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Abstract In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface

should be made clear prior to launch of the mission. However, most asteroids have irregular shapes,

which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral

method. In this work, we propose a method to partition the space near an asteroid adaptively along

three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational

acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best

precision with identical initial parameters. An error-adaptive octree division is combined to improve

the interpolation precision near the surface. As an example, we take the typical irregularly-shaped near-

Earth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the

efficiency can be increased by hundreds to thousands of times with our method. Our results indicate

that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the

evaluation efficiency.

Key words: minor planets, asteroids: individual (4179 Toutatis) — methods: numerical — Chebyshev

polynomials

1 INTRODUCTION

Asteroids are thought to be leftover planetesimals related

to the precursor bodies which formed the planets in our

solar system. Primitive asteroids may provide a record

of the original composition of the solar nebula where the

planets were born. The associated water and organic mat-

ter can provide us with important clues on the origin of

life on Earth. In addition, near-Earth asteroids, whose or-

bits may cross Earth’s orbit, may pose a potential risk to

human beings on Earth (Michel et al. 2015).

Through ground- and space-based observations, and

missions that flyby, rendezvous with and land on as-

teroids, as well as laboratory analysis of returned sam-

ples and all kinds of meteorites, we have made tremen-

dous advances in knowledge about asteroids (Nesvorny

et al. 2015). Among these techniques, space missions

can directly acquire detailed information from the clos-

est distances. Since the first close-up images of asteroid

951 Gaspra taken in 1991 by the Galileo spacecraft en

route to Jupiter, 13 asteroids (including dwarf planets

Ceres and Pluto) have been explored by spacecrafts. On

2012 December 13, the Chinese lunar probe Chang’e-

2 flew by Toutatis at a surface distance of 0.77 km

(Huang et al. 2013; Jiang et al. 2015; Zhao et al. 2015).

Recently, OSIRIS-REx was launched by NASA on 2016

September 8 and is now on its way to asteroid 101955

Bennu (Lauretta & OSIRIS-Rex Team 2012). Moreover,

the Hayabusa 2 mission, launched by JAXA in December

2014, will arrive at asteroid 162173 Ryugu in July 2018

(Müller et al. 2017). Both of these spacecrafts will bring

sample dust from the asteroids back to Earth.

The gravitational field is essential to understand the

dynamical environment of an asteroid, especially for the
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orbit design of spacecraft near asteroids (during the or-

biting phase or landing phase). The images captured by

spacecrafts have truly revealed the fact that most aster-

oids have irregular shapes, different from planets that

approximate a spherical shape. The irregular shape of

asteroids causes difficulty in calculating their gravita-

tional field. Former investigations have shown that three

major approaches of spherical/ellipsoidal harmonic ex-

pansion, polyhedral method and mascon approximation

based on finite element representation have been devel-

oped to evaluate the gravity. Among them, the spheri-

cal harmonic method is based on series expansion (Kaula

1966; Lundberg & Schutz 1988; Hu et al. 2015), which

may not converge inside the so-called Brillouin sphere

(Brillouin 1933). Though ellipsoidal harmonic expan-

sion has a larger convergence region (Romain & Jean-

Pierre 2001; Garmier et al. 2002), the computation of

ellipsoidal harmonics is not so straightforward and it

does not fundamentally resolve the convergence prob-

lem. Recently, Takahashi & Scheeres (2014) proposed

using interior spherical harmonic expansion to extend the

convergence region within the interior Brillouin sphere.

However, this method is not suitable to be practically

used due to its complexity. Assuming a constant density,

the polyhedral method may be utilized to precisely eval-

uate the gravitational field (Werner & Scheeres 1996).

Mascon approximation uses a collection of cubes or

spheres to represent the true internal structure of aster-

oids (Park et al. 2010; Chanut et al. 2015; Zhao et al.

2016). However, both of them are computationally inten-

sive, and the situation will get worse if the number of

facets and vertexes or mascons increases. This problem

is particularly acute for large-scale simulations (such as

Monte Carlo analysis) or lower computational ability due

to constraints on the size and weight of the onboard pro-

cessor.

Several techniques have been proposed to minimize

computation time in the polyhedral method, such as us-

ing simpler approximations to the more computationally

intensive terms in the formula, or adopting a coarser

shape model at the expense of accuracy (Cangahuala

2005; Weeks & Miller 2004). In this work, we introduce

Chebyshev polynomial interpolation to accelerate the

computational efficiency (Mason & Handscomb 2002),

which has been widely used in numerical representa-

tion of planetary ephemerides for years, such as the DE-

series of ephemerides developed at JPL and the INPOP

ephemeris developed in France (Folkner et al. 2014;

Fienga et al. 2008). Actually, it was initially put forward

to speed up the calculation efficiency of Earth’s gravity

by Smith & Lyubomirsky (1981), in which Chebyshev

expansions were applied only to the part of gravity force

expressed by spherical harmonic terms of degree larger

than four. However, the case for asteroids is quite dif-

ferent when considering the above-mentioned problem

with convergence of harmonics. Herein we will refine

this method to make it suitable to deal with irregularly-

shaped asteroids by applying new schemes.

In Section 2, we will firstly introduce our method

in detail, including the space partition method, compari-

son of the four interpolation schemes and error-adaptive

octree division. In Section 3, we will show the computa-

tional efficiency and orbit integration precision with nu-

merical simulations, by comparing the results with those

of the polyhedral method. Finally, we present a brief con-

clusion.

2 METHOD

In mathematics, Chebyshev polynomials of the first kind

are a sequence of orthogonal polynomials defined as so-

lutions to the Chebyshev differential equation (Rivlin

1990). They may be calculated recursively as follows















T0(x) = 1 ,

T1(x) = x ,

Tn+1(x) = 2xTn(x) − Tn−1(x) ,

(1)

where the range of x is −1 ≤ x ≤ 1. Chebyshev poly-

nomials are stable during evaluation, and they provide a

readily apparent estimate of previously neglected terms

describing interpolation error. Besides high computa-

tional efficiency, the resulting interpolated polynomial

also minimizes the problem of Runge’s phenomenon and

provides an approximation that is close to the polyno-

mial, which is the best approximation to a continuous

function under the maximum norm (Hernández 2001).

As mentioned above, Chebyshev polynomials are

widely used in numerical representation of planetary

ephemerides (Newhall 1988). During the process, the

range of time is segmented into contiguous intervals of

fixed length and then the interpolation of rectangular

coordinates is performed in each segment. Regarding

gravitational acceleration near an asteroid, represent-

ing it as Chebyshev polynomials yields satisfactory re-

sults, except that we should consider three-dimensional

Chebyshev polynomial interpolation in this situation.
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The basic formula is

F (r, θ, ϕ) =
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(2)

where r, θ and ϕ are the three spherical coordinates in

the body-fixed reference system, i.e. radial distance, lon-

gitude and latitude, respectively. r̃, ϕ̃ and θ̃ are defined

as

r̃ =
2r − rmax − rmin

rmax − rmin
,

ϕ̃ =
2ϕ − ϕmax − ϕmin

ϕmax − ϕmin
,

θ̃ =
2θ − θmax − θmin

θmax − θmin
,

(3)

where rmin, rmax, ϕmin, ϕmax, θmin and θmax are the

minimal or maximal values of r, ϕ and θ in the do-

main. Tk are the Chebyshev polynomials defined in

Equation (1). F is the gravitational acceleration vector

and C
(1)
ijk , C

(2)
ijk and C

(3)
ijk are Chebyshev polynomial co-

efficients of each component with degree N (we have as-

sumed the same degree in all three components), which

may be solved by the least-squares method.

2.1 Division Scheme

In our method, the space near an asteroid is divided along

r, θ and ϕ (we call it the spherical division scheme here-

after). Asteroid 4179 Toutatis is a typical irregularly-

shaped asteroid, with dimensions x = 4.60 km, y =

2.29 km and z = 1.92 km (Hudson et al. 2003; Huang

et al. 2013). Taking Toutatis as an example, the division

is illustrated in Figure 1, where the range of each coordi-

nate in each cell is represented as














∆ri = ri
max − ri

min,

∆θi = θi
max − θi

min,

∆ϕi = ϕi
max − ϕi

min.

(4)

In the illustration, the asteroid is divided uniformly

along the longitude and latitude directions (let ∆θi =

∆ϕi = α). However, in the radial direction the range is

picked so that it is nearly proportional to radial distance,

i.e.

∆ri = ri
min sin α . (5)

The trick above is based on the fact that the variation of

gravitational acceleration is gentler at further distance,

so we can use larger ∆ri for larger r, which reduces

the amount of storage required for coefficients. The er-

ror from interpolation along the radial direction will be

shown hereinafter. In this scheme, we can use α and

N to adjust the precision (both smaller α and larger N

may reduce the error, but demands larger storage), and

rmin, rmax to constrain the domain we are interested in.

Of course, rmin is usually chosen as the minimal radial

distance at the surface.

In programming, we only need to load the coeffi-

cients once, and then the computation time of F(r) al-

most only depends on N (as we can see in Eq. (2), the

calculation is not related to α). The whole procedure in-

cludes generation of coefficients and calculation of grav-

ity. The polyhedral method is used during the process of

generating coefficients.

2.2 Comparison of Four Interpolation Schemes

As is well known, gravitational acceleration can be

divided into central and non-spherical parts. Thus

Equation (2) is modified as (Kaula 1966)

F (r, θ, ϕ) = F0 (r, θ, ϕ) + K (r) · F′(r, θ, ϕ) , (6)

F
′ (r, θ, ϕ) =
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(7)

where F0 is the part that can be calculated analytically

and K(r) is a scalar coefficient related to r. Let us con-

sider the three different schemes (denoted as I1, I2 and

I3)















I1 : F0 (r, θ, ϕ) = 0, K(r) = 1

I2 : F0 (r, θ, ϕ) = −GM
r3 r, K(r) = 1

I3 : F0 (r, θ, ϕ) = −GM
r3 r, K(r) = GM

r4

(8)

where I1 is the same as Equation (2), but I2 and I3

only fit the non-spherical part. I3 also considers char-

acteristics that generally include the largest zonal and

tesseral harmonics describing gravitational acceleration
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FJ2
and FJ22

, which are inversely proportional to the

fourth power of r (Kaula 1966)

FJ2
∼

GM

r4
, FJ22

∼
GM

r4
. (9)

In addition, we may consider another interpolation

scheme. In Equations (6), (7) and (8), the gravitational

acceleration is represented with rectangular components

Fx, Fy and Fz by default. However, we can also try

to transform them to three components Fr, Fθ and Fϕ

along spherical coordinates, i.e.







Fr

Fθ

Fϕ






= A







Fx

Fy

Fz






. (10)

Here A is the transformation matrix

A = Rx(
1

2
π − ϕ)Rz(θ −

3

2
π) , (11)

in which Rx(θ) and Rz(θ) are defined as

Rx(θ) =







1 0 0

0 cos θ sin θ

0 − sin θ cos θ






,

Rz(θ) =







cos θ sin θ 0

− sin θ cos θ 0

0 0 1






.

(12)

Moreover, we use the same value of scheme I3 for

F0(r, θ, ϕ) and K(r). This is denoted as scheme I4.

Now, let us compare the interpolation results for

Toutatis. Set α = 10◦ and N = 2, 3, 4, 5. The relative

error δF is defined as

δF =
|F− F̃|

|F|
, (13)

where F is the gravitational acceleration calculated

with the polyhedral method (see eq. (15) in Werner &

Scheeres 1996) and F̃ is the value by interpolation. The

comparisons of δF for the four interpolation schemes are

shown in Figure 2, where δF varies with r.

In the results, relative errors reach maximum near the

surface, which is because of the abrupt gravity change in

this area. Anyway, we can see that I1 has the best result

inside the asteroid. But outside, I3 is better than I1 and

I2, while I4, plus a transformation on I3, has a better re-

sult than I3, especially for lower degree N . Because we

only care about gravity outside the asteroid for most sit-

uations, here we recommend using the I4 scheme in our

method.

2.3 Comparison between Spherical and Rectangular

Division Schemes

As Figure 2 shows, for all four schemes, the relative er-

rors generally do not increase with r when r/re > 1,

by which we show that the linear increase in radial range

of each cell in Equation (5) is a reasonable choice for

our spherical division scheme. As mentioned above, this

will reduce the required amount of storage for large rmax.

Actually, we may estimate the amount of storage for

Chebyshev coefficients for a specific α and N . As illus-

trated in Figure 3, the speed of storage increment with

rmax is decreasing as r increases. That means we do not

need to worry about the storage of coefficients too much

when we need to consider a large rmax. Besides, as we

can see in Figure 2, the error is satisfactory at large r. So,

we may not need to replace our method by switching to

use spherical harmonic expansion to calculate the gravity

at large r.

Despite the advantage above, we are still interested

in the comparison between spherical division and rect-

angular division. For the latter, the division is along the

directions of three rectangular coordinates x, y and z,

in which the cells are actually cubes (assuming ∆xi =

∆yi = ∆zi = D for all the cells) in a rectangular coor-

dinate system.

Consider three different cells near Toutatis, which

are divided in a spherical way with α = 10◦, as illus-

trated in the top panel of Figure 4, in which A, B and C

are the centers of each cell and rC = 3
2rB = 3rA. Only

cell A crosses the interior and exterior parts of Toutatis.

The red outline is the profile of the three cells projected

in plane y = 0. We can also have a rectangular division

at A, B and C, with the length of each cube equaling the

average scale of cells A, B and C, respectively. They are

illustrated as the black outline in the top panel.

The relative errors along the z-axis (with position

along the double arrows) crossing each center of A, B

and C are displayed in Figure 4, where N = 2, 4 and both

spherical and rectangular division results are exhibited.

We can see that the two division schemes show almost

no difference in area A, but spherical division prevails

in areas B and C (for area B, the mean relative error ra-

tios of spherical to rectangular division are 0.6 and 0.16

for N = 2 and N = 4, respectively, and for area C,

the values are 0.72 and 0.18). This experiment concludes

that the spherical division scheme has an advantage over

rectangular division far from the surface of the asteroid;
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Fig. 1 An illustration of division of the neighborhood space along the spherical coordinate directions, taking asteroid 4179 Toutatis

as an example. The red outlines show the division along some radial direction. The shape model is credited to Hudson et al. (2003).
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Fig. 2 The relative error vs. r for four interpolation schemes I1, I2, I3 and I4 in direction θ = 0◦ and ϕ = 0◦. The degrees of

Chebyshev polynomials are 2, 3, 4 and 5, as labeled at the top of each panel. re is radial distance on the surface.

this is another reason we recommend using spherical di-

vision.

2.4 Combined with Octree Division

We have done numerical experiments to demonstrate that

I4 interpolation and the spherical division scheme are

good choices when we use Chebyshev polynomials to

approximate gravity near an irregularly-shaped asteroid.

Setting N = 2 and α = 10◦, the profiles of relative er-

rors of Toutatis in the planes y = 0 and x = 0 are shown

in Figure 5. We can see that the relative error may in-

crease to ∼0.1 near the surface and decreases to less than
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Table 1 The maximal relative errors of cells A, B and C. N =
2 and α varies from 20◦ to 1.25◦.

α = 20
◦ α = 10

◦ α = 5
◦ α = 2.5◦ α = 1.25◦

A 1.09E–01 5.20E–02 2.23E–02 1.47E–02 8.82E–03

B 6.36E–04 5.55E–05 5.84E–06 6.72E–07 8.06E–08

C 1.89E–04 1.92E–05 2.18E–06 2.61E–07 3.21E–08

Table 2 The maximal relative errors of cells A, B and C. α =
10◦ and N increases from 2 to 6.

N = 2 N = 3 N = 4 N = 5 N = 6

A 1.13E–02 1.11E–02 6.36E–03 6.12E–03 3.91E–03

B 2.92E–06 7.63E–08 6.21E–10 2.70E–11 3.58E–13

C 1.09E–06 2.55E–08 1.51E–10 2.42E–12 4.99E–14

0.001 for r > 3 km, which is consistent with the results

given in Figure 2. To improve the precision, we may re-

duce the size of each cell by decreasing α or increasing

the degree N . The experiments are performed for areas

A, B and C in Figure 4. We fix N = 2 and halve α from

20◦ to 1.25◦. Then, we fix α = 10◦ and increase N from

2 to 6. Their results of maximal relative errors are shown

in Tables 1 and 2, respectively.

The results show that for each halving of α, the max-

imal errors of B and C are reduced by 8∼10 times, while

the value is up to 50 times for each increase of N from 2

to 6 on average. But the situation is totally different for A,

where the errors are only reduced by less than 0.5 times

for each halving of α, and the situation is even worse

for an increase of N . As an illustration, the variations of

Fr with z in plane x = xA for different y are shown in

Figure 6, where the dashed lines mean the locations are

inside the asteroid. The variations of Fr with z are con-

tinuous curves, but obvious jumps occur at the adjacent

area. So, it is a natural result for area A when we use a

smooth curve (Chebyshev polynomials) to fit the not-so-

smooth gravity. If we need to refine the precision near the

surface, a natural choice is to only reduce the cell size in

these areas (we do not choose to increase the degree N

because this will further burden computation time, as we

can see in Table 3), but not reduce α globally, because the

latter one will unnecessarily reduce the cell size far away

from the surface and greatly increase the needed storage

(a rise of 8 times in storage for each halving of α).

With the above results in mind, the spherical divi-

sion scheme is refined by combining with adaptive oc-

tree division (Frisken & Perry 2002), in which an error

tolerance (denoted as δtol) is set in addition to α, N, rmin

and rmax. The maximal relative error (δmax) of each cell

is evaluated during the division. If δtol < δmax, then the
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Fig. 4 The comparison of relative errors for spherical and rectangular division schemes in areas A, B and C. The I4 interpolation

scheme is adopted in the calculation.

Fig. 5 The profiles of relative errors at y = 0 (left) and x = 0 (right) near asteroid Toutatis, where N = 2 and α = 10◦. We have

applied the log
10

operation to the relative error. The interior gravity is not calculated.
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Table 3 The Ratio of Computation Time for Our Method to that of the Polyhedral Method
(α = 10◦ and N = 2 ∼ 6)

Method Polyhedral N = 2 N = 3 N = 4 N = 5 N = 6

Time consumption 1.0 7.6E–4 1.2E–3 1.7E–3 2.4E–3 3.2E–3
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Fig. 6 Fr vs. z in plane x = xA for different y. The solid and dashed lines represent the points being outside or inside the asteroid

Toutatis, respectively.

cell will be divided by half and this process is repeated

recursively. Finally the cells may have different sizes and

they are managed by an octree data structure. The whole

procedure of coefficient generation and gravity calcula-

tion in our method is illustrated in Figure 7.

As an experiment, we set δtol = 0.01, and then

Figure 5 was refined as displayed in Figure 8, where the

maximal relative errors near the surface have been re-

duced to less than 0.01.

3 COMPUTATIONAL EFFICIENCY AND

PRECISION OF ORBIT INTEGRATION

Based on the procedures illustrated in Figure 7, we are

able to generate the coefficients for asteroid Toutatis.

Two important aspects of this method we are concerned

with are computational efficiency and error of orbit prop-

agation.

3.1 Comparison of Computational Efficiency with

the Polyhedral Method

In our computation, the number of facets and vertexes

of Toutatis’ shape model are 6400 and 12 796 respec-

tively (Hudson et al. 2003). After loading all the coeffi-

cients into memory, the computational efficiency almost

only depends on degree N . Compared with the polyhe-

dral method, the relative elapsed time for N = 2 ∼ 6 is

listed in Table 3.

The results tell us that the computational efficiency

of our method is hundreds to thousands of times higher

than the polyhedral method, and this advantage is more

prominent for shape models with larger numbers of

facets and vertexes. As N increases, the computation

time also increases slightly. So, in the sense of efficiency,

for the same precision, we recommend using small N

and small α, but not large N and large α.
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Fig. 7 The basic programming procedure for coefficient generation and gravity calculation. The polyhedral method is used in

coefficient generation.

Fig. 8 The profiles of relative errors at y = 0 (left) and x = 0 (right) near asteroid Toutatis, where N = 2 and α = 10◦. The

interior gravity is not calculated.

3.2 Error Comparison of Orbit Propagation with

the Polyhedral Method

In most situations, the computation of gravitational ac-

celeration is used in orbit integration. It is interesting to

compare the orbit integration error between our method

and the polyhedral method.

Computing gravity near the surface of an asteroid

is essential for proximation operations (including hover-

ing, landing and touch-and-go maneuvers) of spacecrafts.

To show the application of our method in this circum-

stance, we have integrated 10 000 orbits of ejecta parti-

cles randomly launched from the surface of Toutatis with
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a launch angle of 45◦ and velocities of 0.4 ∼ 1.2 m s−1

(the average escape velocity of Toutatis on the surface

is ∼ 1.3 m s−1) by using our method and the polyhedral

method to calculate the gravitational acceleration. Only

particles that re-impact the surface are recorded. About

5% of particles have orbit times larger than 1 day, whose

eccentricities are so large that their orbital errors are very

sensitive to the gravity. So, these particles are rejected

because they are not suitable for comparison. For the re-

maining 95% of particles, a histogram showing the distri-

bution of position errors is displayed in Figure 9, where

N = 2, and α = 10◦ or 5◦. The dashed lines mean

δtol is not set while solid lines represent cases having

δtol = 0.01. We can see that the precision has an obvious

enhancement after combining with the adaptive octree di-

vision, in which about 94.9% and 97.6% of particles have

errors less than 0.01 km for α = 10◦ and α = 5◦, respec-

tively.

Another situation we are concerned with is stable

motion around the asteroid. In most cases, these orbits

are high enough that we can safely use harmonic ex-

pansions to calculate the gravity. But this will bring ad-

ditional trouble related to retrieval of harmonic coeffi-

cients. Nevertheless, here we would like to perform ex-

periments only using our method. 10 000 particles are

placed in circular orbits with r = 4 km (about twice

the asteroid radius) with randomly picked inclinations

and mean anomalies. The propagation is performed for

10 cycles (about 5.6 d). Using the same parameters as

in Figure 9, the results are shown in Figure 10. This

time, the dashed lines and solid lines coincide because

the adaptive octree division of δtol = 0.01 does not influ-

ence the domains through which these orbits pass. About

99.9% and 79.1% of orbits have errors less than 0.01 km

for α = 5◦ and α = 10◦, respectively.

These two experiments indicate that decreasing the

cell size may definitely reduce the orbital error. For orbits

near the surface, using adaptive octree division is neces-

sary and we can see it works well for orbit integration.

The orbital errors for N = 2, α = 5◦ and δtol = 0.01 are

acceptable in some situations, such as Monte Carlo sim-

ulation, or preliminary orbit design. But if you still need

higher precision, reducing δtol may be a good choice.

However, please keep in mind that the rate of error reduc-

tion near the surface is very small as α decreases, which

means you probably need a very high cost for storage of

coefficients, which is a trade off for a little enhancement

in precision.

Finally, for reference about storage, if rmin =

0.75 km, rmax = 20 km and ignoring the cells totally

inside Toutatis, the double-precision binary storage re-

quired for coefficients is 54.7 MB and 7.4 MB for α = 5◦

and 10◦ with δtol not set, respectively, while the values

are 107.4 MB and 61.6 MB with δtol = 0.01, respec-

tively.

4 CONCLUSIONS

In this article, we propose using Chebyshev polynomial

interpolation to increase the computational efficiency of

gravitational acceleration near an irregularly-shaped as-

teroid, in which the gravity of the neighborhood domain

of the asteroid is precomputed by a computationally ex-

pensive polyhedral method and the interpolation coeffi-

cients are stored. Spherical division and rectangular di-

vision schemes, and four interpolation schemes on dif-

ferent components of gravitational acceleration, are both

compared, and we recommend adopting spherical divi-

sion and the I4 interpolation scheme according to numer-

ical experiments performed on asteroid 4179 Toutatis.

The spherical division we propose along the radial di-

rection is not uniform, where ∆r of each cell is nearly

proportional to the radial distance. It allows us to use our

method to calculate the gravity globally for some orbits

not too far away from the surface at the cost of not too

much additional storage increment. The I4 interpolation

scheme suggests representing gravitational acceleration

along the three spherical coordinate directions, and we

only need to apply the interpolation on the non-spherical

part with an extra consideration about characteristic vari-

ation along the radial direction.

After that we show the computational efficiency may

be enhanced by hundreds to thousands of times for the

typical asteroid Toutatis and the enhancement in speed

mainly depends on the degree of the polynomials. Orbit

propagation experiments are performed for 10 000 ejecta

orbits and stable midrange orbits. The results tell us that

we can obtain a generally acceptable orbit precision by

simply setting the parameters N = 2, α = 5◦ and δtol =

0.01, and the amount of storage required for coefficients

is also acceptable.

However, we also notice that there is an obvious bal-

ance between precision and amount of storage required

for coefficients. Special concern is noted about the slow

error convergence near the asteroid surface; this is a

drawback when using Chebyshev polynomial interpola-

tion, for which an abrupt gravity change near the surface
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Fig. 9 The distribution of orbit errors for ejecta particles. N = 2 and α = 10◦ or 5◦. The dashed lines represent cases in which

the value of δtol is not set, but solid lines refer to cases in which δtol = 0.01.
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Fig. 10 The distribution of orbital errors for circular orbits with r = 4 km. The other parameters are the same as in Fig. 9.

greatly increases the interpolation error. Subsequent im-

proved research should focus on this issue.
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