 0.704.

Figures 2 and 3 also indicate how well the observed

values of apparent magnitudes and luminosity distances

agree with the theoretical graphs for (ΩΛ)0 = 0.704 and

(Ωm)0 = 0.296.

6 ESTIMATION OF PRESENT VALUES OF

HUBBLE’S CONSTANT H0

We present a data set of observed values for Hubble

parameter H(z) versus redshift z with associated error

shown in Table 1. These data points were obtained by

various researchers over time, by using a differential age

approach.

As per our model, the Hubble’s constant H(z) ver-

sus redshift z relation is given by Equation (27). Hubble

Space Telescope (HST) observations of Cepheid vari-

ables (Sahni et al. 2014) provide the present value

of Hubble’s constant in the range H0 = 73.8 ±
2.4 km s−1 Mpc−1. Taking ω = 40 000, (Ωm)0 =

0.296, (ΩΛ)0 = 0.704 and using Equation (27), a large

number of data sets representing theoretical values of

Hubble’s constant H(z) for redshifts as per Table 1 and

H0 in the range (69 ≤ H0 ≤ 74) are obtained. It should

be noted that each data set will consist of 19 data points

and data sets differ in terms of values of H0.

In order to get the best fit theoretical data set of

Hubble’s constant H(z) versus z, we calculate χ2 by us-

ing the following statistical formula.

χ2
SN =

19
∑

i=1

[

(H)ob − (H)th

]2

σ2
i

. (36)

Using Equation (36), we find that for the minimum value

of χ2 = 10.2558, the best fit present value of Hubble’s

constant H0 is 72.30 km s−1 Mpc−1.

From Figures 4 and 5 we also observe the depen-

dence of Hubble’s constant on redshift and scale factors.

In Figure 4, the observed data points are close to the

graph corresponding to (ΩΛ)0 = 0.704, (Ωm)0 = 0.296

and H0 = 72.30 km s−1 Mpc−1. This validates the

proximity of observed and theoretical values.
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Table 1 Table of Values for Hubble’s Constant

z H(z) σH Reference Method

0.07 69 19.6 Moresco et al. 2012 DA

0.1 69 12 Zhang et al. 2014 DA

0.12 68.6 26.2 Moresco et al. 2012 DA

0.17 83 8 Zhang et al. 2014 DA

0.28 88.8 36.6 Moresco et al. 2012 DA

0.4 95 17 Zhang et al. 2014 DA

0.48 97 62 Zhang et al. 2014 DA

0.593 104 13 Moresco 2015 DA

0.781 105 12 Moresco 2015 DA

0.875 125 17 Moresco 2015 DA

0.88 90 40 Zhang et al. 2014 DA

0.9 117 23 Zhang et al. 2014 DA

1.037 154 20 Moresco 2015 DA

1.3 168 17 Zhang et al. 2014 DA

1.363 160 33.6 Moresco 2015 DA

1.43 177 18 Zhang et al. 2014 DA

1.53 140 14 Zhang et al. 2014 DA

1.75 202 40 Zhang et al. 2014 DA

1.965 186.5 50.4 Stern et al. 2010 DA

7 CERTAIN PHYSICAL PROPERTIES OF THE

UNIVERSE

7.1 Matter and Dark Energy Densities

The matter and dark energy densities of the Universe are

related to the energy parameters through the following

equation

Ωm =
(ρ)m

ρc

, ΩΛ =
ρΛ

ρc

, (37)

where

ρc =
3c2H2

8πG
=

3c2φH2

8π
, (38)

so

(ρm)0 = (ρc)0(Ωm)0, (ρΛ)0 = (ρc)0(ΩΛ)0 . (39)

Now

(ρc)0 =
3c2H2

0

8πG
= 1.88 h2

0 × 10−29 gm cm−3.

Therefore, the present values of matter and dark energy

densities are given by

(ρm)0 = 0.5565h2
0 × 10−29 gm cm−3 , (40)

and

(ρΛ)0 = ρc(ΩΛ)0

= 1.3235h2
0 × 10−29 gm cm−3. (41)

Here we have taken

(Ωm)0 = 0.296 and (Ωm)0 = 0.704.

General expressions for matter and dark energy are given

by

ρ = (ρ)0

(a0

a

)3

= (ρ)0

(

1 + z
)3

, (42)

and

(ρΛ) = ρc ΩΛ . (43)

We see that current matter and dark energy densities

are very close to the values predicted by various surveys

described in the Introduction.

7.2 Age of the Universe

We begin with the integral

t =

t
∫

0

dt =

a
∫

0

da

aH
,

t =

a
∫

0

√

1 + 5ω+6
6(ω+1)2 da

aH0

√

(Ωm)0(
a0

a
)

3ω+4

ω+1 + (ΩΛ)0

. (44)
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Fig. 2 Best fit curve for apparent magnitude versus redshift.

Fig. 3 Best fit curve for luminosity distance versus redshift.

Integrating Equation (44), we get the following ex-

pression for the age of the Universe.

H0t =
2
√

1 + 5ω+6
6(ω+1)2

3ω+4
ω+1

√

(ΩΛ)0
log
(

√

(ΩΛ)0
(Ωm)0

( a

a0

)
3ω+4

ω+1

+

√

1 +
(ΩΛ)0
(Ωm)0

( a

a0

)
3ω+4

ω+1
)

. (45)

In terms of redshift, the age is given as

H0t =
2
√

1 + 5ω+6
6(ω+1)2

3ω+4
ω+1

√

(ΩΛ)0
log
(

√

(ΩΛ)0
(Ωm)0

( 1

1 + z

)
3ω+4

ω+1

+

√

1 +
(ΩΛ)0
(Ωm)0

( 1

1 + z

)
3ω+4

ω+1
)

. (46)
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Fig. 4 Variation of Hubble’s constant with redshift including the corresponding best fit curve.

Fig. 5 Variation of Hubble’s constant with scale factor.

The present age of the Universe is given by

H0t0 =
2
√

1 + 5ω+6
6(ω+1)2

3ω+4
ω+1

√

(ΩΛ)0
log
(

√

(ΩΛ)0
(Ωm)0

+

√

1 +
(ΩΛ)0
(Ωm)0

)

. (47)

For ω = 40 000, (ΩΛ)0 = 0.704 and (Ωm)0 =

0.296, H0t0 = 0.9677. Since H−1
0 = 9.776 h−1 Gyr

= 13.5778 Gyr when h = 0.723, therefore t0 =

13.0847 Gyr. This is consistent with the most recent

WMAP data t0 = 13.73+0.13
−0.17.
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Fig. 6 Variation of redshift over time.

Fig. 7 Variation of scale factor over time.

In Figures 6 and 7, we have shown the variation of

scale factor and redshift over time. They are also consis-

tent with recent observations.

7.3 Deceleration Parameter

Equations (14), (20) and (23) give

q =
ω + 2

2(ω + 1)
−

3(ω + 1)

2ω + 3
ΩΛ . (48)
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Fig. 8 Variation of deceleration parameter over redshift. It represents an accelerating Universe at present.

Table 2 Cosmological Parameters at Present

Cosmological Parameter Value at Present

BD coupling constant ω 40 000
(

Ġ

G

)

0

2.5×10−15

Dark energy parameter (ΩΛ)0 0.704

Dust energy parameter (Ωm)0 0.296

Hubble’s constant H0 72.30

Deceleration parameter (q)0 –0.5560

Dust energy density (ρm)0 0.5565h2
0
× 10−29 gmcm−3

Dark energy density (ρΛ)0 1.3235h2
0
× 10−29 gmcm−3

Age of the Universe t0 13.0847 Gyr

Using Equations (26) and (27), we get the following

expression for the deceleration parameter

q =
ω + 2

2(ω + 1)
−

3(ω + 1)

2ω + 3
(ΩΛ)0

×

(

1 + 5ω+6
6(ω+1)2

)

(

(Ωm)0
(

a0

a

)

3ω+4

ω+1 + (ΩΛ)0

) . (49)

In terms of redshift it is given by

q =
ω + 2

2(ω + 1)
−

3(ω + 1)

2ω + 3
(ΩΛ)0

×

(

1 + 5ω+6
6(ω+1)2

)

(

(Ωm)0 (1 + z)
3ω+4

ω+1 + (ΩΛ)0

) . (50)

As the present phase (z = 0) of the Universe is ac-

celerating q ≤ 0 i.e. ä
a
≥ 0, we must have

(ΩΛ)0 ≥
(2ω + 3)(ω + 2)

6(ω + 1)2
. (51)

For ω = 40 000, the limit is as follows

(ΩΛ)0 ≥ 0.3333,

which is consistent with the present observed value of

(ΩΛ)0 = 0.704. Putting ω = 40 000, (ΩΛ)0=0.704,

(Ωm)0 = 0.296 and z = 0 in Equation (50), we get

the present value of the deceleration parameter

q0 = −0.5560 . (52)
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The Universe reaches its accelerating phase when z < zc

where z = zc at q = 0. Equation (50) provides

zc
∼= 0.6818 . (53)

Thus, the acceleration must have begun in the past at

zc = 0.6818 ∼ 0.5180H−1
0 yr ∼ 7.2371 × 109 yr be-

fore from the present. We have calculated redshift with

time using Equation (46).

Figure 8 shows how the deceleration parameter in-

creases from negative to positive with changing redhift,

which means that in the past the Universe was decelerat-

ing, then at the instant zc
∼= 0.6797 it became stationary,

and thereafter it started accelerating.

8 CONCLUSIONS

We summarize our results by presenting Table 2 which

displays the values of cosmological parameters at present

obtained by us.

We have found that the acceleration would have be-

gun in the past at zc = 0.6818 ∼ 7.2371× 109 yr before

the present. These results are in good agreement with var-

ious surveys described in the Introduction.
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Anderson, L., Aubourg, É., Bailey, S., et al. 2014, MNRAS,

441, 24

Arbab, A. I. 1997, General Relativity and Gravitation, 29, 61
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