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Abstract Solar flares strongly influence space weather and human activities, and their prediction is

highly complex. The existing solutions such as data based approaches and model based approaches

have a common shortcoming which is the lack of human engagement in the forecasting process. An

image-case-based reasoning method is introduced to achieve this goal. The image case library is com-

posed of SOHO/MDI longitudinal magnetograms, the images from which exhibit the maximum hori-

zontal gradient, the length of the neutral line and the number of singular points that are extracted for

retrieving similar image cases. Genetic optimization algorithms are employed for optimizing the weight

assignment for image features and the number of similar image cases retrieved. Similar image cases and

prediction results derived by majority voting for these similar image cases are output and shown to the

forecaster in order to integrate his/her experience with the final prediction results. Experimental results

demonstrate that the case-based reasoning approach has slightly better performance than other methods,

and is more efficient with forecasts improved by humans.
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1 INTRODUCTION

Predicting the eruption of solar flares is practically sig-

nificant due to their potential threat. Many efforts have

been devoted into improving the performance of short-

term flare predictions. Hitherto, expert systems, statis-

tical models and artificial intelligence techniques have

been employed for solar flare prediction.

One aspect of this work is to find more informative

predictors. McIntosh (1990) proposed the McIntosh clas-

sification of sunspots to reflect the morphological charac-

teristics of active regions (ARs) and developed an expert

system called Theophrastus to predict solar flares. This

classification scheme and system have been widely ap-

plied in subsequent research. Bornmann & Shaw (1994)

used multiple linear regression analysis to derive the ef-

fective contributions to solar flare prediction for each pa-

rameter and they concluded that when reduced to 10 pa-

rameters, the observed flare rates can still be adequately

replicated. McIntosh (1990) discovered that the first three

of these accurately represented the length of the sunspot

group, the size and shape of the largest spot, and the

distribution of spots within that group. The accumula-

tion of historical flare rates from the McIntosh classifica-

tion system led to ideas for estimating flare probability.

Based on the assumption that solar flare eruptions obey

a Poisson distribution in time and a power-law distribu-

tion in size, a statistical prediction method was formu-

lated by Wheatland (2001). Gallagher et al. (2002) eval-

uated the prediction rate using the McIntosh classifica-

tion system, and then forecast the occurrence of daily

flares by assuming a Poisson distribution for the wait-

ing time of X-ray flares. Bloomfield et al. (2012) used

X-ray flares measured by the Geostationary Operational

Environment Satellite and McIntosh group classifications

to determine the Poisson probabilities for different flare

magnitudes. Cui et al. (2006) presented three types of

predictors to describe the nonpotentiality and complexity
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of a photospheric magnetic field: the maximum horizon-

tal gradient, the length of the neutral line and the num-

ber of singular points. Yu et al. (2010a) implemented a

model that applies multiple-resolution predictors result-

ing from the decomposition of a sequence of predictors

into four frequency bands using a maximal overlap dis-

crete wavelet transform. This model reflects the trend and

the changing rate of emerging flux regions. Huang et al.

(2010) constructed a C4.5 decision tree model based on

predictor teams that are extracted from a dataset using

rough set theory. The predictor teams used in the ensem-

ble model not only efficiently reduce redundancy but also

increase profitability of the relevant information. Huang

et al. (2013) constructed a metric to depict the posi-

tional relationship between ARs and predicted active lon-

gitudes, enhancing the performance of solar flare predic-

tion. Volobuev et al. (2016) proposed that a generalized

Laplacian could help predict strong flares and found that

the maximum Laplacian is located near the AR polarity

inversion line.

Another aspect of solar flare prediction research is to

establish more powerful models. Wheatland (2004) ap-

plied a Bayesian approach capable of refining the ini-

tial prediction using the prior probability of the predic-

tion, the flaring records and the phenomenological rules

of flare statistics. Leka & Barnes (2003a) and Leka &

Barnes (2003b) employed Fisher’s linear discriminant

analysis to predict whether a flare will occur. Li et al.

(2007) constructed a prediction model based on the com-

bination of a support vector machine (SVM) and a k-

nearest neighbors (KNN) algorithm. Combining an SVM

and a cascade correlation neural network, Qahwaji &

Colak (2007) put forward a hybrid system for automatic

detection. Wang et al. (2008) proposed new measure-

ments based on solar magnetic field observations that

provide more information than what is given by mea-

surements based on the sunspot group classification and

next they set up a solar flare forecasting model supported

by an artificial neural network. To predict short-term

significant solar flares, Colak & Qahwaji (2009) built

an automated hybrid computer platform (ASAP) using

Solar and Heliospheric Observatory (SOHO)/Michelson

Doppler Imager (MDI) images. Yu et al. (2010b) pre-

sented a Bayesian network approach for short-term so-

lar flare level prediction by extracting sequential features

and analyzing their temporal variations with respect to

flare eruptions. Li & Sun (2013) considered the evolution

of solar ARs and used sequential sunspot data to pre-

dict solar flares. Ahmed et al. (2013) applied machine-

learning and feature-selection algorithms to a set of mag-

netic feature properties to determine solar flare predic-

tion capabilities and the relationship between these prop-

erties and flare occurrence. Muranushi et al. (2015) de-

veloped the UFCORIN platform for studying and au-

tomating the prediction of space weather, including solar

flares. Boucheron et al. (2015) developed an SVM based

approach to predict flare size and occurrence time. Shin

et al. (2016) focused on flare flux for strong flares, and

proposed daily maximum flare-flux forecast models for

strong flares (M- and X-class) using multiple linear re-

gression and artificial neural network methods.

Currently, solar flare prediction mainly concentrates

on building powerful prediction models and exploring

more informative predictors. Hence Barnes et al. (2016)

make a comparison with a number of existing algo-

rithms applied to common data sets, specifically line-

of-sight magnetic field and continuum intensity images

from MDI. However, prediction results provided by mod-

els such as neural networks, SVMs, C4.5 decision trees

and Bayesian networks are difficult for a forecaster to

understand in spite of the high potential accuracy of their

prediction. A common weakness in these models is that

they provide the forecaster with little comprehensible in-

formation apart from the final prediction results. Case-

based reasoning (CBR) is a problem-solving paradigm

that solves new problems by analyzing and adapting

solutions used for similar past problems (Riesbeck &

Schank 2013). CBR simulates human problem-solving

methodology through memory activation and inferences,

and its primary process is to identify the current case,

find previous cases similar to the current one, suggest

a solution based on the retrieved similar cases, evaluate

the proposed solution and finally to update the system by

learning from the current experience.

Figure 1 illustrates the basic flow chart for a CBR

system. Nowadays, the application of CBR is popu-

lar in health sciences (Begum et al. 2011), academia

(Mamaghani 2002), design (Guo et al. 2013), industry

(Mikos et al. 2010) and business (Li & Sun 2013) ow-

ing its intuitive nature, minimum knowledge require-

ments, ease of understanding and explanation, and high

level of interpretability. While other machine learning

techniques generalize associations between features and

outcomes, CBR justifies the solution to a new problem

through experience accumulated from concrete past situ-

ations (Marir & Watson 1994, Richter & Aamodt 2005).
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Fig. 1 Basic CBR flow chart. A new problem is generally encoded into numeric form and retrieved by comparison with similar

cases. These cases are stored in the case library, which provides relevant solutions and their index. By comparing with similar cases,

the CBR system may give some possible solutions for a new problem to help humans to make a final decision which is then tested

by comparing with reality. After that, the new problem becomes a new case stored in the case library and is assigned a new index,

and can act as a solution for other problems that emerge.

Original observational data used for solar flare pre-

diction take the form of images which provide the most

abundant information about flare eruption. CBR in so-

lar flare image cases leads to a more interpretable ap-

proach, when compared to models built from numeric

data. Therefore, in this article, SOHO/MDI longitudinal

magnetograms are used to construct the image case li-

brary and the image-case-based reasoning method is pro-

posed to predict solar flare eruptions.

The structure of this article is organized as fol-

lows. The data are introduced in Section 2. The im-

age case library construction based on SOHO/MDI im-

ages is presented in Section 3. The genetically op-

timized similar case retrieval method is proposed in

Section 4. Case adaption involving the participation

of forecasters and incremental learning is explained in

Section 5. Experimental results and analysis of the pro-

posed method are reported in Section 6. Finally, con-

clusions and future research outlook are provided in

Section 7.

2 DATA

SOHO/MDI full disk longitudinal magnetograms were

downloaded from ftp://soi-ftp.stanford.edu/pub /magne-

tograms/. The magnetograms used in this study have a

spatial resolution of 2′′ × 2′′ after a smoothing average

of 3 × 4 pixels for data reduction. The noise level of

the line-of-sight magnetic field is less than 20 G (Wang

et al. 1996). These images were collected from 1996

April 15 to 2008 April 2. The daily magnetograms were

recorded at intervals of 96 minutes, giving 15 synoptic

maps each day. In FITS format, the SOHO/MDI images

were recorded on an array of 1024×1024 pixels, and the

spatial resolution of a SOHO/MDI magnetogram is 4′′

over the whole solar disk. Figure 2 shows a SOHO/MDI

magnetogram (2003 November 23).

AR location data associated with the solar flare

events are obtained from ftp://ftp.swpc.noaa.gov/pub/

warehouse/. We only consider the region within 30◦ of

the solar disk center for our prediction and data analysis.

Moreover, all the data in this study are extracted from

ARs selected based on the following two criteria:

(1) There exists at least one X-ray flare whose magni-

tude ≥ C1.0.

(2) The location of ARs is within 30◦of the solar disk

center, where projection effects can be neglected.

The importance of a solar flare is conventionally de-

scribed by its index, for example, C, M or X . Within the

forecasting period, more than one flare may happen. The

importance of these flares is summed up with weights.

The total importance of flares is computed as follows

(Abramenko 2005)

Itot = 1 ×
∑

C + 10 ×
∑

M + 100 ×
∑

X. (1)

Solar flare samples are extracted based on an AR

containing the predictors and the total importance of a
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Fig. 2 Full disk magnetogram taken on 2003 November 23 (SOHO/MDI data). The black and white areas represent negative and

positive magnetic poles respectively.

solar flare. Total importance (Itot ) of a sample is cal-

culated using Equation (1). Equation (1) considers the

influence of all flares within the forward-looking pe-

riod. To better illustrate this: if, for example, an AR

produces C1.2, C2.3, M4.1 and X1.2 flares within 48 h,

Itot = (1.2+2.3)+10×4.1+100×1.2 = 164.5 (Wang &

Japkowicz 2010). Flares with a significance above a cer-

tain threshold are often used in forecasting models and

the threshold of Itot is set to be 10. Therefore, a flar-

ing sample is defined as one that has a total importance

greater than 10.

3 IMAGE CASE LIBRARY CONSTRUCTION

USING SOHO/MDI MAGNETOGRAMS

A case library, where past cases and their solutions

are stored, can be constructed. It is an experience-rich

database that contains abundant information. A case can

take any form, including a signal, image, video or writ-

ten document, as long as it can comprise a clear and un-

derstandable description of the problems to be addressed.

Establishing an informative case library is essential when

constructing an effective CBR system. In the field of

medical diagnosis, images are widely used for the case

library. Liu et al. (2012) built a computer-aided breast

cancer diagnosis system using CBR with color Doppler

flow images as the case library. Zhou et al. (2012) used

fracture images as the case base to assist surgeons in de-

cisions regarding new cases by supplying visually simi-

lar past cases. One advantage of using images as the case

library that should not be overlooked is their visual pre-

sentation, which can support the suggested solution with

a more intuitive interpretation. Moreover, images contain

the most abundant original information, whereas infor-

mation provided by numeric predictors is more limited.

Therefore, we use images as the case library for solar

flare prediction. In CBR, all predictors are extracted from

an AR in full disk images. The information about the AR

comes from supplementary materials associated with the

cases. The case library consists of SOHO/MDI full disk

longitudinal magnetograms. Each image and its solution

make up a raw case. Images are used to construct the

case base, because when a forecaster attempts to adapt

solutions to similar cases, magnetograms can provide a

direct visualization reference that the forecaster is famil-

iar with. In contrast, numeric predictors do not provide

visual help for reference. Combining the suggested solu-

tion generated by CBR with the forecaster’s experience

about similar image cases is helpful for improving pre-

diction accuracy.

Though the magnetograms contain large quantities

of information, it is difficult to compare images di-

rectly to rank similarities. Hence, image numeric features

should be extracted from them to compute the similarity

between image cases.
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Table 1 Values of Parameters in the Sigmoid Function

Threshold Forward-looking period Predictor A1 A2 X0 W

Itot = 10 Within 48 (h) |∇hBz |m 0.164 0.738 0.360 0.066

L 0.062 0.848 763.08 382.97

η –0.196 0.730 9.343 22.663

In this paper, the maximum horizontal gradient

(|∇hBz|m), the length of neutral line (L) and the num-

ber of singular points (η) are extracted from SOHO/MDI

magnetograms and then the image numeric features are

mapped by a sigmoid function, analogous to a Boltzmann

sigmoid, as shown in Equation (2) to incorporate known

relations between the features and the flare level (Cui

et al. 2006). Other image numeric features can also be

chosen to compute the similarity between image cases.

Y = A2 +
A1 − A2

exp[(X − X0)/W ]
, (2)

where Y is the flare productivity defined by the ratio of

the number of flaring samples to the total number of sam-

ples, and X is one of the image numeric feature values

(the length of a neutral line, the number of singular points

and the maximum horizontal gradient) for the ARs. A1,

A2, X0 and W are optimized in the curve-fitting process

to minimize the sum of squares of the deviations between

the observed data and the expected data (Ledvij 2003).

Table 1 shows optimized values of the parameters.

4 GENETICALLY-OPTIMIZED CASE

RETRIEVAL

4.1 Similarity Measurement Using Weighted

Euclidean Distance

Osborne & Bridge (1996) suggested some guidelines on

theoretical frameworks for systematically constructing

similarity measures in CBR. Reliable matching and rank-

ing in the process of comparing two cases largely de-

pend on identifying a suitable similarity measurement. If

the metric cannot sufficiently and appropriately differen-

tiate cases, the CBR system yields poor prediction ac-

curacy. It is evident from the current literature on simi-

larity measurements that each metric has its correspond-

ing strengths and weaknesses, and that identifying the

most appropriate one depends on the type of problem.

Although there is an abundance of metrics, one point

to bear in mind is that, for a similarity measurement to

be effective and credible, it must take into account the

relative importance of features. The more important fea-

tures contribute more to the aggregation of differences

between cases, while the less important ones contribute

less. Proper weight assignment can enhance the perfor-

mance of CBR and decrease its sensitivity to similarity

measurement. This means that selecting a suitable sim-

ilarity measurement with feature weights is an essential

element in CBR.

The distance between two cases is the most obvi-

ous measure for similarity. Euclidean distance functions

are the most commonly-used distance measures. For two

cases, A and B, with n numeric feature values, the dis-

tance between A and B is given by

Euclidean Distance : DISAB =

√

√

√

√

n
∑

k=1

|Ak − Bk|2,

(3)

where Ak and Bk are the kth numeric feature values of

A and B, respectively.

Although Euclidean functions are simple and easy

to compute, Berry & Linoff (1997) pointed out that they

have desirable performances in many different problems.

Combining Euclidean distance and feature weights, we

get the weighted Euclidean distance shown as follows:

Weighted Euclidean Distance

DISAB =

√

∑n

k=1
wk × (Ak − Bk)2
∑n

k=1
wk

, (4)

where wk is the weight of the kth numeric feature. In this

study, we use the weighted Euclidean distance function

as the similarity measurement for CBR.

4.2 Retrieval Strategy: k-nearest Neighbors

The choice of an effective retrieval strategy is a key el-

ement in developing a CBR system. One of the simplest

and most straightforward retrieval methods is nearest

neighbor (1NN) matching. During generalization, 1NN

uses the distance metric to determine the similarity be-

tween two cases and predict the output of the query

case based on the retrieved nearest case. However, 1NN

is highly sensitive to noise. KNN is a more sophisti-

cated approach that can reduce sensitivity to noise and

smooth the decision boundaries by setting k greater than
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1 (Dasarathy 1991). KNN searches out a neighborhood

consisting of k cases that are nearest to the query case

and determines the outcome based on the predominance

of a particular label in the neighborhood.

Although KNN is quite simple and easy to imple-

ment, it performs well in many situations. Cover &

Hart (1967) pointed out that the classification error of

KNN asymptotically approaches the Bayes error and can

also approximate it. Furthermore, Kuramochi & Karypis

(2001) found that KNN is even able to outperform an

SVM in gene classification using expression profiles,

which demonstrates the effectiveness of KNN despite its

simplicity.

Determination of the value of k, the number of near-

est neighbors, is a key element to consider in CBR. The

value of k is related to the similarity measurement and

the specific problem, and is typically determined through

trial-and-error processes. If k is too high, the retrieval

process includes too many insignificant cases, which may

lead to poor results, while a small value of k may cause

CBR to overlook effective similar cases that would con-

tribute to the correct decision.

4.3 Optimizing Weight Assignment of Numeric

Features and Number of Neighbors Using a

Genetic Algorithm

Kolodner (1988) suggested using the experience of hu-

man experts and statistical evaluations to assign weights

to every numeric feature. Experts are expected to have

abundant experience and be able to determine reliable

features that are more important. However, it is never-

theless difficult for a solar flare forecaster to determine

the weights of every image numeric feature. The value

of the parameter k, the number of nearest neighbors, is

closely related to the similarity measurement and is also

difficult for a solar flare forecaster. Hence, a genetic al-

gorithm (GA) is proposed to simultaneously optimize the

weights of numeric features and the parameter k, taking

into account their mutual relationship.

As a stochastic search technique inspired by ideas

from natural genetics and by evolutionary principles, a

GA (Drezner & Miseviius 2013) is a powerful and ro-

bust method for solving global optimization problems

in large and complicated spaces. In particular, the GA

can tackle multi-parameter optimization problems with

an objective function subject to constraints. In contrast,

many traditional searching techniques use a hill-climbing

method with an initial value and are prone to falling into

sub-optimal situations despite having a higher searching

speed. A GA searches a problem space with a population

of chromosomes, each of which (described as an individ-

ual) encodes optimized parameters. Each individual is as-

signed a fitness based on its performance. For each gen-

eration, the population of the next generation is stochasti-

cally selected from the current one based on the fitnesses

of individuals. They are also recombined and randomly

mutated to evolve toward better solutions. The algorithm

terminates when some stopping criterion is met, such as

no evolution occurring within several generations. More

extensive descriptions of a GA are available in Drezner

& Miseviius (2013).

To implement a GA for simultaneous optimization

of the weights of numeric features and the parameter k

in case of retrieval, we need to specify:

1. The ranges for feature weights and the value of k.

2. An effective and suitable fitness function to evaluate

individual performances.

3. Certain parameters of GA, such as data type of the

population, population size, crossover rate, mutation

rate, etc.

An individual represents the weights of the features

extracted from magnetograms and the number k of near-

est neighbors. Binary strings are used as the data type

for individuals. An example of an individual is illustrated

in Figure 3. Since the first n adjustable parameters are

coded for weights that reflect the relative importance of

each feature, we set the range between 0 and 1. As for

the value of k, given the fact that it cannot be too large,

the range for k is defined between 1 and 64.

For the fitness function, different evaluation criteria,

such as the overall prediction accuracy and the Heidke

skill score (HSS), can be used. Different concerns can

be associated with different fitness functions. From the

perspective of improving the prediction accuracy as a

whole, the overall prediction accuracy should be adopted,

while from the perspective of improving the predictive

power over random forecasting, it is advisable to use the

HSS. The overall prediction accuracy and the HSS are

explained as follows:

The labels of the samples are grouped into positive

(flaring) and negative (non-flaring). The prediction per-

formance is measured by the true positive rate (TP rate)

and true negative rate (TN rate).
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Fig. 3 An example of a coded individual. An individual is binary coded for each weight w of each feature and the number of nearest

neighbors k is shown here. The coding represents the fact that an individual contains n features and a value k. The weights wi of

the features are each encoded in 10 bits ranging from decimal values between 0 and 1 and the value of k is encoded in 8 bits ranging

from integers 1 to 64.

The TP rate is defined as the ratio of the number of

samples correctly predicted as positive to the number of

samples that are actually positive

TP rate =
TP

TP + FN
. (5)

The TN rate represents the ratio of the number of samples

correctly classified as negative to the number of actual

negative samples

TN rate =
TN

TN + FP
. (6)

Thus, the overall prediction accuracy of the classifier is

defined as follows

Prediction Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

The HSS is generally used to evaluate the perfor-

mance of the proposed method (Jolliffe & Stephenson

2003)

HSS =
PC − E

1 − E
, (8)

where

N = TP + TN + FP + FN, PC =
TP + TN

N

and

E =
(TP + FN)(TP + FP)

N2
+

(TN + FP)(TN + FN)

N2
.

E is PC for random prediction, so HSS measures

the fractional improvement in predictive power of the

method over a random forecast.

5 ADAPTATION OF A RETRIEVED SIMILAR

PREVIOUS CASE

Adaptation of a retrieved similar previous case is used to

revise and adapt the solar flare eruption results for pre-

vious similar image cases in order to generate a more

desirable solar flare prediction result for a new image

case. Programming a computer to implement case adap-

tation automatically is currently a challenging task. It is

recommended that a solar flare forecaster accesses the

corresponding original images for the k nearest similar

image cases, following the image case retrieval process.

Visualization helps the solar flare forecaster to observe

and perceive the retrieved image cases more directly and

clearly. Based on synthesis of the suggested solar flare

prediction result presented by CBR and the experience

of the forecaster, more accurate prediction results are ex-

pected.

After the real-world operation of CBR to predict a

new image case and the prediction result are evaluated

by the actual solar flare eruption result, the case and its

actual solar flare eruption result are stored in the case

library. The whole process for the image-case-based rea-

soning system for short-term solar flare prediction is il-

lustrated in Figure 4.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Example Involving a Solar Flare Forecaster

In prediction involving a forecaster, the CBR system

firstly acquires initial full-disk magnetograms and ex-

tracts the AR from the magnetograms. Then, three im-

age numeric features of the maximum horizontal gradient

(|∇hBz|m), the length of neutral line (L), and the num-

ber of singular points (η) are extracted from the image.

Next, the three image numeric features are input into the

image-case-based reasoning system and 41 similar image

cases are retrieved to generate a preliminary solar flare

prediction decision by the CBR system, and if necessary,

the similar image cases are presented to the forecaster so

that his/her experience can be incorporated into the final

solar flare prediction decision.

An example shows how interactive processing

works, so that a forecaster can modify the result made by

CBR whenever the system provides an incorrect solution.
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S u g g e s t e d P r e d i c t i o nF l a r e o rN o n a f l a r e
F i n a l D e c i s i o n

P r e d i c t o rE x t r a c t i o nN e w C a s e C a s e R e t r i e v a l U p d a t i n gS o l u t i o nO u t p u t
R e t r i e v e d S i m i l a r C a s e s

C a s e A d a p t a t i o n R e v i s e d b y R e a l i t y
Fig. 4 The whole process illustrating the image-case-based reasoning system for short-term solar flare prediction.

The case “Observation time 23:59:30, 2004 September 8,

AR 10669, non-flaring” is incorrectly predicted as flar-

ing. The result of the new case and retrieved similar cases

are shown in Table 2.

In this instance, more detailed information will be

provided to domain experts (forecasters). Firstly, details

of the AR for each retrieved similar case are provided, as

shown in Table 3. There are 20 retrieved cases which are

non-flaring while 21 cases are flaring, so the correspond-

ing prediction is flaring. However when the analysis re-

port is submitted to a forecaster, it is easy to distinguish

between the obfuscating and natural cases. This is be-

cause, out of all the retrieved similar cases, there are 19

non-flaring cases from the same event, AR 10409, while

21 flaring cases are dispersed in different ARs. This in-

dicates that the retrieved cases in AR 10409 may share

a similar morphological or physical pattern with the new

predicted case.

In addition, more detailed information will be sub-

mitted to the forecaster. Taking the former case as an ex-

ample, the information, for the new case and retrieved

similar cases, is shown in Table 4. This information con-

sists of observation time, length and width of the AR,

folder number of the original image and the label “1” for

flaring and “0” for non-flaring. Images (ARs) for the new

case and retrieved cases are shown in Figure 5, where

the sub-figure (i) refers to the new case and the other

sub-figures refer the retrieved cases, arranged from left

to right and from top to bottom in correspondence with

Table 4. Domain experts can use these detailed pieces of

information for each case to help them in making deci-

sions, and so it can facilitate the prediction for the new

case. As analyzed above, a forecaster may conclude by

modifying the final judgment to non-flaring.

6.2 Solar Flare Prediction Performance of the

Image-Case-Based Method in Comparison with

Other Techniques

Next, we describe an experiment that was carried out

using the whole case library. The samples contained

9801 flaring samples and 45 781 non-flaring ones, which

caused a problem with class imbalance. Models derived

from unbalanced datasets will be biased toward the class

of samples that dominate in terms of quantity. In this ex-

periment, the dataset was undersampled in order to bal-

ance the class distribution (Japkowicz & Stephen 2002).

The use of random undersampling consists of randomly

eliminating elements of the over-sized non-flaring class

until it matches the size of the flaring class. The distri-
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Table 2 Example of New Case Prediction

New case info. Number of non-flaring cases Number of flaring cases

23:59:30, 2004 September 8 20 21

Prediction Flaring

Table 3 Statistical Summary of AR for the Retrieved Similar Cases which Incorrectly
Predict the New Case

AR Flaring Nonflaring AR Flaring Nonflaring

10409 0 19 10508 8 0

10380 4 0 10387 0 1

10528 3 0 10375 6 0

(i) (ii) (iii) (iv) (v) (vi) (vii)

(viii) (ix) (x) (xi) (xii) (xiii) (xiv)

(xv) (xvi) (xvii) (xviii) (xix) (xx) (xxi)

(xxii) (xxiii) (xxiv) (xxv) (xxvi) (xxvii) (xxviii)

(xxix) (xxx) (xxxi) (xxxii) (xxxiii) (xxxiv) (xxxv)

(xxxvi) (xxxvii) (xxxviii) (xxxix) (xl) (xli) (xlii)

Fig. 5 Images of the new case and retrieved cases. Sub-figure (i) is the new case and other sub-figures are the retrieved cases from

left to right and top to bottom corresponding to Table 4 accordingly.
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Table 4 List of the New Case and Retrieved Similar Cases

AR Time AR size: AR size: Folder No. Label

length width

10669 (new case) 20040908 23:59:30 104 109 4269 0

10409 20030716 06:27:30 107 180 3848.0004 0

10409 20030716 12:48:30 107 180 3848.0008 0

10409 20030716 08:03:30 107 180 3848.0005 0

10409 20030716 09:36:30 107 180 3848.0006 0

10409 20030716 14:27:30 107 180 3848.0009 0

10409 20030717 03:15:30 107 180 3849.0002 0

10409 20030717 06:24:30 107 180 3849.0004 0

10409 20030717 08:00:30 107 180 3849.0005 0

10409 20030717 09:36:30 107 180 3849.0006 0

10409 20030717 11:12:30 107 180 3849.0007 0

10409 20030717 12:48:30 107 180 3849.0008 0

10409 20030717 17:36:30 107 180 3849.0011 0

10409 20030717 19:12:30 107 180 3849.0012 0

10409 20030716 09:12:30 107 180 3848.0012 0

10508 20031123 03:11:30 111 155 3978.0002 1

10508 20031123 06:27:30 111 155 3978.0004 1

10508 20031123 14:23:30 111 155 3978.0009 1

10380 20030612 03:15:30 111 180 3814.0002 1

10508 20031123 20:51:30 111 155 3978.0013 1

10508 20031123 17:35:30 111 155 3978.0011 1

10380 20030611 23:59:30 111 180 3814 1

10528 20031225 22:27:30 108 201 4010.0014 1

10528 20031225 04:51:30 108 201 4010.0003 1

10528 20031225 08:03:30 108 201 4010.0005 1

10409 20030717 01:39:30 107 180 3849.0001 0

10409 20030717 04:48:30 107 180 3849.0003 0

10409 20030716 16:00:30 107 180 3848.001 0

10409 20030716 22:27:30 107 180 3848.0014 0

10375 20030605 17:36:30 114 166 3807.0011 1

10375 20030606 01:39:30 114 166 3808.0001 1

10375 20030605 06:27:30 114 166 3807.0004 1

10375 20030605 11:15:30 114 166 3807.0007 1

10375 20030605 20:48:30 114 166 3807.0013 1

10375 20030606 08:00:30 114 166 3808.0005 1

10380 20030612 11:11:30 111 180 3814.0007 1

10380 20030612 12:47:30 111 180 3814.0008 1

10409 20030717 00:03:30 107 180 3849 0

10387 20030626 01:39:30 106 64 3828.0001 0

10508 20031123 15:59:30 111 155 3978.001 1

10508 20031123 19:15:30 111 155 3978.0012 1

10508 20031123 23:59:30 111 155 3979 1

bution for the undersampled dataset in the space of three

image numeric features is shown in Figure 6. It can be

seen that the sizes of the two classes are equal after un-

dersampling. It is also straightforward to conclude that it

is difficult to make predictions for samples in the regions

where non-flaring and flaring overlap.

Multi-population GA with migrations between pop-

ulations (Drezner & Miseviius 2013) is employed to

boost the possibility of finding the global optimum al-

though it takes more time. HSS is used as the fitness

function. Other specific parameters are shown in Table 5.

After the optimization process terminates and the best in-

dividual is derived, the weights are inserted into the simi-
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Fig. 6 Distribution of samples in the space of three predictors. The blue symbols represent non-flaring samples and the red symbols

represent flaring samples.

Table 5 Specific Parameters for Multi-population GA

Parameter Value

Population size 10

Number of populations 10

Preserved elites 2

Migration rate 0.2

Crossover rate Randomly selected between 0.6 and 0.8 for each population

Mutation rate Randomly selected between 0 and 0.2 for each population

Termination criterion Evolution no greater than 1e–6 within 20 generations

larity measurement formula and the number k is inserted

into the case retrieval strategy.

In the genetic optimization experiment, the best in-

dividual values for the weights of three image numeric

features, and for the value of k, are derived simultane-

ously. The best weights of the three features, |∇hBz|m,

L and η are 0.6211, 0.9221 and 0.1568, respectively, and

the derived value of k is 41. With these weights and pa-

rameter value, the average HSS and prediction accuracy

of CBR are 0.5092 and 75.65%, respectively.

We tested our model with cross validation using ten

data groups, in which the samples were from different

ARs. The dataset was divided equally into ten folders.

Each folder was used in turn as testing data, with the

other nine as training data, until every folder had been

tested by the others. Hence the final result consisted of

a performance average together with a standard devia-

tion. Random undersampling was applied for each train-

ing set and test set. As a result, the final sample sizes

for two populations within a single folder were equal.

The new case and the retrieved cases should not originate

from the same AR, primarily because samples from the

same AR will, in most cases, share a similar mechanism

for chromosphere activity, and hence the earlier samples

easily mislead the final judgment of the new case. For

example, the first emerging case, AR 10669, needs to be

predicted by other cases from different ARs. If we use

retrieved cases from the same AR, the prediction for a

second case to emerge critically depends on the first case

of AR 10669, and therefore, an incorrect prediction for

the first case may lead to a prediction failure in the sec-

ond case. This implies that the basis for inference would

be unequal between the two cases. Furthermore, a second

(and less significant) factor we consider is that retrieved
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cases from the same AR may still be unlabeled, because

they are in close proximity to the case that has newly

emerged. To avoid these problems, we retrieve similar

cases from other ARs.

The Bayesian network, SVM, logistic regression,

radial basis function, classification and regression

tree, C4.5 decision tree and back-propagation network

(Mitchell 1997, Murphy 2012) methods are used in the

experiment for comparison with the CBR method. A

Bayesian network is a good basis, on which to build prob-

abilistic reasoning models. Bayesian learning algorithms

that can be used to calculate explicit probabilities for hy-

potheses are among the most practical approaches to cer-

tain types of learning problems. An SVM is an algorithm

that emphasizes the use of structural risk minimization

theory. An SVM can operate like a linear model to obtain

a description of the nonlinear boundary of a dataset, us-

ing a nonlinear mapping transform. Logistic regression is

a widely used algorithm for binary classification that im-

plements a logistic transform on the variables being con-

sidered. The perceptron learning rule is built using a sin-

gle hyperplane, with a group of weights assigned to each

attribute. Data are classified into one class when the sum

of the weights of an attribute is a positive number, and

into another class, when the sum is a negative number. In

back-propagation theory, attributes are reweighted if the

samples are classified incorrectly, until the classification

is correct. A radial basis function network is another kind

of feed-forward network, which uses a Gaussian func-

tion as its activation function and a sigmoid function to

transform the classification. The C4.5 decision tree is an

extension of the ID3 algorithm. It determines the affili-

ations of the nodes by using an information gain ratio.

C4.5 can discretize continuous attributes, while the ID3

decision tree is restricted to discrete attribute processing.

The classification and regression tree is another type of

decision tree algorithm that uses the simplicity of the re-

gression method in its binary tree.

In this study, models used for comparison, such

as SVM and logistic regression, were hybrid pro-

grammed with MATLAB 2010a and the Waikato

Environment for Knowledge Analysis (WEKA) plat-

form 3.4.1 which can be freely downloaded from

http://www.cs.waikato.ac.nz/ml/weka/downloading.html.

We utilized a MATLAB script to invoke the WEKA

computation kernel, in order to process data in batches.

WEKA is a widely used data mining and a machine-

learning platform for classification and regression

developed by the University of Waikato (Witten et al.

2011) and is advantageous for data preprocessing, pa-

rameter optimization and data visualization. Thresholds

and parameters were automatically generated by this

platform. In particular, the SVM prediction model was

coded using the LIBSVM library. The performances of

CBR and other techniques using the same dataset are

shown as benchmarks for comparison in Table 6. The re-

sults demonstrate that CBR offers a slight improvement

in accuracy, when compared to other methods. More

importantly, the CBR approach can add value by virtue

of greater comprehensibility to humans.

6.3 Analysis and Discussion

Among the prediction techniques, the proposed image-

case-based reasoning method outperforms some of the

benchmark approaches with respect to HSS, TP rate and

average accuracy on some data groups. More impor-

tantly, it enhances comprehensibility of the prediction re-

sults, demonstrating and ensuring the practical applica-

bility of this method in the field of solar flare prediction.

In real-world applications, much effort should be devoted

to improving the TP rate because if an actual flare was

wrongly predicted as a non-flare and no action was taken,

then a heavy loss would occur. Therefore, the objective

in solar flare prediction is more complex than simply

minimizing the misclassification rate. The reasons why

the proposed method has the most advantageous perfor-

mance are analyzed as follows:

First, the image-case-based reasoning method con-

structs a different local prediction for each individual im-

age case to be predicted, rather than building a global

prediction model for the whole case space. There may

exist different kinds of patterns of solar flare eruption.

Because of this, it is difficult to generate satisfactory pre-

diction results when the prediction model is globally built

upon all the cases. Under such circumstances, CBR has

an apparent advantage of formulizing less complex local

prediction.

Second, the proposed image-case-based reasoning

method uses a genetic algorithm to capture and inte-

grate the weight assignments for numeric features and

the number of neighbors in case retrieval.

7 CONCLUSIONS

Currently, solar flare prediction mainly focuses on build-

ing powerful prediction models and exploring more in-
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Table 6 Performance Comparisons between CBR and other Techniques

Method HSS TP rate (%) TN rate (%) Average accuracy (%)

CBR 0.5092±0.0163 76.38±1.16 74.01±1.59 75.65±0.91

BayesNet 0.4702±0.0189 71.72±1.53 75.31±1.06 73.52±0.94

SVM 0.4706±0.0230 68.17±1.78 78.92±0.87 73.53±1.18

Logistic Regression 0.4582±0.0250 69.14±1.89 76.70±1.16 72.92±1.28

RBF 0.4515±0.0191 69.32±1.97 75.86±1.92 72.58±0.95

Cart 0.4869±0.0188 71.52±1.69 77.18±1.32 74.35±0.95

C4.5 0.4884±0.0210 71.85±2.11 77.01±1.40 74.43±1.06

BP 0.4559±0.0174 62.95±3.02 82.65±2.35 72.80±0.97

formative predictors. However, prediction results pro-

vided by some machine learning based models such as

neural networks, SVM, etc. are difficult to be understood

by forecaster in spite of their possible high prediction ac-

curacy. A common weakness of those models is that they

provide a forecaster with little comprehensible informa-

tion except the final prediction results and the forecaster

cannot get involved in prediction to improve the predic-

tion result with their domain of experiences.

Employing image-case-based reasoning for solar

flare prediction has two principal advantages over other

methods, such as expert systems and model-based pre-

diction using machine learning techniques. The first of

these advantages is a better performance according to

evaluation criteria such as TP rate, HSS and average ac-

curacy. The second advantage offered by image-case-

based reasoning is that it can help forecasters get in-

volved with prediction. Even though it may not be able

to offer extreme precision with regard to its overall pre-

diction accuracy, the decision made by the CBR sys-

tem can provide a useful semi-empirical prediction for

a forecaster, who can facilitate their judgment by the

use of CBR. Prior information supplied by a forecaster,

combined with prediction results from a CBR system,

should offer a more satisfactory performance than any

other method. Compared to CBR, expert systems are

overly dependent on the forecaster or on prior knowl-

edge. On the contrary, model-based methods that use ma-

chine learning techniques are able to capture the flare

eruption mechanism and its relevant inherent rules ad-

equately, but their reasoning process remains incompre-

hensible and therefore, the forecaster is unable to offer a

complementary suggestion or provide further judgment.

The observational data for solar flare prediction are

expressed through images, which provide the most abun-

dant information about flare eruption. Using reasoning

with such solar flare image cases is more comprehensible

and interpretable, compared to models built on numeric

data. Therefore, as described in this article, SOHO/MDI

longitudinal magnetograms and ARs are used to con-

struct an image-case library, and the image-case-based

reasoning method is proposed to predict solar flare erup-

tions. Genetic optimization algorithms are employed for

optimizing the weight assignment of the image features

and the number of retrieved similar image cases. Similar

image cases and prediction results derived by the major-

ity voting method for similar image cases are output and

shown to the forecaster, which can then be integrated

with his/her experience to produce the final prediction

results. Experimental results demonstrate that the image-

case-based reasoning method gets the forecaster more in-

volved in the forecasting process. There is great potential

for the image-case-based reasoning method to become a

more practical and useful solution for solar flare predic-

tion.
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