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Abstract The increasing number of space debris has created an orbital debris environment that poses

increasing impact risks to existing space systems and human space flights. For the safety of in-orbit

spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate re-

sources in a manner that most significantly improves the ability to predict and detect events involving

affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling

scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris

surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is

proposed, which can be implemented in two different ways: individual optimization and joint optimiza-

tion. Numerical experiments with multiple facilities and objects are conducted based on the proposed

algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

Key words: methods: data analysis — observational catalogs — telescopes — techniques: radar as-

tronomy

1 INTRODUCTION

With the increase of human space activities, the popu-

lation of space objects has consistently risen during the

last several decades, and created an orbital debris envi-

ronment that poses increasing impact risks to existing

space systems, including human space flights and robotic

missions (Kessler & Cour-Palais 1978; Liou & Johnson

2006). There are currently more than 20 000 tracked ob-

jects in Earth orbit, only 1300 of which are active space-

crafts. Tracking space debris is an extremely important

task for maintaining the safety and viability of manned

and unmanned spacecrafts. The sensors used to track

these objects are mechanical/phased-array radars and op-

tical telescopes. Unfortunately, insufficient resources ex-

ist to easily make enough observations to track every ob-

ject’s orbit with desired accuracy. This presents a signif-

icant challenge to the current space debris surveillance

network. One of the challenges of sensor scheduling in

the space surveillance network (SSN) is the large number

of resident space objects (RSOs) that must be tracked in

such a way as to produce acceptable orbital state accu-

racy to support conjunction analysis and collision avoid-

ance maneuver planning (Duncan & Wysack 2011).

The goal of sensor scheduling is to allocate a col-

lection of resources in a manner that most significantly

improves the ability to predict and detect events involv-

ing the RSOs. For effectively allocating these resources,

capabilities of the sensors, the system’s historical perfor-

mance and orbital accuracy requirements for cataloging

are three main factors which should be taken into consid-

eration.

The current US SSN tasking system only takes a lim-

ited number of factors into account (Wilson 2004), pro-

ducing only prioritized lists of the RSOs assigned to each

sensor, with requested collection number of tracks for

each object. The creation of a timeline for the collection

of observations is left to the individual sensor sites. There

are a number of other techniques that have been proposed

to address the optimization of SSN sensor tasking. Miller

(2007)’s work is well known and is based on marginal

analysis of the energy dissipation rate of orbital objects.
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Covariance-based scheduling also has been proposed by

Hill et al. (2010). Combinations of multiple algorithms

were also proposed including the algorithm for bottle-

neck avoidance (Stottler 2012). Herz & Stoner (2013) re-

cently proposed an optimization algorithm inherent in its

COTS product with a proprietary optimization search.

To the authors’ knowledge, there are issues that still

need to be addressed with the current process: (1) the

schedule may not be globally optimized since schedul-

ing occurs only locally without reference to what is as-

signed or scheduled at other sensor sites; (2) the effects

of other observations, which can provide complementary

observations of the object and improve the object’s orbit

precision, of the same object by other specific sensors at

specific times should be considered.

Particle swarm optimization (PSO) is an evolution-

ary computation technique inspired by the behavior of

bird flocks, which was first introduced by Kennedy &

Eberhart (1995). PSO chooses the path of cooperation

over competition, so the PSO population is stable and in-

dividuals are neither destroyed nor created. Individuals

are affected by the best performance of their neighbors,

and individuals eventually converge on optimal points

in the problem domain. Several investigations have been

undertaken recently to improve the performance of the

original PSO (Clerc 1999; Clerc & Kennedy 2002;

Marini & Walczak 2015). PSO is capable of producing

low cost, fast and robust solutions to several complex

problems and it has been successfully applied in many ar-

eas: function optimization, artificial neural network train-

ing, fuzzy system control and other areas.

We took advantage of PSO. A scheduling algorithm

based on PSO is developed that takes as input a catalog of

space debris and produces a globally optimized schedule

for each sensor site as to what objects to observe, which

can be implemented in two different ways. The algorithm

is able to schedule a better number of observations target-

ing each object with the same sensor resources and make

those observations more efficient. The results would be

increased accuracy of the space catalog with fewer lost

objects and the same set of sensor resources. The algo-

rithms have been tested with simulated data, and the re-

sults presented in this paper show the efficiency of the

proposed algorithms.

The rest of the paper is organized as follows: The

next section introduces the formulation of this prob-

lem. Some criteria for optimal scheduling are given

in Section 3, while the proposed scheduling algorithm

based on PSO is presented in Section 4. Then, Section 5

describes the test experimental settings, and experimen-

tal results of the proposed algorithm. Finally, Section 6

summarizes the contribution of this paper and conclu-

sions.

2 PROBLEM FORMULATION

Space debris surveillance network scheduling is a prob-

lem of optimally scheduling the surveillance time period

for space surveillance facilities and space debris. Due to

limitations imposed by their orbits, space debris can only

be tracked by surveillance facilities in some specific pe-

riods. These periods are usually called visible windows.

The formulation of a scheduling problem re-

quires the specification of visible window set Ξ =

{ǫ1, · · · , ǫD}. A visible window ǫd = [κd, ηd] in Ξ repre-

sents a specific period that an object αm from the object

set T = {α1, · · · , αM} can be observed by a facility βn

from the facility set F = {β1, · · · , βN}, where κd and

ηd are the start time and end time of the visible window

ǫd(1 ≤ d ≤ D), respectively. As shown in Figure 1, there

is a one-way mapping from the visible window set to ob-

ject set and to facility set, such that each visible window

maps to one and only one object and one facility.

The facilities used to track space debris are

mechanical/phased-array radars and optical telescopes.

Some of them can only track one or a limited number

of objects at a time, but there are a large number of space

debris in Earth orbit, and the durations of visible win-

dows may conflict.

Figure 2 illustrates the conflicts of a single-object

tracking facility. In this situation, the decision maker

faces the problem of how to allocate available resources

to optimize some metrics such as efficiency, cost, infor-

mation return, etc., while satisfying all constraints levied

on the resources as well as the tasks. When there are

unresolvable conflicts, the decision maker must accept

certain tasks and reject others. In many cases the avail-

abilities of resources become a direct constraint on the

problem.

Without loss of generality, some assumptions are

made to simplify the scheduling process as follows:

– Only a limited number of objects can be tracked by

a facility at a time.

– There should be no more than one tracking task

scheduled in each visible window.

– For effective tracking, the time length of each track

provided by a facility must be longer than the facil-

ity’s minimal length of working time τ .

3 CRITERIA FOR SCHEDULING

The goals of space debris surveillance network schedul-

ing are to help in making the utilization of a surveillance
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Fig. 1 Relationships among an object set, a facility set and a visible window set.
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Fig. 2 Conflicts among different visible windows of a single-object tracking facility.

network more efficient and to improve the quality of the

element sets in a satellite catalog. The surveillance per-

formance on each object and the balance of resources

available for surveillance facilities are two main factors,

which should be carefully considered. On the basis of

these considerations, two different criteria are introduced

to evaluate the performance of the scheduled visible win-

dow set Ξ = {ǫ1, · · · , ǫD} generated by an object set

T = {α1, · · · , αM} and a facility set F = {β1, · · · , βN}

in this section.

3.1 Scheduling Score

In order to evaluate the performance of a scheduled visi-

ble window set Ξ on each object, we define a scheduling

score function DS(Ξ; T) which sums the performance

score of each object. It can be expressed as

DS(Ξ, T) =
M
∑

m=1

ρm · F

(

D
∑

d=1

Φd,m (ηd − κd) , µm

)

,

(1)

where ρm is the priority coefficient of object αm; Φ is a

D × M object decision matrix, Φd,m = 1 only if vis-

ible window ǫd is scheduled for object αm, otherwise

Φd,m = 0; κd and ηd are the start time and end time of

the visible window ǫd, respectively; F(t, µ) is a function

to evaluate the efficiency of the total surveillance time t

on its corresponding object, which is defined as

F(t, µ) =

{

0, t < µ,

1 + σ t−µ
µ

, t ≥ µ,

where µ is the minimal amount of surveillance time re-

quired for effective observation of an object, and σ is a

redundancy coefficient in [0, 1].

3.2 Balance Level

Each facility has its own separate requirements and mis-

sions. Task scheduling is up to each individual facility to

schedule the times for each observation it will perform

during the day. Usually, some specific facilities will take
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precedence from experience in case of a scheduling con-

flict. We define the balance coefficient of facility βk as

λk (λk ≥ 1), where facilities with higher balance coeffi-

cients will take priority in case of conflicts. We define the

balance level function DB(Ξ; F) as

DB(Ξ, F) =
P (β1, · · · , βN )

Pmax

(2)

and P (β1, · · · , βN ) is a product relating the balance co-

efficient and utilization ratio of all facilities, which can

be expressed as

P (β1, · · · , βN) =

(

N
∏

k=1

(1 + λk · Uk)

)

1

N

.

Here N is the number of facilities and Uk is the utiliza-

tion ratio of facility βk, which is defined as

Uk =

D
∑

d=1

Ψd,k · (ηd − κd)

D
∑

d=1

N
∑

n=1

Ψd,n · (ηd − κd)

,

where Ψ is a D × N facility decision matrix. Ψd,n = 1

only if visible window ǫd is scheduled for facility βn,

otherwise Ψd,n = 0; and Pmax is the theoretical maxi-

mum of P (β1, · · · , βN ), which can be expressed as

Pmax =

(

N
∏

k=1

(

1 +
λk

N
·

(

1 +

N
∑

i=1

1

λi

−
N

λk

)))

1

N

.

4 PSO BASED SCHEDULING ALGORITHM

4.1 Review of PSO

PSO is an evolutionary computation technique. In PSO,

each candidate solution is a particle and represents a

point in a D-dimensional space, where D is the num-

ber of parameters to be optimized. Accordingly, the po-

sition of the i-th particle of the swarm at iteration t

can be represented by a D-dimensional position vector

Xt
i = (xt

i1, · · · , xt
iD). The velocity of the particle is de-

noted by V t
i = (vt

i1, · · · , vt
iD). The best position the i-th

particle has experienced is

P t
i = (P t

i1, · · · , P t
iD),

and the best position of all particles explored so far is

P t
g = (P t

g1, · · · , P t
gD).

The position of the particle and its velocity are updated

using the following equations:

vt+1

id = vt
id + c1 · r1 · (P

t
id − xt

id)

+c2 · r2 · (P
t
gd − xt

id), (3)

xt+1

id = xt
id + vt+1

id , (4)

where c1 and c2 are acceleration coefficients, which are

real-valued and usually in [0, 4], c1 is a cognitive co-

efficient that quantifies how much the particle trusts its

experience, c2 is a social coefficient that quantifies how

much the particle trusts its best neighbor, and r1 and r2

are random numbers generated from a uniform distribu-

tion in [0, 1].

In order to avoid the swarm diverging due to scat-

tering of the new velocity, an inertia weight factor is in-

troduced by Shi & Eberhart (1998). The inertia weight ω

creates a tendency for the particle to continue moving in

the same direction it was going previously. Accordingly,

the velocity update equation is modified to

vt+1

id = ω(t + 1) · vt
id + c1 · r1 · (P

t
id − xt

id)

+c2 · r2 · (P
t
gd − xt

id). (5)

Several studies (Eberhart & Shi 2001; Arumugam &

Rao 2006; Bansal et al. 2011) have shown that a dynam-

ical adjustment to the value of ω(t) may significantly

improve the convergence properties of PSO. A linearly

decreasing strategy is commonly used in inertia weight

ω(t) adjustment, which is shown in the following equa-

tion

ω(t) = ωmax −
ωmax − ωmin

tmax

· t. (6)

Bansal et al. (2011)’s study shows that the adoption

of the combination ωmax = 0.9 and ωmin = 0.4 may

achieve better performance.

4.2 Proposed Algorithm

The PSO based task scheduling algorithm can be divided

into the following four steps:

(1) Initialize all related parameters and compute all vis-

ible windows;

(2) Decode the visible windows to the execution status

through a particle decoding process;

(3) Execute the PSO process. Calculate the fitness value

of each particle, and find the best particle;

(4) Check the stopping criteria. If the pre-set maximum

number of generations is reached or if no improve-

ment to the best solution is obtained after a given

number of iterations, then the process is terminated.

Otherwise, go back to Step 2.

This algorithm can be implemented in two different

ways. The first one is individual optimization, which will

implement this algorithm for the tasks of each sensor sep-

arately and then get the overall result; the other one is

joint optimization, which will implement the algorithm

for the tasks of all sensors.
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The flow chart of the proposed algorithm is shown in

Figure 3. Some key technologies for the implementation

of the proposed technique are described in the following

sub-sections.

4.2.1 Particle decoding

The optimization will be done on a visible window set

Ξ = {ǫ1, · · · , ǫD} generated by an object set T =

{α1, · · · , αM} and a facility set F = {β1, · · · , βN}. A

particle applied to the surveillance task scheduling sce-

nario is defined as X = {x1, · · · , xD}, where D is the

number of visible windows, and xd denotes the priority

coefficient of the d-th visible window.

Particle decoding is the process of decoding a visi-

ble window set to execution status according to the value

of the particle, and also generating the object decision

matrix Φ and the facility decision matrix Ψ for fitness

computation. The definitions of object decision matrix Φ

and facility decision matrix Ψ are the same as those that

were introduced in Section 3.

Since the d-th visible window is linked to a specific

object and a specific facility, it can only be scheduled for

that object and facility or not. There is one and only one

mapping both from X to Φ and from X to Ψ in the de-

conflict process.

4.2.2 De-conflict process

De-conflict is a process of eliminating the conflicts and

finding a solution that obeys all physical constraints. It

plays an essential role in the step of decoding particles

and consists of the following steps:

(1) Initialization. Set all of the elements of object deci-

sion matrix Φ and facility decision matrix Ψ to 0.

(2) Select a visible window from the visible window set.

Select a visible window ǫd with the maximal priority

coefficient value xd from set Ξ, and determine its

corresponding object αm and facility βn.

(3) Determine the beginning time of the selected win-

dow. Set the beginning time of the selected visible

window equal to its own beginning time κd.

(4) Determine the end time of the selected window. The

determination process contains two steps. First, find

the minimal value t0 of the maximum possible be-

ginning times of all visible windows that conflict

with ǫd and have end times no less than κd +2τ , and

then set the end time of ǫd to the minimal value of

t0 and ηd. The whole process can be mathematically

expressed as

ηd = min

{

ηd, min

{

ηh − τ

∣

∣

∣

∣

ǫh ∈ Γc
d

ηh ≥ κd + 2τ

}}

,

where ηd is the end time of window ǫd, ηh is the end

time of window ǫh, Γc
d denotes a visible window set

which contains all visible windows that conflict with

the window ǫd and τ is the facility’s minimal length

of working time.

(5) Update the visible window set. Trim the conflicting

part of each visible window that conflicts with ǫd,

keep the longer part of the window instead of the

old window and then delete all visible windows in Ξ

whose time spans are shorter than the facility’s min-

imal length of working time τ . Record the result of

the scheduled window ǫd and delete ǫd from Ξ.

(6) Update object decision matrix and facility decision

matrix for fitness computation. Since the visible win-

dow ǫd is scheduled for observation, and its corre-

sponding object and facility are αm and βn respec-

tively, we have to set Φd,m = 1 and Ψd,n = 1.

(7) Go to Step 2 until Ξ is empty.

4.2.3 Fitness function

The performance of surveillance targeting each object

and balancing the resources consumed by all facilities are

two main considerations that determine how to schedule

the surveillance tasks. So, we define the fitness function

as the multiplication of the scheduling score function and

the balance level computation function, which can be ex-

pressed as

Fitness(T, F, Ξ) = DS(Ξ, T) · DB(Ξ, F) (7)

where the definitions of T, F and Ξ are the same as those

in Section 2, and DS(Ξ, T) and DB(Ξ, F) are defined

with Equations (1) and (2).

5 EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed

scheduling methods by comparing their scheduling re-

sults with those results computed with other methods.

Two tracking radars are selected in these experi-

ments. Detailed information on the radars is shown in

Table 1. Objects’ orbits are generated using two line

elements (TLEs) accessed from the Space-Track web-

site (www.space-track.org) on 2014 August 18. Of all

the TLEs available in the catalog, active satellites in

the altitude range below 2000 km with radar cross sec-

tions greater than 1 square meter are selected in the fol-

lowing experiments. The runs span a 30-minute (2014–
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Fig. 3 Flow chart of the proposed scheduling algorithm.

Table 1 Information on Selected Sensors

Parameters Radar 1 Radar 2

Latitude (◦) 40 30

Longitude (◦) 116 106

Altitude (m) 0 0

Detection Sensitivity (km m
−2) 5000 5000

Azimuth Limitations (◦) 60∼180 60∼180

Elevation Limitations (◦) 30∼60 30∼60

Minimal Track Period (s) 60 60

08–18 00:00:00 ∼2014–08–18 00:30:00) simulation pe-

riod. All visible windows among all selected objects and

radars are analyzed with PROOF (Krag et al. 2000). The

43 resulting objects have a total of 50 visible windows

longer than 60 seconds. Detailed information is shown in

Table 2. The minimal surveillance time is set to 60 sec-

onds; the priority coefficients of all objects are set to 1

except for object 25676, whose priority coefficient is set

to 5; the balance coefficients of two radars are both set

to 1 and we assume that each radar can track only one

object at a time.

The first method is approximately the same as what

was mentioned in Wilson (2004). It schedules the tasks

according to the time order as well as the objects’ prior-

ity coefficients, and priority goes to objects with earlier

start time when there are conflicts among those objects

with the same priority coefficients. Table 3 shows those

tasks scheduled with the first method for both Radar 1

and Radar 2. It has a fitness value of 35.6568, which was

calculated with Equation (7).

Both individual optimization and joint optimization

methods are run for the same parameters, constraints

and cost functions. The methods start by initializing a

group of 500 particles, with random positions in a 50-

dimensional hyperspace, constrained between zero and

one in each dimension. A set of random velocities is also

initialized with values in [−1, 1]. The termination crite-

rion is set to the iteration number exceeding its maxi-

mal iteration threshold. Other parameters selected in the

experiments are as follows: maximum number of iter-

ations = 100, constant inertia weight ωmax = 0.9 and

ωmin = 0.4, minimal amount of surveillance time of ob-

ject µ = 60, redundancy coefficient σ = 0.1 and facil-



H. Jiang et al.: Particle Swarm Optimization Based Space Debris Surveillance Network Scheduling 30–7

Table 2 All Detectable Tasks of the Two Radars

Radar No. NORAD ID Beginning Time End Time Radar No. NORAD ID Beginning Time End Time

1 13718 0.000 67.480 1 21087 1551.787 1686.885

1 05731 0.000 86.221 1 10491 1587.434 1678.959

1 25624 0.000 141.069 1 04507 1593.907 1800.000

1 25943 47.445 129.719 1 38745 1735.184 1800.000

1 25078 161.558 339.050 2 07768 0.000 61.796

1 25943 223.880 482.285 2 13718 0.000 80.933

1 14624 233.807 462.879 2 21032 0.000 152.055

1 21014 241.094 352.755 2 25943 0.000 200.881

1 38744 309.336 622.153 2 13148 35.500 148.466

1 20774 346.552 579.779 2 29712 227.769 379.733

1 32264 513.474 698.864 2 18957 245.967 543.041

1 27422 550.954 678.228 2 20774 265.628 603.640

1 25909 562.832 790.880 2 25676 266.376 763.613

1 25676 568.067 1029.247 2 38744 291.034 717.228

1 22689 578.510 875.903 2 10744 453.005 599.984

1 21031 609.591 936.783 2 32264 496.748 616.302

1 25944 642.864 823.016 2 22565 521.121 645.543

1 05104 667.658 791.423 2 16969 563.639 677.971

1 25040 732.229 839.581 2 12903 723.024 830.365

1 27534 886.147 1068.241 2 20233 822.453 1150.251

1 24870 1083.209 1246.203 2 24772 862.345 996.767

1 25039 1227.461 1388.719 2 19573 865.685 991.944

1 20510 1255.724 1335.430 2 14401 1403.692 1621.622

1 03576 1314.054 1635.846 2 21666 1509.006 1637.356

1 02801 1444.044 1664.759 2 25679 1648.143 1745.250

Table 3 Tasks Scheduled with the First Method

Radar No. NORAD ID Beginning Time End Time Radar No. NORAD ID Beginning Time End Time

1 13718 0.000 67.480 1 04507 1635.846 1800.000

1 25624 67.480 141.069 2 07768 0.000 61.796

1 25078 161.558 339.050 2 21032 61.796 152.055

1 25943 339.050 482.285 2 29712 227.769 379.733

1 38744 482.285 622.153 2 18957 379.733 543.041

1 32264 622.153 698.864 2 20774 543.041 603.640

1 25909 698.864 790.880 2 25676 603.640 763.613

1 25676 790.880 1029.247 2 12903 763.613 830.365

1 24870 1083.209 1246.203 2 20233 830.365 1150.251

1 25039 1246.203 1388.719 2 14401 1403.692 1621.622

1 03576 1388.719 1635.846 2 25679 1648.143 1745.250

ity’s minimal length of working time τ = 60. After all

these particles are scored, the best performer is identified

as the initial global best.

These two methods are tested with 100 runs of

Monte Carlo (MC) simulations in which each simulation

is performed with different seeds in generation of the po-

sitions and velocities.

Figures 4 and 5 present the scheduling performance

of individual PSO optimization and joint PSO optimiza-

tion in their first five trials, respectively. It has been ob-

served that there is significant improvement in the per-

formance of the individual PSO optimization method

compared with the first method, and the performance of

the joint PSO optimization method slightly outperforms

the individual optimization method. The performances

of both individual PSO optimization and joint PSO op-

timization are much better than the first method.

Tables 4 and 5 show the best scheduled results with

the individual PSO optimization method and joint PSO

optimization method in the 100 MC runs respectively. A



30–8 H. Jiang et al.: Particle Swarm Optimization Based Space Debris Surveillance Network Scheduling

Table 4 The Best Scheduled Result with Individual PSO Optimization in 100 MC Runs

Radar No. NORAD ID Beginning Time End Time Radar No. NORAD ID Beginning Time End Time

1 05731 0.000 69.719 1 21087 1551.787 1618.959

1 25624 69.719 141.069 1 04507 1618.959 1735.184

1 25078 161.558 241.094 1 38745 1735.184 1800.000

1 21014 241.094 352.755 2 13718 0.000 80.933

1 20774 352.755 562.153 2 25943 80.933 200.881

1 27422 562.153 638.864 2 25676 266.376 539.984

1 25676 638.864 730.880 2 38744 616.302 717.228

1 22689 791.423 875.903 2 32264 539.984 616.302

1 21031 875.903 936.783 2 12903 723.024 830.365

1 05104 730.880 791.423 2 20233 830.365 931.944

1 27534 936.783 1068.241 2 24772 931.944 996.767

1 24870 1083.209 1246.203 2 14401 1403.692 1509.006

1 20510 1255.724 1335.430 2 21666 1509.006 1637.356

1 03576 1335.430 1444.044 2 25679 1648.143 1745.250

1 02801 1444.044 1551.787

Table 5 The Best Scheduled Result with Joint PSO Optimization in 100 MC Runs

Radar No. NORAD ID Beginning Time End Time Radar No. NORAD ID Beginning Time End Time

1 13718 0.000 67.480 1 21087 1551.787 1618.959

1 25624 67.480 141.069 1 04507 1618.959 1735.184

1 25078 161.558 223.880 1 38745 1735.184 1800.000

1 25943 223.880 292.755 2 07768 0.000 61.796

1 14624 292.755 462.879 2 13148 61.796 140.881

1 20774 462.879 562.153 2 25943 140.881 200.881

1 27422 562.153 638.864 2 25676 266.376 539.984

1 25676 638.864 730.880 2 32264 539.984 616.302

1 05104 730.880 791.423 2 38744 616.302 717.228

1 22689 791.423 875.903 2 12903 723.024 822.453

1 21031 875.903 936.783 2 20233 822.453 931.944

1 27534 936.783 1068.241 2 24772 931.944 996.767

1 24870 1083.209 1246.203 2 14401 1403.692 1509.006

1 20510 1255.724 1335.430 2 21666 1509.006 1637.356

1 03576 1335.430 1444.044 2 25679 1648.143 1745.250

1 02801 1444.044 1551.787

Table 6 Results of MC Simulation for Different Methods

Method Name The Best The Worst The Average

The First Method 35.6568 35.6568 35.6568

Individual PSO Optimization 45.3073 36.2249 40.0822

Joint PSO Optimization 46.2060 42.1850 44.1912

comparison of the result also shows that performance of

joint PSO optimization slightly outperforms the individ-

ual optimization.

The results are summarized in Table 6, including

the best, worst and average of the total score for differ-

ent methods. Compared with the first method, the im-

proved performances of individual PSO optimization and

joint PSO optimization range from 1.59% to 27.06% and

from 18.31% to 29.59%, respectively. Results show that

both the performance of individual PSO optimization and

joint PSO optimization are always better than the first

method, and the joint PSO optimization method can al-
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Fig. 4 Performance of individual PSO optimization.
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Fig. 5 Performance of joint PSO optimization.

ways guarantee a great (larger than 18%) performance

improvement while the performance improvement by the

individual PSO covered a very wide range. This is be-

cause the joint PSO optimization is a global optimization

method while the individual PSO optimization is not re-

ally globally optimized. The performance variations of

individual PSO and joint PSO optimizations are caused

by several reasons. The primary one should be the ini-

tialization of particles, because the PSO algorithm can-

not always achieve the global optimum but may fall into

a local optimum in some cases.

6 CONCLUSIONS

In this paper, a new optimization technique is proposed

for space debris surveillance network scheduling. This

proposed algorithm is an integrated algorithm, which can

optimally schedule the surveillance tasks automatically

based on different evaluation criteria of the particles.

Numerical experiments have been conducted with the

proposed algorithm. It has been seen that the proposed

technique with the PSO model not only computes fast but

also gives much better performance (more than an 18%

improvement) than the other method used in this work.

The results show that the proposed algorithm can solve

the task scheduling problem well. There may still have

been some further improvements on the algorithm, such

as observation geometry, which should be considered in

scheduling as it may affect accuracy of the observed ob-

ject’s orbit. The computational complexity will increase

along with increasing the number of surveillance tasks

and so on. All of these issues will be our future research

topics on surveillance task scheduling.
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