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Abstract We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We

derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial

direction and we interpret it physically in terms of the work done in the gravitational field of the Sun

by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not

surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However,

it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the

bound closed orbits predicted by Bertrand’s theorem, which has been known since 1873.
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1 INTRODUCTION

The numerical algorithm called the Titius-Bode “law”

has been known for 250 years (e.g., Nieto 1972; Lecar

1973; Danby 1988; Murray & Dermott 1999). It relies

on an ad-hoc geometric progression to describe the posi-

tions of the planets in the solar system and works fairly

well out to Uranus but no farther (Jaki 1972). The same

phenomenology has also been applied to the satellites

of the gaseous giant planets (Neuhaeuser & Feitzinger

1986; Murray & Dermott 1999). Two modern brief re-

views of the history along with criticisms of this rule have

been written by Graner & Dubrulle (1994) and Hayes &

Tremaine (1998). Currently, the general consensus is that

a satisfactory physical basis has not been found for this

numerical coincidence despite serious efforts by many

researchers over the past three centuries. Furthermore,

opinions differ on whether such a physical basis exists

at all.

Apparently, many researchers still believe that the

Titius-Bode algorithm does have a physical foundation

and continue to work on this problem. In particular, the

last decade of the twentieth century saw a resurgence of

investigations targeting precisely two questions: the ori-

gin of the “law” (Graner & Dubrulle 1994; Dubrulle &

Graner 1994; Li et al. 1995; Nottale et al. 1997; Laskar

2000) and its statistical robustness against the null hy-

pothesis (Hayes & Tremaine 1998; Murray & Dermott

1999; Lynch 2003). Furthermore, in this century, some

extrasolar systems have been discovered in which the

planets appear to obey the Titius-Bode rule and the rule

is used as a predictor of additional planets yet to be dis-

covered in these multiple-planet systems (Poveda & Lara

2008a,b; Bovaird et al. 2013; Huang & Bakos 2014;

Bovaird et al. 2015).

In Section 2, we examine the Titius-Bode rule in its

original form, which is a geometric progression of the

semimajor axes of most planetary orbits in the solar sys-
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tem. By inductive reasoning, we associate the geometric

rule with the work done in the gravitational field of the

Sun by perturbed particles orbiting in the vicinity of plan-

etary orbits, but we find that the spacing of the semimajor

axes is not the right qualifier for the physical profile dic-

tated by the Sun’s gravitational potential. Then we derive

another rule for a group of hypothetical orbits that are

equally spaced between the actual semimajor axes and

we interpret this rule physically in terms of the gravita-

tional potential differences of particles perturbed around

the actual orbits of the planets. Our results support the

discovery of Laskar (2000) (for related recent works see

Jiang et al. 2015; Laskar & Petit 2017) that such an ar-

rangement of orbits implies that protoplanets do not in-

terfere with one another during their formation stage,

thus a planet is expected to be formed at every available

orbit in the geometric progression. Furthermore, our re-

sults reveal new geometric properties (see the Appendix)

of the bound closed orbits predicted in spherical poten-

tials by the celebrated theorem of Bertrand (1873). In

Section 3, we summarize and discuss these results.

2 TITIUS-BODE RULE REWRITTEN AND

INTERPRETED PHYSICALLY

In its original form, the Titius-Bode rule dictates that the

semimajor axes of most planetary orbits follow a geo-

metric progression. (In some forms, an additional term

of 0.4 is added ad hoc in order to reproduce the inner-

most three planets that appear to be in arithmetic progres-

sion.) The geometric progression is described formally

by two equivalent relations: Consider three consecutive

orbits with semimajor axes a1, a2 and a3 (Fig. 1); then

the intermediate axis must be the geometric mean of its

neighboring axes, viz.

a2 =
√

a1a3 , (1)

or equivalently

1

a2 − a1

− 1

a3 − a2

=
1

a2

. (2)

The form of Equation (2) contains reciprocal distances

and this is a sufficient hint that the relation could be as-

sociated with the central gravitational potential due to the

Sun. But, as illustrated in Figure 1, such a simple associ-

ation is not entirely straightforward because the distances

(a2 − a1) and (a3 − a2) are not central, i.e., they are not

measured from the Sun.

In order to recast the rule in terms of central recip-

rocal distances, we define hypothetical orbits that are

equidistant between the semimajor axes. In Figure 1,

such orbits would cross the ray from S at the midpoints

M12 and M23. Their radial coordinates are

m12 =
1

2
(a1 + a2) and m23 =

1

2
(a2 + a3) , (3)

respectively. The sequence m12, m23, ... of intermediate

radii forms a geometric progression with the same ratio

as that of the a1, a2, a3, ... sequence. Eliminating a1 and

a3 between Equations (1) and (3), the Titius-Bode rule is

transformed to the equivalent form

1

m12

+
1

m23

=
2

a2

, (4)

which implies that a2 is the harmonic mean of m12 and

m23. As we describe in the Appendix, this is an im-

portant geometric property that is valid only in a cen-

tral −1/r gravitational potential and its physical mean-

ing can be easily deduced: Equation (4) can be rewritten

in a form that can be interpreted in terms of central po-

tential differences, viz.

GM
(

1

m12

− 1

a2

)

= GM
(

1

a2

− 1

m23

)

, (5)

where G is the gravitational constant and M is the mass

of the central object that creates the gravitational field.

Consider now particles oscillating about the interme-

diate orbit O2 (this also includes the protoplanetary core

early in its formation and before it settles down to O2).

It is evident that the work done by a particle at m12 to

reach a2 is the same as the work done by the field on a

particle at m23 that reaches a2. In other words, the grav-

itational field allows orbit O2 in Figure 1 to utilize the

entire area between the hypothetical orbits through M12

and M23 and to accumulate matter while sharing with

orbits O1 and O3 halfway the areas between each pair

of adjacent orbits. This arrangement of orbits in a ge-

ometric progression ensures that adjacent orbits do not

interfere with one another, a result that was first found

by Laskar (2000) who started with intersecting planitesi-

mal orbits and derived the Titius-Bode rule for a surface

density profile of the solar nebula when the interactions
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Fig. 1 Schematic diagram of three consecutive planetary orbits with semimajor axes a1, a2 and a3 in geometric progression

(a2 =

√
a1a3). The midpoints M12 and M23 of the segments between the orbits are also marked along the ray from the Sun S.

ceased. Our derivation above starts with the Titius-Bode

rule and it is effectively the converse of Laskar’s deriva-

tion.

This “harmonic-mean” sharing by protoplanets of

the in-between areas has also been used empirically in

the seminal work of Weidenschilling (1977) who dis-

tributed planetary material in annuli around the current

orbits of planets in order to derive a surface density pro-

file for the solar nebula. Our calculation justifies this

empirical notion on energetic grounds: Equation (5) de-

scribes the energy balance of a harmonic oscillator in

spherical (radial) coordinates with different amplitudes

on either side of orbit O2(a2) and it is in contrast to

the simple harmonic oscillator in which the deviations

(a2 − a1)/2 and (a3 − a2)/2 from the equilibrium po-

sition a2 are equal because of the linear nature of the

restoring force (Hooke 1678).

3 SUMMARY AND DISCUSSION

3.1 Summary

We have described a physical interpretation of the Titius-

Bode rule by considering, not the present positions of

the planets in the solar system, but the “regions of occu-

pancy” utilized by neighboring protoplanets during their

efforts to collect and accumulate material as they orbit

in the solar nebula: according to Equation (5), the work

done by a particle to move out from an interior orbit

through M12 (Fig. 1) to the next outer planetary orbit O2

is the same as the work done on a particle that falls into

the gravitational field from M23 to O2.

The importance of adjacent protoplanets sharing

halfway their in-between regions is twofold. First, the

protoplanets do not cross into the orbits of their neigh-

bors as they oscillate about their equilibrium orbits and

continue to accumulate material (Laskar 2000; Jiang

et al. 2015; Laskar & Petit 2017). This behavior ensures

that some object or objects will be found in every single

radial location a1, a2, a3, ..., even in the predicted loca-

tion between Mars and Jupiter (where the asteroid belt re-

sides). Second, after the remaining disk gas disperses or

gets accreted by the Sun and the planets emerge in their

final settled orbits, the long-term dynamical stability of

the solar system is strengthened because these orbits are

as far away from one another as possible, and neighbor-

ing planets may interact only weakly by tidal forces that

exert only minor perturbations on the positions of their

neighbors (Hayes & Tremaine 1998). Such weak inter-

actions are contingent upon the absence of resonant or-

bits, which is an observed fact for the planets in our solar

system.

3.2 Solar Nebula

In Christodoulou & Kazanas (2007), we derived exact

solutions of the Lane-Emden equations with rotation for

the solar nebula (Lane 1870; Emden 1907) assuming it is

an isothermal gas. The isothermal solutions of the Lane-

Emden equations are very much relevant to the problem
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at hand: they show that protoplanetary cores are trapped

inside local gravitational potential wells in which they

can collect matter and grow in time. The distances of

these localized potential wells from the protosun exhibit

a geometric progression as a result of the differential ro-

tation of the solar nebula (that tapers off at the inner re-

gion and at the farthest outer regions of the nebula, where

the planetary orbits appear to follow arithmetic progres-

sions).

The present result strengthens the argument that

planets grow locally inside deep gravitational potential

wells that extend halfway between adjacent planetary

orbits: on energetic grounds, solid protoplanetary cores

share the disk space in the solar nebula between adja-

cent orbits and they collect material by various processes

that make matter settle down to the potential minima,

whereas the gas can flow inward and continue its accre-

tion on to the central protosun. Furthermore, this model

argues against excessively large migrations of protoplan-

ets in the solar nebula (Gomes et al. 2004, 2005; Levison

et al. 2007, and references therein). Protoplanetary cores

can move radially only within the bounds of their lo-

cal gravitational potential wells (radii m12 and m23 in

Eq. (3) for orbit O2 in Fig. 1).

3.3 Extrasolar Multiplanet Systems

It is not surprising that at least some extrasolar systems

exhibit similar characteristic distributions of exoplane-

tary orbits. Their protoplanetary disks may have had sim-

ilar energetic and stability properties as our solar nebula,

a similarity that apparently is neither universal nor wide-

spread (Huang & Bakos 2014; Bovaird et al. 2015). As

for the location of the habitable zone and its planets in

extrasolar systems (Kane et al. 2016), we believe that

the outcome depends crucially on the differential rotation

and surface density profiles of each particular protoplan-

etary disk (Laskar 2000; Christodoulou & Kazanas 2007;

Jiang et al. 2015) irrespective of whether the Titius-Bode

rule is applicable or not.

3.4 Connection to the Closed Orbits of Bertrand’s

Theorem

Equation (5) shows that perturbed particle orbits around

a circular equilibrium orbit such as O2(a2) in Figure 1

have different amplitudes, say A1 and A2 > A1, on ei-

ther side of the equilibrium radius a2. This is required so

that the potential differences between a2 and the maxi-

mum radial displacements be equal in magnitude, an as-

sertion of the Work-Energy Theorem between the equi-

librium radius a2 and the radii of the turning points of the

oscillation where the radial velocity goes to zero. The

result is a restriction placed on the two amplitudes that

must be related by

1

a2 − A1

+
1

a2 + A2

=
2

a2

, (6)

that is, radius a2 is the harmonic mean of the radii of

the turning points. This property is valid only for bound

closed orbits in a −1/r gravitational potential and it is

derived in the Appendix, where we also analyze closed

orbits in an r2 gravitational potential (Bertrand 1873).

It turns out that the latter orbits exhibit another precise

symmetry altogether: radius a2 is the geometric mean of

the radii of the turning points.
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APPENDIX A: THE GEOMETRY OF BOUND

CLOSED ORBITS IN SPHERICAL POTENTIALS

A1. Newton-Kepler −1/r Potential

Consider an equilibrium orbit r = a in a −1/r potential

and assume that the maximum radial deviation is ±A on

either side of r = a. At the turning points r = a±A, the

radial velocity is zero (ṙ = 0) and the total energy per

unit mass can then be written as (Goldstein 1950)

E =
L2

2r2
− GM

r
, (A1)

where the specific angular momentum satisfies

L2 = GMa,

thus Equation (A1) can be written in the form

E
GM =

a

2r2
− 1

r
= const. (A2)

Applied to the turning points r = a ± A, this equation

yields
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a

2(a − A)2
− 1

a − A
=

a

2(a + A)2
− 1

a + A
, (A3)

a strict requirement for energy conservation. This re-

quirement is satisfied only for A = 0 which implies that

the amplitude of the oscillation cannot be the same on

either side of r = a.

We consider next two different amplitudes A1 > 0

and A2 > A1 on either side of the equilibrium orbit r =

a. After some elementary algebra, energy conservation

(Eq. (A2)) at the turning points r = a − A1 and r =

a + A2 yields

1

A1

− 1

A2

=
2

a
, (A4)

or equivalently

1

a − A1

+
1

a + A2

=
2

a
. (A5)

This last equation shows that, in a −1/r potential, the

equilibrium radius a is the harmonic mean of the radii of

the turning points a−A1 and a + A2 (as was also found

in Equation (4) for orbit O2, and points M12 and M23 in

Fig. 1).

A2. Isotropic Hooke r2 Potential

The isotropic harmonic-oscillator potential, written as

Ω2r2/2 (Ω =const.), cannot support arbitrarily large os-

cillations of equal amplitude on either side of the equi-

librium orbit r = a either. The same analysis leads to

an energy equation analogous to Equation (A2), but here

L2 = Ω2a4, thus

E
Ω2/2

=
a4

r2
+ r2 = const. (A6)

When energy conservation is applied between the turning

points r = a ± A, we obtain three solutions, A = 0

and two extraneous solutions A = ±a
√

2. The solution

A = a
√

2 is of course rejected because A > a.

We consider next two different amplitudes A1 > 0

and A2 > A1 on either side of the equilibrium orbit r =

a. After some elementary algebra, energy conservation

(Eq. (A6)) at the turning points

r = a − A1

and

r = a + A2

yields

1

A1

− 1

A2

=
1

a
, (A7)

or equivalently

(a − A1)(a + A2) = a2 . (A8)

This last equation shows that, in a harmonic r2 poten-

tial, the equilibrium radius a is the geometric mean of

the radii of the turning points a − A1 and a + A2.
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