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Abstract Within the framework of a non-local time-dependent stellar convection theory, we study in

detail the effect of turbulent anisotropy on stellar pulsation stability. The results show that anisotropy has

no substantial influence on pulsation stability of g modes and low-order (radial order nr < 5) p modes.

The effect of turbulent anisotropy increases as the radial order increases. When turbulent anisotropy is

neglected, most high-order (nr > 5) p modes of all low-temperature stars become unstable. Fortunately,

within a wide range of the anisotropic parameter c3, stellar pulsation stability is not sensitive to the

specific value of c3. Therefore it is safe to say that calibration errors of the convective parameter c3 do

not cause any uncertainty in the calculation of stellar pulsation stability.
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1 INTRODUCTION

Radiation and convection are two main mechanisms of

energy transport in stellar interiors. In low-temperature

late-type stars, convection, instead of radiation, becomes

the dominant energy transport mechanism. Convection

causes transport and exchange of energy, momentum and

material inside stars, and therefore has an important in-

fluence on stellar structure, evolution and pulsation sta-

bility.

Non-locality and anisotropy are two of the most im-

portant properties of stellar convection. There has been

much research and discussion regarding the effect of

non-local convection (Xiong et al. 1998a,b; Xiong &

Deng 2013), but the effect of turbulent anisotropy on stel-

lar pulsation stability has been less studied. The purpose

of this work is to provide an in-depth study and analysis

about this problem.

In Section 2 we give a brief introduction to our theo-

retical treatment of turbulent anisotropy. The dependence

of stellar pulsation stability on the anisotropic parameter

c3 is discussed in Section 3 by means of numerical meth-

ods. The results are summarized in Section 4.

2 THE THEORETICAL TREATMENT OF

TURBULENT ANISOTROPY

Convection is the internal instability of a fluid medium

induced by thermal instability. When the temperature

gradient exceeds the adiabatic value in a gravitationally

stratified fluid, rising and sinking fluid elements gain ex-

tra kinetic energy under buoyancy force, and convection

occurs. The initial convective motion is along the direc-

tion of the gravitational field, i.e. the radial direction.

However, a part of the kinetic energy of radial motion

will be converted into that of horizontal motion as a result

of the continuity of fluid motion and non-linear interac-

tion among turbulence elements. The scientific study of

turbulence began more than a century ago, but the na-

ture of anisotropic turbulence has not been fully under-

stood. There is no universally accepted anisotropic stel-

lar convection theory. Different treatments of anisotropy

of stellar convection have been adopted by different au-

thors (Unno 1967; Gough 1977; Canuto 1993; Li & Yang

2001). We proposed a more general treatment of turbu-

lent anisotropy (Deng et al. 2006), where the correlation

of turbulent velocity fluctuation w′iw′j was decomposed
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into the isotropic component gijx2 and the anisotropic

component χij

w′iw′j = gijx2 + χij . (1)

From turbulence theory, we know that in the dynamic

equations of turbulent velocity correlations, the corre-

lation of pressure and velocity gradient tends to make

turbulence isotropic (Rotta 1951). Therefore we further

assume that it has the form −c3χ
ij/τc, where τc is the

time scale of turbulent dissipation, and c3 ∈ (0,∞)

is an adjustable convective parameter. As c3 increases,

the pressure-velocity gradient correlation is more ca-

pable of restoring isotropy of turbulence, and so tur-

bulence becomes more isotropic. The complete set of

equations of stellar structure and pulsation under non-

local and anisotropic time-dependent convection the-

ory is described by Xiong et al. (2015, hereafter Paper

I). Asymptotic analysis shows that the ratio of mean

squared radial velocity to mean squared horizontal veloc-

ity u′2
r /u′2

h
≈ (c3 + 3)/2c3 in convectively unstable re-

gions. This theoretical expectation from asymptotic anal-

ysis has been verified by numerical calculations, there-

fore c3 is a convective parameter representing turbulent

anisotropy. In the next section, we quantitatively study

the effect of turbulent anisotropy on pulsation stability

by calculating non-adiabatic oscillations.

3 DEPENDENCE OF PULSATION STABILITY ON c3

We have briefly introduced our theoretical treatment of turbulent anisotropy in the previous section. The degree of

turbulent anisotropy can be calibrated by the convective parameter c3. In Paper I, we derived a complete set of dy-

namic equations for the calculation of stellar structure and oscillations in a non-local and anisotropic time-dependent

convection theory. The equations return to isotropic convection approximation when the anisotropic component of

the turbulent velocity correlation is set to zero, i.e. χij = 0, and the number of independent variables reduces from

8 to 7. Using Padova code (Bressan et al. 1993), we calculated stellar evolutionary modes with M = 1.4–3.0 M⊙,

X = 0.70 and Z = 0.02. Following the procedure described in Paper I, we then calculated non-local envelope models

in isotropic convection approximation as well as their radial and non-radial oscillations for g9–p29 modes. A modified

version of MHD equation of state (Hummer & Mihalas 1988; Mihalas et al. 1988; Daeppen et al. 1988) and OPAL

tabular opacity (Rogers & Iglesias 1992) complemented by low-temperature opacity (Alexander & Ferguson 1994)

were adopted in the calculations.

Figure 1(a) and (b) shows the distribution of stable (black dots) and unstable (colored open symbols) low-order

p modes in the Hertzsprung-Russell (H-R) diagram for radial (with degree l = 0) and l = 2 non-radial oscillations,

respectively. The dashed and solid lines are respectively the blue and red edges of the δ Scuti instability strip derived

under anisotropic convection theory (Xiong et al. 2016). It is clear that there is no red edge of the instability strip when

turbulent anisotropy is neglected in terms of our theory.

Starting from the dynamic equation of stellar structure and oscillations using our non-local and anisotropic con-

vection theory (Xiong et al. 2015)

Dui

Dt
+

1

ρ̄
∇k

[

gik
(

P̄ + ρ̄
)

+ ρ̄χik
]

+ gik∇kφ̄ = 0, (2)

and after linearization, we have

−ω2δri +
1

ρ̄

{
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gik
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(
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)′
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(
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]

}

+ gik∇kφ̄′ = 0. (3)

Multiplying Equation (3) by δridMr and integrating from the center to the surface, it is not difficult after some simple

derivations to obtain the amplitude growth rate, i.e. the normalized accumulated work

η = −
2πωi

ωr

= −
π

2E
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where
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1

2
ω2
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1

2
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0

[
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]

dMr. (5)
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From the energy equation, we obtain

δP̄

P̄
= Γ1

δρ̄

ρ̄
+

Γ3 − 1

P
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(
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− 3
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1

iω
∇k

(

F k
r + F k

c + F k
t

)′

}

. (6)

Substituting Equation (6), Equation (4) becomes

η =
π
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}

dMr, (7)

where Fr, Fc and Ft are the radiative flux, convective energy flux and turbulent kinetic energy flux, respectively.

Generally speaking, |Ft| ≪ |Fc|, therefore the influence of turbulent kinetic energy flux on pulsation stability is

negligible, compared with thermal convection Fc. In stellar pulsation, thermal convection always lags a little behind the

change of density. Therefore thermal convection (the thermodynamic coupling between convection and oscillations) is

generally a damping mechanism against oscillations. This gives rise to the red edge of the instability strip of Cepheids

and Cepheid-like variables.

In Equation (7), the first term in the first curly brack-

ets is the contribution of the isotropic component (ρx2)

of turbulent Reynolds stress. It can be proved that (5 −

3Γ3) > 0, and turbulent pressure always lags a little be-

hind the change of density. Therefore turbulent pressure

is in general an excitation of oscillations. The second and

third terms are the contribution of the anisotropic compo-

nent (ρχik) of turbulent Reynolds stress, i.e. the contribu-

tion of turbulent viscosity. Turbulent viscosity transforms

regular pulsational kinetic energy into irregular turbulent

kinetic energy. This process happens at low wavenum-

bers of turbulence (large-scale eddies). The turbulent ki-

netic energy of large-scale eddies transfers gradually to

high-wavenumber eddies as a result of turbulence cas-

cade, and is eventually transformed by molecular viscos-

ity into thermal energy. Therefore turbulent anisotropy,

i.e. turbulent viscosity, is always a damping mechanism

of oscillations.

We studied in detail the influence on stellar pulsa-

tion stability of the coupling between convection and

oscillations (Xiong et al. 2016). As pointed out, the

isotropic component of Reynolds stress, i.e. turbulent

pressure, is always an excitation mechanism of stellar os-

cillations, while turbulent viscosity is always a damping

mechanism. Turbulent viscosity is mostly included in the

anisotropic component of the turbulent velocity correla-

tion χij . When turbulent anisotropy is neglected, turbu-

lent viscosity is disregarded at the same time. Therefore

the red edge of the instability strip cannot be modeled

correctly in the isotropic convection approximation in

terms of our theory.

Table 1 Model Parameters

Series c3 u′2
r /u′2

h

a 1.0 2.00

b 3.0 1.00

c 5.0 0.80

d 16 0.59

e 64 0.52

f 256 0.51

We now turn to study quantitatively how stellar pul-

sation stability depends on the anisotropic parameter c3

of turbulent convection. As we pointed out in Paper I, a

quasi-anisotropic convection model can be constructed

using non-local envelope models in isotropic convec-

tion approximation together with the so-called quasi-

anisotropic approximation (eq. (48) in Paper I). It ap-

proximates very well the completely anisotropic convec-

tion model in terms of not only the T − P structure,

but also the turbulent velocity and temperature fields,

as well as the properties of non-adiabatic oscillations.

Therefore starting from non-local envelope models in

isotropic convection approximation, we calculated six se-

ries of quasi-anisotropic convection models with differ-

ent values of the convective parameter c3 adopting the

quasi-anisotropic approximation.

The model parameters are given in Table 1, where

the first column is the series number, the second col-

umn lists the values of the convective parameter c3 used

for each series and the third column shows the ratio

of squared radial velocity to squared horizontal veloc-
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Fig. 1 Distribution in the H-R diagram of stable (black dots) and unstable (colored open symbols) low-order p modes in isotropic

convection approximation. The dashed and solid lines are respectively the blue and red edges of the δ Scuti instability strip de-

rived under anisotropic convection theory (Xiong et al. 2016). Panel (a): radial oscillations (l = 0). Panel (b): l = 2 non-radial

oscillations.

ity u′2
r

/u′2

h
. As c3 increases, u′2

r
/u′2

h
decreases monoton-

ically and eventually converges to 1/2 in isotropic con-

vection in the convectively unstable zone. Thus isotropic

convection can be regarded as the limit as c3 → ∞. In

Paper I we discussed calibrations of convective parame-

ters, and reached the conclusion that c3 ≈ 3 is a good

choice. This means u′2
r /u′2

h
= 1 in a convectively un-

stable zone, which corresponds to the linearly most un-

stable mode of Unno (1967). It is worth noting that our

theory is a nonlocal convection theory, and u′2
r
/u′2

h
is a

variable instead of a constant. The radial component of

the turbulent velocity dominates in the convectively un-

stable zone, while in the overshooting zone, the turbulent

velocity is primarily horizontal (Deng et al. 2006).

Following the numerical scheme in Paper I, we cal-

culated radial (p0–p39) and l = 2 non-radial (g9–p29)

oscillations for the six series of quasi-anisotropic con-

vection models listed in Table 1.
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Fig. 2 Stable (black dots) and unstable (colored open symbols) low-order p modes of the six series of evolutionary models in the

H-R diagram. The dashed and solid lines are respectively the theoretical blue and red edges of the δ Scuti instability strip. Panels

(a)–(f) show series a–f of the evolutionary modes, respectively. The values of c3 are given in Table 1 and labeled in each panel.
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Fig. 3 Pulsation amplitude growth rate η as a function of the radial order nr with changing c3 for a 2.0 M⊙ low-temperature red

star outside the red edge of the δ Scuti instability strip. Panel (b) is an enlarged view of the boxed area in Panel (a).

Figure 2(a)–(f) shows the distribution of stable

(black dots) and unstable (colored open symbols) f and

low-order p modes for the six series of evolutionary

models in the H-R diagram. As the convective param-

eter c3 increases from 1 to 256, turbulent convection

changes from highly anisotropic in Figure 2(a) to highly

isotropic in Figure 2(f), but pulsation stability of low-

order (nr < 5) p modes shows no clear difference. Only

the p5–p6 modes of low-temperature red stars outside the

red edge of the δ Scuti instability strip become unstable,

which is because the convection coupling has overtaken

the radiation κ mechanism, and becomes the main exci-

tation and damping mechanism of oscillations in these

low-temperature red stars. The change of pulsation sta-

bility of low-order p modes with the convective param-

eter c3 in Figure 2(a)–(f) reflects the influence of turbu-

lent viscosity on stellar pulsation stability. Turbulent vis-

cosity is caused by shear motion of fluid, and is mainly
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Fig. 4 Stable (black dots) and unstable (open circles) modes in the nr − log Te plane for a 2.0 M⊙ star from the main sequence to

the beginning of the RGB. The sizes of the open circles are proportional to log η. Panels (a)–(f) show series a–f of the evolutionary

modes, respectively.
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Fig. 5 Stable (black dots) and unstable (open circles) modes in the nr − log L/L⊙ plane for a 2.0 M⊙ star along the RGB

(log Te < 3.70). Panels (a)–(f) show series a–f of the evolutionary modes, respectively.
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included in the anisotropic component. As c3 increases,

turbulent anisotropy decreases, therefore turbulent vis-

cosity decreases, and stellar oscillations tend to become

unstable.

Figure 3(a) shows the pulsation amplitude growth

rate η of a low-temperature red star with M = 2.0 M⊙

outside the red edge of the δ Scuti instability strip as a

function of the radial order nr with changing c3.

Figure 3(b) is an enlarged view of the boxed area in

Figure 3(a). It can be seen in Figure 3 that pulsation sta-

bility of g and p modes with nr < 5 hardly relies on the

convective parameter c3. However, toward higher radial

order, p modes become unstable as c3 increases. This per-

fectly explains the change of pulsation stability of low-

order p modes with anisotropic parameter c3 as shown in

Figure 2(a)–(f).

Figure 3(a) shows that there is a bump in the pulsa-

tion amplitude growth rate η as a function of the radial

order nr. η peaks at n ∼ 17, and all n = 8–27 modes are

unstable. These are the so-called solar-like oscillations

of stars (Xiong & Deng 2013). The classical δ Scuti in-

stability strip is defined in terms of low-order p modes.

For high-order p modes, the δ Scuti instability strip and

solar-like oscillations are connected to each other in the

H-R diagram.

Figure 4(a)–(f) shows stable (black dots) and unsta-

ble (open circles) modes in the nr − log Te plane for

M = 2.0 M⊙ evolutionary models from main sequence

to the beginning of the red-giant branch (RGB) of the

six series with different convective parameter c3, respec-

tively. The sizes of the open circles are proportional to

log η. From Figure 4(a)–(f), we can see:

(1) There is a clear red edge of the δ Scuti-γ Doradus

instability strip for all g, f and p modes with nr < 5,

and it hardly changes with the anisotropic parameter

c3.

(2) There exists no red edge of the δ Scuti instabil-

ity strip for p modes with nr > 8. The instability

strip and solar-like oscillations of low-temperature

red stars join together.

(3) Plots in Figure 4(a)–(f) are very similar to each other.

Pulsation stability does not show any drastic change

for models with different values of c3, although there

is a similar trend as in Figure 3. The areas of unstable

high-order p modes in Figure 4(e) and (f) are broader

than those in Figure 4(a)–(d).

Figure 4(a)–(f) shows only the change of pulsation

stability with log Te and c3 for a 2.0 M⊙ star before en-

tering the RGB phase, while Figure 5(a)–(f) shows sta-

ble (black dots) and unstable (open circles) modes in the

nr − log L/L⊙ plane for the six series of 2.0 M⊙ evo-

lutionary models along the RGB (log Te < 3.70). Plots

in Figure 5(a)–(f) are very similar, only that the areas

of unstable high-order p modes in Figure 5(e)–(f) are

broader than those in Figure 5(a)–(d). This means pulsa-

tion stability is also not sensitive to turbulent anisotropy

for RGB stars.

4 CONCLUSIONS AND DISCUSSION

In this work we have studied in detail the dependence

of pulsation stability of δ Scuti/γ Doradus stars on the

anisotropic parameter c3 of turbulent convection. The re-

sults show that:

(1) Turbulent anisotropy has virtually no influence on

pulsation stability of g modes and low-order (nr <

5) p modes. In a wide range of the anisotropic param-

eter c3 (1 . c3 . 16), pulsation stability of g and

low-order p modes hardly depends on c3. Therefore

we are confident to say that calibration errors of c3

have no substantial effect on pulsation stability of

δ Scuti/γ Doradus stars.

(2) The effect of turbulent anisotropy on pulsation sta-

bility of high-order (nr & 5) p modes is non-

negligible. Most high-order p modes of all low-

temperature red stars become unstable if turbulent

anisotropy is ignored, and the red edge of the δ Scuti

instability strip cannot be modeled theoretically.

Our non-local and anisotropic model and 3D hy-

drodynamical simulations show good agreement in the

deep convection zone, but have a notable difference near

the boundary and in the overshooting zone. However,

anisotropy has no substantial influence on pulsation sta-

bility of g modes and low-order p modes, and the

overshooting zone contributes little to mode inertia.

Therefore, at least for g modes and low-order p modes,

the uncertainty of turbulent anisotropy u′2

h
/u′2

r in the

overshooting zone in static models has no substantial in-

fluence on pulsation stability.
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