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Abstract In pulsar timing, timing residuals are the differences between the observed times of arrival

and predictions from the timing model. A comprehensive timing model will produce featureless resid-

uals, which are presumably composed of dominating noise and weak physical effects excluded from

the timing model (e.g. gravitational waves). In order to apply optimal statistical methods for detecting

weak gravitational wave signals, we need to know the statistical properties of noise components in the

residuals. In this paper we utilize a variety of non-parametric statistical tests to analyze the whiteness

and Gaussianity of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 5-

year timing data, which are obtained from Arecibo Observatory and Green Bank Telescope from 2005 to

2010. We find that most of the data are consistent with white noise; many data deviate from Gaussianity

at different levels, nevertheless, removing outliers in some pulsars will mitigate the deviations.

Key words: pulsar timing array: general — statistical tests

1 INTRODUCTION

Pulsar timing is a powerful technique and has achieved

many of the most important science results in pulsar as-

tronomy. The timing of single pulsars has been used as

a probe of the dispersive interstellar medium (Cordes

& Lazio 2002), to test theories of gravitation in the

strong field regime (Damour & Taylor 1992; Stairs 2003;

Kramer et al. 2006), to discover the first extrasolar plan-

etary system (Wolszczan & Frail 1992), and to constrain

the nuclear equation of state of a neutron star (Demorest

et al. 2010; Lattimer & Prakash 2007, 2010). It has pro-

vided the first evidence of the existence of gravitational

waves (GWs) (Taylor & Weisberg 1982, 1989). Timing a
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number of pulsars and analyzing the data coherently can

be used to search for irregularities in terrestrial time stan-

dards and develop a timescale based on pulsars (Hobbs

et al. 2012), and to deepen our understanding of solar sys-

tem dynamics (Champion et al. 2010). Amazingly, it can

be operated as a Galactic scale detector for very-low fre-

quency GWs (Hellings & Downs 1983; Foster & Backer

1990; Jenet et al. 2005).

A pulsar timing array (PTA) is an experiment

that regularly observes a set of millisecond pul-

sars (MSPs). Currently, three PTAs, i.e., the North

American Nanohertz Observatory for Gravitational

Waves (NANOGrav, Demorest et al. (2013)), the Parkes

Pulsar Timing Array (PPTA, Manchester et al. (2013))

and the European Pulsar Timing Array (EPTA, Ferdman

et al. (2010)), have started to produce astrophysically im-

portant results. These PTAs compose the International

Pulsar Timing Array (IPTA, Manchester & IPTA (2013);

McLaughlin (2014)) with approximately 50 pulsars that

are regularly monitored. The first data combination has

been released (Verbiest et al. 2016).

A PTA is sensitive to very low frequency (10−9–

10−7 Hz) GWs, and is complementary to ground based

interferometric detectors (e.g., LIGO (Abbott et al. 2009)

and Virgo (Accadia et al. 2011)) running in the high

frequency band (10 − 103 Hz), and space based laser

rangers (e.g., eLISA (eLISA Consortium et al. 2013)

and TianQin (Luo et al. 2016)) proposed for the low

frequency band (0.1 mHz–0.1 Hz). Potential sources of

GWs in very low frequencies include supermassive black

hole binaries (Jaffe & Backer 2003; Wyithe & Loeb

2003; Sesana et al. 2008), cosmic strings (Damour &

Vilenkin 2005; Ölmez et al. 2010), and relic GWs

(Grishchuk 2005).

At the current timing precision, it is very likely that

different kinds of noise are the dominant components

of timing residuals (Jenet et al. 2006; van Haasteren

et al. 2011; Demorest et al. 2013; Shannon et al. 2013;

Arzoumanian et al. 2014). On one hand, to improve tim-

ing precision at the longest timescale, it is very important

to have a comprehensive understanding of the sources

(e.g., radiometer, pulse phase jitter, diffractive interstel-

lar scintillation) and the characteristics of noise in terms

of times of arrival (TOAs), and identify mitigation meth-

ods to reduce the noise (Cordes & Shannon 2010; Wang

2015). On the other hand, many data analysis meth-

ods designed for detecting weak GW signals (Corbin &

Cornish 2010; Babak & Sesana 2012; Ellis et al. 2012;

Wang et al. 2014, 2015; Zhu et al. 2015, 2016) are usu-

ally geared to work well for data having some specific

statistical properties. Blindly applying these data analysis

strategies and pipelines without checking the presump-

tions may lead to nonsensical results (Tiburzi et al. 2016).

In this paper, as a first step in noise characterization,

we implement a suite of robust non-parametric statistical

tools to test the most important noise properties, namely

the whiteness and Gaussianity, of the NANOGrav 5-year

(2005–2010) data published in Demorest et al. (2013).

Using these tools, we found that most of the fre-

quency separated data are individually consistent with

the whiteness assumption, except the high frequency

data from PSR J2145–0754 and J2317+1439 which show

mild deviations. However, combining data from differ-

ent frequencies as one set causes significant deviations

for PSR J0613–0200, J1455–3330, J1744–1134, J1909–

3744, J1918–0642 and J2317+1439. We found that this

may be due to the minute inaccuracy of DM estimation

for these pulsars with the current observation strategy.

In terms of Gaussianity, most of the data show different

levels of deviation, however, removing outliers in some

pulsars would reduce the deviations.

The rest of the paper is organized as follows. In

Section 2, a brief description of the observation and data

set is given. We use the zero-crossing method to test the

whiteness of the data in Section 3, and use descriptive

statistics and hypothesis testings to check the Gaussianity

in Section 4. Demonstrations of these analyses on three

pulsars are presented in Section 5. The paper is con-

cluded in Section 6.

2 OBSERVATIONS AND DATA

The NANOGrav collaboration has conducted observa-

tions with the Arecibo Observatory (AO) and the Green

Bank Telescope (GBT), two of the largest single dish ra-

dio telescopes to date. Currently 37 MSPs (Arzoumanian

et al. 2015) have been regularly timed by NANOGrav.

The first five years of data (2005–2010) for 17 MSPs

along with an upper limit on the GW stochastic back-

ground have been published in Demorest et al. (2013).

In order to precisely analyze the time dependent dis-

persion measure (DM) and frequency dependent pulse

shape, two receivers operating at 1.4 GHz and 430 MHz

for AO and 1.4 GHz and 820 MHz for GBT have been

used in most of the observations. Observations using two

different receivers were not simultaneous. At AO, the

observations from the two bands were obtained within

1 hour; whereas at GBT, the separation could be up

to a week. All observations during this 5-year period

have been carried out with identical pulsar backends,

i.e. the Astronomical Signal Processor (ASP) at AO and

the Green Bank Astronomical Signal Processor (GASP)

at GBT, in which the input analog signal is split into
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324 MHz channels (sub-bands). Due to the limitation

imposed by the real-time computation load or the re-

ceiver bandpass, typically 16 channels would be pro-

cessed in most observations. The cadence between ob-

servation sessions is typically 4–6 weeks. There is a gap

in the observations of all pulsars in 2007 due to mainte-

nance at both telescopes.

The data product from an observation epoch is the

pulse TOA which is the time that is recorded for radio

emission, from a fiducial rotation phase of a pulsar, ar-

riving at a telescope. The standard TOA estimation in-

cludes polarization calibration, pulse profile folding, pro-

file template creation and TOA measurement by corre-

lating the folded profile and the profile template. Those

steps are integrated in the package PSRCHIVE (Hotan

et al. 2004) and ASPFitsReader (Ferdman 2008). Both

packages are used for cross-checking of errors which

otherwise would hardly be targeted.

The next step in timing analysis is to fit the ob-

served TOAs of each pulsar to a timing model. The tim-

ing model contains a set of physical parameters which

account for the pulsar’s rotation (spin period, spin pe-

riod derivatives), astrometry (position, proper motion),

interstellar medium (DM), binary orbital dynamics, etc.

This procedure is executed in the standard timing analy-

sis package TEMPO2 (Hobbs et al. 2006; Edwards et al.

2006) via a weighted least squares fitting. The so-called

post-fit timing residuals are the differences between the

measured TOAs and the TOAs predicted by this model.

A positive residual means that the observed pulse arrives

later than expected. The timing residuals potentially con-

tain stochastic noise from various sources and physical

effects that are not included in the timing model. One can

refer to Demorest et al. (2013) for a thorough account of

the NANOGrav observation strategy and related timing

analysis.

We can generate multiple timing residuals, denoted

as r(t, ν), from timing analysis of the NANOGrav data

set, where t is the time of observation of a pulse in

Modified Julian Date (MJD) and ν is the central fre-

quency of a channel. To simplify the study of timing ef-

fects induced by achromatic physical processes (e.g. a

GW), we can average the timing residuals from the TOAs

recorded from the same rotation phase of the pulsar. If

there are only TOAs from one pulsar rotation in an obser-

vation epoch (true for most observations), this averaged

residual will equal to the daily averaged residual used in

figure 1 of Demorest et al. (2013) and in Perrodin et al.

(2013). The averaged residual rI for the I-th observation

epoch in the data of a pulsar is

rI =

∑NI

i=1
rIiσ

−2

Ii
∑NI

i=1
σ−2

Ii

, (1)

where rIi = r(tI , νi) is the post-fit multi-frequency tim-

ing residual from the i-th frequency channel at the I-

th observation epoch, NI is the number of frequency

channels and σIi is the uncertainty for the correspond-

ing TOA. The uncertainty associated with the averaged

residual is

σI =

√

(

∑NI

i=1
σ−2

Ii

)

−1 1

NI − 1

∑NI

i=1
(rIi − rI)2σ

−2

Ii .

(2)

Equation (2) is the standard deviation of Equation (1)

with correction for underestimation of errors in TOA.

This estimator is suitable when σIi does not include

all the noise sources associated with TOAs. In addition,

since we have not used two independent receivers si-

multaneously, we will separate the low frequency and

high frequency averaged residuals and test them indepen-

dently in our analysis.

The averaged timing residuals can be used as inputs

for the GW detection pipelines. One advantage of av-

eraging is that it reduces the random noise components

across different frequency channels while keeping the

achromatic GW signals intact. Moreover, the averaged

residuals provide a quantitative way to compare with data

from EPTA (Ferdman et al. 2010; Lentati et al. 2015)

and PPTA (Manchester et al. 2013), which have routinely

produced a single TOA per observation epoch.

3 WHITENESS TEST

In this section, we test the consistency of the averaged

timing residuals with the white noise assumption for each

pulsar. A white noise time series is statistically uncorre-

lated in time, but the distribution of its associated values

does not necessarily adhere to any specific probability

distribution (Gaussian, Poisson, etc.). If evenly sampled,

we can use Fourier analysis to calculate the power spec-

trum of the time series and to check whether it is con-

sistent with a flat spectrum in the interested frequency

range. However, the pulsar timing data are usually not

evenly sampled, i.e. the observation cadence varies, so

that this conventional spectral analysis is not applica-

ble. The Lomb-Scargle periodgram (Lomb 1976; Scargle

1982) which is designed for unevenly sampled data suf-

fers from occasional large gaps between observations

(see fig. 1 in Demorest et al. 2013), as well as limited data

volume for each pulsar (see Table 1 for detailed num-

bers).
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Table 1 Results for the inferential statistical tests on Gaussianity. The numbers represent the sample size. For post-fit residuals, if

p > 0.05, the data are consistent with Gaussianity (labeled by ‘Y’), if 0.05 > p > 10
−3, the data mildly deviate from Gaussianity

(‘n’), and if p < 10
−3, the data strongly deviate from Gaussianity (‘N’). For averaged residuals, the criterion intervals are set to be

p > 0.1 (‘Y’), 0.1 > p > 2 × 10
−3 (‘n’) and p < 2 × 10

−3 (‘N’) respectively. ‘NA’ appears when the test is not applicable to

such a small sample size.

Source P DM Averaged timing residuals Post-fit

(ms) (pc cm−3) 327 MHz 430 MHz 820 MHz 1.4 GHz 2.3 GHz Comb.

J0030+0451 4.87 4.33 – 24 N – 26 n – 50 N 545 Y

J0613−0200 3.06 38.78 – – 40 Y 40 Y – 80 N 1113 n

J1012+5307 5.26 9.02 – – 47 N 63 n – 110 N 1678 n

J1455−3330 7.99 13.57 – – 41 n 45 Y – 86 N 1100 n

J1600−3053 3.60 52.33 – – 22 n 26 n – 48 n 625 Y

J1640+2224 3.16 18.43 – 34 N - 32 N – 68 N 631 N

J1643−1224 4.62 62.42 – – 47 N 50 Y – 97 N 1266 N

J1713+0747 4.57 15.99 – – 38 N 84 N 31 Y 153 N 2368 N

J1744−1134 4.07 3.14 – – 48 N 60 Y – 108 N 1617 N

J1853+1308 4.09 30.57 – – – 41 Y 2 NA 43 Y 497 Y

B1855+09 5.36 13.30 – 37 N – 32 Y – 69 n 702 N

J1909−3744 2.95 10.39 – – 35 n 33 Y – 68 N 1001 N

J1910+1256 4.98 34.48 – – – 31 Y 6 Y 37 Y 525 Y

J1918−0642 7.65 26.60 – – 40 Y 54 n – 94 N 1306 Y

B1953+29 6.13 104.50 – – – 23 Y 2 NA 25 Y 208 Y

J2145−0750 16.05 9.03 – – 22 N 24 Y – 46 n 675 n

J2317+1439 3.45 21.90 43 n 41 n – – – 84 N 458 n

It turns out that after subtracting the mean value,

number of zero-crossing ZW in a white noise time se-

ries is a Gaussian random variable,

ZW ∼ N (µZW
, σ2

ZW
) , (3)

with expected value µZW
= (N − 1)/2 and standard

deviation σZW
=

√
N − 1/2. The zero-crossing test

checks how large the number of zero-crossings is for a

time series compared to the expectation. It is designed

to operate in the time domain, and is thus applicable

to unevenly sampled data with gaps. This test is not

sensitive to any non-stationarity associated with statis-

tics of white noise, such as the case where the white

noise has a jump in variance at some epoch because of

a change in instrumentation. It assumes that the white

noise is “dense” which means that all data values are non-

zero and stochastic (Papoulis 1984). Other kinds of white

noise, such as shot noise with a low shot rate, cannot be

analyzed with the zero-crossing test described here.

In Table 2, we show the results of the zero-crossing

test for the frequency separated averaged residuals as

well as the total averaged residuals (by combining the

high and low frequency averaged residuals and sorting

them in ascending order of corresponding TOAs) for 17

pulsars. Ncrs is the actual number of zero crossings for

the data and ∆ is the difference between µZW
and Ncrs.

The significance of the test is measured by how large ∆

is compared with σZW
. If |∆| < 2σZW

(>5% in terms of

p-value 1), the data are said to be consistent with white

noise (labeled by ‘Y’); if 3σZW
> |∆| > 2σZW

, they

are said to mildly deviate from white noise (‘n’); and if

|∆| > 3σZW
, they are said to strongly deviate from white

noise (‘N’). We defer a detailed discussion and possible

interpretation of these results to Section 5 in order to con-

solidate with results from the Gaussianity tests.

4 GAUSSIANITY TEST

In this section, we first use descriptive statistics, namely

histograms and Quantile-Quantile (Q-Q) plots, to visu-

ally inspect the general features of the data. Then we

implement a suite of inferential statistical tests to quan-

titatively measure the deviations from Gaussianity. The

observation conditions changed during the 5 years that

observations were acquired due to a number of factors,

for instance, radiometer noise, interstellar scintillation

and factors inherent to the instruments. Therefore, the

underlying random variables representing noise at dif-

ferent frequencies and epochs are heteroscedastic. These

changes are reflected in variations of the error bars (e.g.,

for the averaged residuals shown in Figs. 1, 4 and 7).

1 p-value gives the probability of obtaining a test statistic (Ncrs) at

least as extreme as the one that was actually observed, assuming that

the presumption (e.g., whiteness) is true.
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Table 2 Results for the Zero-crossing Test. Consistent with whiteness – ‘Y’, mildly deviate – ‘n’ and strongly deviate – ‘N’.

Source Low-frequency band High-frequency band Combined

Ncrs µZW
∆ σZW

Y/n/N Ncrs µZW
∆ σZW

Y/n/N Ncrs µZW
∆ σZW

Y/n/N

J0030+0451 12 11.5 –0.5 2.4 Y 14 12.5 –1.5 2.5 Y 27 24.5 –2.5 3.5 Y

J0613−0200 20 19.5 –0.5 3.1 Y 19 19.5 0.5 3.1 Y 58 39.5 –18.5 4.4 N

J1012+5307 26 23 –3 3.4 Y 34 31 –3 3.9 Y 62 54.5 –7.5 5.2 Y

J1455−3330 22 20 –2 3.2 Y 23 22 –1 3.3 Y 58 42.5 –15.5 4.6 N

J1600−3053 13 10.5 –2.5 2.3 Y 13 12.5 –0.5 2.5 Y 33 23.5 –9.5 3.4 n

J1640+2224 18 16.5 –1.5 2.9 Y 14 15.5 1.5 2.8 Y 35 32.5 –2.5 4.0 Y

J1643−1224 26 23 –3 3.4 Y 22 24.5 2.5 3.5 Y 62 48 –14 4.9 n

J1713+0747 19 18.5 –0.5 3 Y 46 41.5 –4.5 4.6 Y – – – – –

J1713+0747 – – – – – 18 15 –3 2.7 Y 94 76 –18 6.2 n

J1744−1134 25 23.5 –1.5 3.4 Y 33 29.5 –3.5 3.8 Y 70 53.5 –16.5 5.2 N

J1853+1308 21 20 –1 3.2 Y – – – – – 19 21 2 3.2 Y

B1855+09 17 18 1 3.0 Y 17 15.5 –1.5 2.8 Y 46 34 –12 4.1 n

J1909−3744 17 17 0 2.9 Y 17 16 –1 2.8 Y 52 33.5 –18.5 4.1 N

J1910+1256 13 15 2 2.7 Y 3 2.5 –0.5 1.1 Y 21 18 –3 3 Y

J1918−0642 20 19.5 –0.5 3.1 Y 29 26.5 –2.5 3.6 Y 64 46.5 –17.5 4.8 N

B1953+29 14 11 –3 2.3 Y – – – – – 16 12 -4 2.4 Y

J2145−0750 15 10.5 –4.5 2.3 Y 18 11.5 –6.5 2.4 n 31 22.5 –8.5 3.4 n

J2317+1439 26 21 –5 3.2 Y 27 20 –7 3.2 n 56 41.5 –14.5 4.6 N

This aspect is treated here by a simple normalization, so

that the tested time series are from the same underlying

distribution. For the averaged residuals, each residual is

normalized according to Equation (1) by its associated

uncertainty calculated in Equation (2). In addition, each

of the multi-frequency residuals are normalized by the

uncertainty associated with its TOA.

Inferential statistics based on statistical hypoth-

esis testing theory argues against a null hypothesis

(Gaussianity) analogous to mathematical proof by con-

tradiction. First, the data are summarized into a single

number called the test statistic, which follows a certain

probability distribution. Second, a p-value is calculated

based on this distribution assuming that the null hypoth-

esis is true. The lower the p-value is, the smaller the

chance that the sample comes from a Gaussian distribu-

tion.

One often rejects the null hypothesis when the p-

value is less than a pre-assigned significance level which

is usually 0.05. However, the power of the tests decreases

as the sample size decreases. It is a common practice to

set the significance level at higher values, such as 0.1 or

0.2 for a small sample in order to detect possible devia-

tion that may be present. This is an important point since

the data sets that we will test vary greatly in size (cf.

Table 1).

To avoid possible bias in different tests, the signifi-

cance of the Gaussianity test is measured by the averaged

p-value of five tests, among which the Shapiro-Wilk test

(S-W) and Shapiro-Francia test (S-F) are order statistics;

the Anderson-Darling test (A-D), Cramér-von Mises test

(C-vM) and Lilliefors test (Lillie) are based on the em-

pirical distribution function (EDF). The results are sum-

marized in Table 1. For multi-frequency residuals, if p >

0.05, the data are said to be consistent with Gaussianity

(labeled by ‘Y’); if 0.05 > p > 10−3, the data are said to

mildly deviate from Gaussianity (‘n’); and if p < 10−3,

the data are said to strongly deviate from Gaussianity

(‘N’). For averaged residuals, the criterion intervals are

set to be p > 0.1 (‘Y’), 0.1 > p > 2 × 10−3 (‘n’) and

p < 2 × 10−3 (‘N’), respectively. The p-values of all

tests are only shown for three pulsars in the legends of

Figures 3, 6 and 9.

5 RESULTS

The results for the whiteness and Gaussianity tests are

summarized in Tables 1 and 2 respectively. Here, we de-

scribe in detail how results from these tests can be ap-

plied to three pulsars.

5.1 PSR J0613-0200

The frequency separated averaged timing residuals of

PSR J0613–0200 are shown in Figure 1. The red aster-

isks with error bars represent high-frequency (1.4 GHz)

residuals, and blue short-bars with error bars represent

low frequency (820 MHz) residuals. Apparently, the high

frequency residuals have larger variances than the low

frequency residuals, and the high frequency error bars for

this pulsar are a factor of a few larger than the low fre-
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Fig. 1 Frequency separated averaged timing residuals with error bars for J0613–0200. The red asterisks represent high frequency

data, while the blue short-bars represent low frequency data.
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Fig. 2 Histograms for the post-fit multi-frequency residuals (top-left), total (top-right), low-frequency (bottom-left) and high-

frequency (bottom-right) averaged residuals of J0613–0200. The blue curve is a Gaussian distribution with the same mean and

variance as the data.

quency error bars. This is mainly due to the fact that the

mean flux density at high frequency is lower than that

at low frequency according to the power-law spectrum

of the flux density. For similar integration time, this will

result in a larger uncertainty in the measurement of TOA

by correlating a lower S/N folded pulse with the template

pulse profile (Taylor 1992).

From Table 2 we can see that the low frequency

and high frequency residuals are individually consistent

with the white noise assumption. However when they are

combined into a single time series, the total residuals

show more zero crossings than expected, and the devia-

tion for this pulsar is more than 4σ. We found that the ex-

cess of zero crossings is caused by the error in estimated
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Fig. 3 Q-Q plots for the post-fit multi-frequency residuals (top-left), total (top-right), low-frequency (bottom-left) and high-

frequency (bottom-right) averaged residuals of J0613–0200. The p-values of individual tests are listed in the legends.

Fig. 4 Frequency separated averaged timing residuals with error bars for J1012+5307. The red asterisks represent high frequency

data, while the blue short-bars represent low frequency data.

values of time dependent DM with the observation strat-

egy adopted in the NANOGrav 5-year data. However, we

defer a detailed discussion on this topic to Section 6.

After normalizing the averaged residuals by their as-

sociated error bars, we notice that in Figures 2 and 3 the

standard deviation of the low frequency residuals is sig-

nificantly smaller than unity, which hints that the error

bars calculated for the low frequency averaged data are

overestimated. Therefore, the combined residuals deviate

from a Gaussian distribution, even if the low frequency

averaged residuals and high frequency averaged residuals

are both consistent with a Gaussian distribution individ-

ually. This may suggest that in order to properly combine

the data from different frequency bands in GW detection

algorithms, we may need to add a scaling parameter for

each frequency band that is similar to the EFAC2 param-

2 A multiplication factor for TOA error bars of each pulsar.
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Fig. 5 Histograms for the post-fit residuals (top-left), total (top-right), low-frequency (bottom-left) and high-frequency (bottom-

right) averaged residuals of J1012+5307. The blue curve is a Gaussian distribution with the same mean and variance as the data.

eter used in timing analysis. The post-fit multi-frequency

residuals mildly deviate from a Gaussian distribution.

5.2 PSR J1012+5307

From Table 2, we can see that the low-frequency, high-

frequency and total averaged residuals are all consistent

with the white noise assumption. From Table 1, we can

see that the high frequency averaged and post-fit multi-

frequency residuals mildly deviate from a Gaussian dis-

tribution, while the low frequency averaged and total av-

eraged residuals strongly deviate from a Gaussian distri-

bution.

We notice from Figure 6 that for the post-fit residuals

the results from the order statistic tests (strong deviation)

are not consistent with the EDF tests (mild deviation).

This is ascribed to the fact that the order statistic tests

are sensitive to outliers, which can be identified from

Figures 5 and 6. After removing two outliers in the resid-

uals, the results from the order statistics are improved

rapidly (S-W = 8.3 × 10−4, S-F = 4.5 × 10−4), and be-

come more consistent with the other tests.

5.3 PSR J1713+0747

PSR J1713+0747 is the only one among the 17 pulsars

that has been observed by both the AO and the GBT.

Currently, it is the best timed pulsar in NANOGrav. It has

been observed extensively in three frequency bands, i.e.

820 MHz, 1.4 GHz and 2.3 GHz 3, which are marked by

blue short-bars, red asterisks and black squares respec-

tively in Figure 7. (There are actually two sessions con-

ducted in 2.7 GHz at the AO, which are not included in

this analysis.)

The three frequency separated averaged residuals are

all consistent with the white noise assumption individu-

ally, whereas the total averaged residuals mildly deviate

from it. Except for the residuals from the 2.3 GHz band,

the residuals from the other two bands all strongly devi-

3 High frequency observations from 2.3 GHz, see Section 5.3 for

details.
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Fig. 6 Q-Q plots for the post-fit residuals (top-left), total (top-right), low-frequency (bottom-left) and high-frequency (bottom-right)

averaged residuals of J1012+5307. The p-values of individual tests are listed in the legends.

Fig. 7 Frequency separated averaged timing residuals with error bars for J1713+0747. The blue short-bars represent 820 MHz data,

the red asterisks represent 1.4 GHz data and black squares represent 2.3 GHz data.

ate from a Gaussian distribution; removing a few outliers

improves the statistics considerably.

6 SUMMARY AND DISCUSSIONS

In this paper we utilized a set of non-parametric statisti-

cal tests to analyze the NANOGrav 5-year timing resid-

uals for 17 pulsars. Zero crossing has been used to test

the whiteness assumption for averaged timing residuals.

The results are summarized in Table 2. Both descriptive

and inferential statistical methods have been used to test

Gaussianity for the post-fit multi-frequency and averaged

timing residuals. The results are summarized in Table 1.

The histogram and Q-Q plots for three pulsars are shown

for demonstration purposes.

We found that for most cases, except the high

frequency averaged residuals of J2145–0750 and
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Fig. 8 Histograms for the post-fit residuals (top-left), total (top-right), 820 MHz (middle-left), 1.4 GHz (middle-right) and 2.3 GHz

(bottom) averaged residuals of J1713+0747. The blue curve is the Gaussian distribution with the same mean and variance as the

data.

J2317+1439, the frequency separated averaged residuals

are consistent with the white noise assumption. However,

when they are combined, the total averaged residuals of

five pulsars show strong deviations from whiteness (‘N’)

and four pulsars show mild deviations from whiteness

(‘n’).

In principle, the total averaged residuals can be mod-

eled by combining two time series x1(ti) and x2(t
′

j) rep-

resenting the low frequency and high frequency averaged

residuals respectively, where ti (i = 1, 2, 3, ..., N1) and

t′j (j = 1, 2, 3, ..., N2) are not necessarily identical or

evenly spaced. If the two time series are separately drawn

from white noise processes, then the number of zero

crossings of the combined time series (sorted in ascend-

ing order of the union of {ti} and {t′j}) is a Gaussian ran-

dom variable with expectation equal to (N1+N2−1)/2

and variance equal to (N1 + N2 − 1)/4.

The cumulative number of zero crossings for total

averaged residuals with low and high frequency aver-

aged residuals for PSR J1012+5307 and J0613–0200 are

shown in Figure 10 and Figure 11 respectively. Asterisks

represent the number of zero crossings (y-axis) added up

to a given time (x-axis). It is equivalent to the number

of zero crossings for the data within an enlarging time

window with the left end fixed at the beginning of the

time series and the right end sliding to the time of this

data point. The solid curves are the expected numbers

of zero crossings of the data size within the window and

the dash-dotted lines are 1σ contours. They are all mono-

tonic functions of time. Red, black and blue represent the

low frequency, high-frequency and total averaged resid-

uals respectively.

For J1012+5307, the cumulative number of zero-

crossings for low frequency, high frequency and total

averaged residuals closely follow the expected values

within a 1σ contour. This is exactly what is expected for

a combination of two white noise time series. By con-

trast, for J0613–0200, although the low frequency and

high frequency zero crossings closely follow the expec-

tations as in J1012+5307, the combined data show strong
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Fig. 9 Q-Q plots for the post-fit residuals (top-left), total (top-right), 820 MHz (middle-left), 1.4 GHz (middle-right) and 2.3 GHz

(bottom) averaged residuals of J1713+0747. The p-values of individual tests are listed in the legends.
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Fig. 10 Cumulative number of zero crossings for PSR J1012+5307. The y-axis is the number of zero crossings and the x-axis is

the MJD on which the observations are made; see text for details.



19–12 Y. Wang et al.: Statistical Analyses for NANOGrav 5-year Timing Residuals

5.35 5.4 5.45 5.5

x 10
4

0

10

20

30

40

50

MJD (d)

N
u

m
b

e
r 

o
f 

z
e

ro
 c

ro
s
s
in

g

Fig. 11 Cumulative number of zero crossings for PSR J0613–0200. The y-axis is the number of zero crossings and the x-axis is

the MJD on which the observations are made; see text for details.

deviation from their expectation. In Figure 11, they start

to deviate from the beginning of the time series, and the

final deviation is more than 4σ. As stated, this strong de-

viation for the combined averaged residuals also appears

in other pulsars in Table 2.

In fact, the apparent excess of zero crossings is

mainly due to the strategy of fitting the physical parame-

ters, especially the time-variable DM in the timing anal-

ysis. It is general practice in the NANOGrav 5-year data

timing analysis to include a piecewise-constant DM(t)

function in the fitting model along with other parameters

(rotation, astrometry, binary dynamics and pulse profile

evolution). The window for a constant DM value is typ-

ically 15 days which include a couple of observations

conducted at high and low frequencies. However, any

fluctuation of DM within this window or inaccuracy of

the DM fit will introduce an additional error between the

adjacent averaged timing residuals from two widely sep-

arated bands as follows,

δt ≃ 4.15 × 106 ms × δDM ×
(

f−2

1
− f−2

2

)

. (4)

Here, f is measured in MHz. For J0613–0200, the un-

certainty in the DM (∼ 10−4 cm−3 pc) can produce a

fluctuation of several hundred nanoseconds between low

(820 MHz) and high (1.4 GHz) frequency. This is com-

parable with the RMS of averaged timing residuals re-

ported in table 2 of Demorest et al. (2013). The minute

error of DM will cause low frequency TOAs to tend to

be advanced and high frequency TOAs to be delayed or

vice versa (the DM fit will tend to move the two sets of

TOAs from low and high frequencies, so that their av-

eraged residual is zero) which will produce extra zero

crossing between low and high frequency timing residu-

als within a DM fitting window. This effect is expected

to be seen more clearly in the GBT observed pulsars,

since the time separation between two observation bands

is much larger and the frequency coverage (crucial for

the DM) is significantly smaller than the AO. We found

that all five pulsars which have total averaged residuals

strongly deviate from whiteness, whereas frequency sep-

arated averaged residuals are all consistent, as observed

by the GBT.

Gaussianity is one of the fundamental assumptions

used in most if not all GW detection methods. The tests

here suggest that many of the NANOGrav pulsars show

deviations from a Gaussian distribution at different lev-

els. The deviations in some data, as well as averaged and

multi-frequency post-fit residuals, can be mitigated by re-

moving a few outliers. This strategy is consistent with so

called robust statistics (Allen et al. 2002, 2003) which is

used to confront the non-Gaussianity in GW data analy-

sis by clipping samples with values located in the outly-

ing parts of a probability distribution. It is robust in the

sense that it is close to optimal for Gaussian noise but
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far less sensitive to large excess events than conventional

statistics. Moreover, for the purpose of detection, coher-

ent methods (e.g., Wang et al. (2014, 2015)) have been

shown to be robust against non-Gaussianity for detect-

ing deterministic GW signals (Finn 2001). An alterna-

tive method in the wavelet domain has also been explored

for searching stochastic GW signals in non-Gaussian and

non-stationary noise (Klimenko et al. 2002) with ground

based GW detectors. The results here suggest that these

methods should be investigated for GW detection with a

PTA in the future.
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