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Abstract By employing the previous Voronoi approach and replacing its nearest neighbor approx-

imation with Drizzle in iterative signal extraction, we develop a fast iterative Drizzle algorithm,

named fiDrizzle, to reconstruct the underlying band-limited image from undersampled dithered frames.

Compared with the existing iDrizzle, the new algorithm improves rate of convergence and accelerates

the computational speed. Moreover, under the same conditions (e.g. the same number of dithers and

iterations), fiDrizzle can make a better quality reconstruction than iDrizzle, due to the newly discov-

ered High Sampling caused Decelerating Convergence (HSDC) effect in the iterative signal extraction

process. fiDrizzle demonstrates its powerful ability to perform image deconvolution from undersampled

dithers.
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satellites: detection — gravitational lensing

1 INTRODUCTION

All imaging processes involve a limitation related to res-

olution of the equipment. In practice, the number of de-

tectors is limited, thus the sampling is limited. Since spa-

tial frequencies in an astronomical image are strongly

limited by the optics of the telescope, the band is limited.

For economical or other considerations, e.g. to cover a

wide field in each exposure, the detector sampling some-

times cannot reach the Nyquist (or critical) sampling of

the optics in a telescope. Therefore the detector often col-

lects a set of undersampled data. In fact, an undersampled

detector inevitably blurs the details in its sampling inter-

val. This blurring effect is so-called aliasing. When the

sampling process is executed by a CCD (or CMOS ) pixel

matrix (via a digitizer), the effect of aliasing is expressed

as pixelation.

In order to restore details lost in pixelation or alias-

ing, researchers have proposed increasing the sampling

rate by increasing the number of exposures of the same

field (but with different shifts, i.e. dithered frames). Thus

the remaining question is how to reconstruct the signal

from dithered frames. Many methods have been devel-

oped such as interlace and shift-and-add, which can ob-

tain a high resolution result and reduce the pixelation to

some extent, but these results are still far from excellent

anti-aliasing. By taking advantage of interlace and shift-

and-add, Fruchter & Hook (2002) improve on the pre-

vious shift-and-add, named Drizzle. However, like the

method mentioned before, Drizzle does not enhance the

anti-aliasing function though it has a better performance

than previous works in reducing noise and increasing

accuracy. In fact, Drizzle generates a flux averaged im-

age on a high resolution grid, thus producing a blurred,

contrast reduced appearance. Based on a non-parametric

method called kernel regression, which takes both the

relative spatial and radiometric distances of nearby pixels

into account, Takeda et al. (2006) developed an improved

method named super-Drizzle, which can reconstruct a

high quality image compared with Drizzle. super-Drizzle

has good performance in de-convolving the pixelation

to some extent. However, super-Drizzle is more likely

to be applied for image denoising and interpolation. It

sensitively depends on the number of dithered frames

and parameter selection. Thus it is difficult for super-

Drizzle to obtain a higher contrast image than Drizzle

when the dithers are not enough. By replacing the value

of nearest neighbor with that of Drizzle in an iterative
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Voronoi approximation [initially developed by Werther

(1999), Gröchenig & Strohmer (2001)] and introduc-

ing the oversampling - low pass filtering - interpolat-

ing process to the image co-adding procedure, Fruchter

(2011) upgraded the previous Voronoi approximation to

yield iDrizzle. iDrizzle was developed largely for creat-

ing accurate images of objects with unresolved or nearly-

unresolved components. With the help of iterative signal

extraction and low pass filtering in the frequency domain,

iDrizzle deconvolves the pixelation of undersampled fea-

tures (with high signal-to-noise ratio, SNR) much bet-

ter than super-Drizzle on small scales. However, iDrizzle

has an oversampling, filtering and interpolation process,

which dramatically increases the amount of computation.

In this paper, compared with the previous iDrizzle

method, we improve on the effectiveness and computa-

tional speed, by introducing a program called fast iDriz-

zle or fiDrizzle. fiDrizzle can accelerate the computation

and improve image quality. After describing the fiDriz-

zle algorithm and analyzing the theoretical aspects of its

mechanism in Section 2, in Section 3 we illustrate the re-

sults to make a visual (Sect. 3.1) and a quantitative com-

parison (Sect. 3.2). We present the computational com-

plexity analysis in Section 4 to show how the new al-

gorithm can accelerate the computation. The algorithm’s

dependency on the number of dithered frames and iter-

ations is shown in Section 5. Finally, the discussion and

conclusion are provided in the last section (Sect. 6).

2 THE FIDRIZZLE ALGORITHM

Drizzle is superior in computational speed. However, its

intrinsic filter (pixelation) removes high frequency infor-

mation on small scales. iDrizzle can reconstruct details

on small scales to some extent at the cost of a very large

amount of computation and a huge volume for the output

file. In order to maintain the advantages of both Drizzle

and iDrizzle and reduce their weaknesses, we develop

fiDrizzle to improve image co-adding technology. The al-

gorithm is described in the following steps:

Step 1: Apply Drizzle to the K dithered images of

a field, {I1, I2, I3...IK}, onto a high resolution grid one

needs1, e.g. critical sampling grid in the below examples

of this work, to produce the image D1, which is the first

approximation to the true image. The 1 in the subscript

of D indicates that this is the first iteration.

Step 2: Map the first approximation image, D1, back

to the frames of the original individual images by a series

1 In general, the sampling should not go beyond the Nyquist sam-

pling (critical sampling), which is different from the indispensable

oversampled grid in iDrizzle.

of mimic observations2, which produces a set of approx-

imations to the original images, Am
1 .

Step 3: Subtract the mimic observations from the

corresponding original images to produce a series of

residual images Im
1 = Im − Am

1 .

Step 4: Return to the first step and now apply Drizzle

to the set of residual images {I1
1 , I2

1 , I3
1 ...IK

1 } to produce

the image D2 which is the difference between the true

image and the previous approximation.

Step 5: Continue as before with one modification, at

Step 3, in the N th iteration, AN =
∑N

j=1
Aj , until the

residuals are dominated by noise.

After the iterations are complete, one can regard the

final approximation as the best fitting image to the true

one. Comparing with the previous oversampling - low

pass filtering - interpolating process in the steps of iDriz-

zle, we basically (i) remove the low pass filtering pro-

cess; (ii) directly co-add the observation frames to an

(at most) critically sampled grid instead of an oversam-

pled one; (iii) therefore, the final sin c interpolation is not

necessary. The improvement accelerates the computation

significantly. Compared with the Voronoi approximation,

we just replace the nearest neighbor approximation with

the Drizzle result at each iteration.

In order to figure out the difference between iDriz-

zle and fiDrizzle in theory, we will compare their result

under the same resolution grid, e.g. critical sampling. It

means that fiDrizzle directly samples the original image

to critical output, while iDrizzle undergoes an oversam-

pling - low pass filtering - interpolating process to ob-

tain the same resolution. Let T be a signal in two dimen-

sional space. After being undersampled by equipment,

e.g. a telescope, one gets an image I with a dither shift

ds (relative to the output target grid, including position

and angle shift),

I = T
⊗

G , (1)

where G represents all the combined effects from the

true signal T to the equipment, such as seeing, PSF, pix-

elation, CCD distortion, etc. Symbol
⊗

represents the

convolution operator. Now we resample I to an over-

sampling DOS
1 and a critical sampling DCS

1 , and in the

meantime take the dither shift ds into account.

DOS
1 = I

⊗
POS ,

DCS
1 = I

⊗
PCS , (2)

where POS or PCS is the resampling matrix which

includes a pixelation effect. Also, PCS can be ob-

tained by PCS = POS
⊗

sin c(POS → PCS), where

2 Mimicking the dither; all exposure conditions are identical to

those of the original dithered observations.
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sin c(POS → PCS) is lossless interpolation of the signal

from oversampling to critical. Therefore DCS
1 is equal to

DOS
1

⊗
sin c(POS → PCS). Here DOS

1 or DCS
1 is the

very result of Drizzle. Following the iterative reconstruc-

tion steps, we mimic the real observation by down sam-

pling the target grid DOS
1 and DCS

1 to the I grid, thus get-

ting the first approximations AOS
1 and ACS

1 to the original

image I respectively. Then the difference (or residual im-

age) from the original observation I can be expressed as:

IOS
1 = I − AOS

1 ,

ICS
1 = I − ACS

1 . (3)

Since AOS
1 has higher sampling than ACS

1 , correspond-

ingly the residual image IOS
1 possesses less power than

ICS
1 , especially at the low frequency end. In an extreme

case, if one oversamples the original image I to an in-

finitely high resolution grid, DOS
1 will keep an intact I ,

leading to AOS
1 = I , and thus IOS

1 = 0. After the first

iteration, we have the second approximations to the true

image, DOS
2 and DCS

2 :

DOS
2 = DOS

1 + IOS
1

⊗
POS , (4)

DCS
2 = DCS

1 + ICS
1

⊗
PCS . (5)

Following the last step of iDrizzle, one may (sin c) in-

terpolate the oversampled approximation to the critical

sample grid with

DOS
2

⊗
sin c(POS → PCS)

= DOS
1

⊗
sin c(POS → PCS)

+ IOS
1

⊗
POS

⊗
sin c(POS → PCS)

= DCS
1 + IOS

1

⊗
PCS . (6)

Comparing Equation (6) to Equation (5), we find that

for the same coarser (here critical) sampling case, itera-

tive reconstruction on critical sampling gains more power

(and hence more details) than that on oversampling,

which means for the same number of iterations the rate

of convergence for iterations is decelerated by the high

sampling (here oversampling) case. We call this effect

the High Sampling caused Decelerating Convergence

(HSDC)3 in the iterative signal extraction process. A

simple simulation that serves as proof is provided in

Appendix A of this paper. In fact, oversampling leaves

more (original) pixelation effect in the final result than

critical sampling. Therefore, fiDrizzle works more effec-

tively in pixelation deconvolution than iDrizzle, even if

3 It is easy to prove the HSDC effect in other dimensions for any

number (≥ 1) of iterations and dithered observations.

we ignore the inserted filtering in the frequency domain

in iDrizzle. In the next section, we provide more exam-

ples to test the HSDC effect and check the validity of the

fiDrizzle algorithm.

3 THE RESULTS

We show visual and quantitative comparisons of all

the three above mentioned image co-adding methods,

Drizzle, iDrizzle and fiDrizzle, in the following subsec-

tions. According to sampling theory, if one wants to dou-

ble the spatial resolution of the digital signal which is

originally extracted from an analog signal, he (or she)

should double the sampling frequency directly or dou-

ble the number of observations (in different positions)

but keep the sampling frequency unchanged, i.e. dou-

ble the number of dithers (which is also the sense of

dither). Therefore, in order to totally restore the signal

from a set of 1

2
× 1

2
undersampled observations, one

should have at least four dithered frames to construct a

critically-determined (or over-determined, which needs

more dithers) system. Since this work mainly compares

the co-adding methods on the critical sampling, in the

following analysis, the systems are all over-determined

for the critical sampling, but under-determined for the

over-sampling, e.g. iDrizzle. We have checked a similar

result when the system is over-determined for both criti-

cal and over sampling. Theoretically, an over-determined

system can significantly reduce degeneracy from the

effect of the random dithers (not well-placed dithered

frames). In order to mimic a series of dithered frames, the

true image is dithered to several undersampled frames by

introducing random shifts, rotations and CCD geometric

distortions of 0.1%.

3.1 A Visual Comparison

We use the well-known picture of Lena (with size 512 ×
512 pixel, assuming this resolution meets the Nyquist

(critical) sampling, i.e. the sampling frequency is at

least twice the highest spatial frequency, which can be

resolved by a telescope) to check the performance of

the three co-adding methods. In Figure 1, the true im-

age (left panel) is binned to five dithered frames with

a 1

2
× 1

2
lower resolution (right panel, undersampled)

than critical. Considering rotation and position shift, the

dithered frames have a pixel size of at most 512/
√

2 ×
512/

√
2 (the critical sampling pixel size, i.e. 256/

√
2 ×

256/
√

2 ≃ 181 × 181 original pixels), in which every

pixel in the frame will not go beyond the region of the

true image. In the dithered frame one can identify the ef-

fect of aliasing in regions with rich details, pixelation at
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Fig. 1 An image of Lena at different resolutions. One of the dithered images (right panel, which is usually regarded as the original

input in image co-adding) has 1

2
× 1

2
lower resolution than the true image (left panel). The effect of aliasing significantly smooths

details on small scales. Details in 2 × 2 true image pixels (corresponding to one original pixel) are averaged out to a single value.

Fig. 2 Reconstructions from three different methods. The upper left image is the true one. The upper right panel is from Drizzle,

the lower left from iDrizzle and the lower right from fiDrizzle. Both iDrizzle and fiDrizzle are applied in five iterations. The three

reconstructions have a 2 × 2 higher resolution than the original and thus have the same resolution as the true one.

Fig. 3 Residuals between the reconstructions and the true case (upper left panel). Upper right is for Drizzle, lower left for iDrizzle

and lower right for fiDrizzle.
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the edge of the hat, blurred stripes in the body of the hat,

and eyes and lips dimming. Such a mosaic-like image

also exhibits loss of contrast and gray levels. In short, the

effect of aliasing makes the image blurred and pixelized.

Figure 2 shows three reconstructions from the identi-

cal set of the (five) dithered frames: the upper left image

is the true one, the upper right one is reconstructed by

Drizzle, the lower left one is from the sin c interpolation

of the oversampled4 iDrizzle result and the lower right

one is produced by this work, i.e. fiDrizzle. Following the

strategy described in Appendix B, we choose a proper

mask function with rf = 230 for the filtering steps in

iDrizzle5. In the lower panels, both iDrizzle and fiDriz-

zle are applied in five iterations. Obviously, the Drizzle

result (the upper right) is better than the dithered image

as shown in the right panel of Figure 1. However, com-

pared with the result from iDrizzle, Drizzle is not able

to restore details at the level of a few pixels. There is an

inherent filter (an averaging effect introduced by pixela-

tion) convolved by the Drizzle mechanism, which results

in high frequency information missing. That is the reason

why the upper right image looks smoothed and blurred.

Due to repeated signal extraction from the residual im-

age, both iDrizzle and fiDrizzle co-add images much bet-

ter than Drizzle does. Although the two lower images

have a similar appearance, after a careful eyeball check,

the right one looks sharper with higher contrast than the

left. In addition, fiDrizzle generates more stripes6 in the

body of the hat, as well as sharper contrast in the hair

and eyelashes, and thus yields better image quality than

iDrizzle.

Obvious differences are shown in the residual im-

ages (Fig. 3). In Figure 3, the upper left one is the same

as in Figure 2, but the rest are differences between the

reconstructions (generated by the three algorithms) and

the true one. Three residual images are scaled to the same

scope, then have the same color bar scale. For the portrait

of Lena in the shadowed area, the more recognizable the

figure is, the more signal it loses in image reconstruction.

Evidently, the Drizzle algorithm loses lots of informa-

tion, then shows a significant portrait in the residual im-

age. iDrizzle misses a few details in high frequency. As a

result, it leaves some features in regions with rich detail,

e.g. hair, eyelashes and stripes in the hat. However, the

residual from fiDrizzle is almost unrecognizable, which

turns out to be the best fitting to the true case among the

4 The sampling of the oversampled image is 2×2 times the Nyquist

sampling.
5 Note that there are a total of 256 pixels from the FFT image center

to its edge. Therefore, rf = 230 is close to the Nyquist frequency.
6 Strictly, this is due to the improvement in contrast level.

three results. If zooming in the lower panels and focusing

on the sharp transition edges, one can find iDrizzle intro-

duces a ringing artifact, which appears as ghosts near

transients.

Furthermore, we try to figure out how the visual

difference affects their power in the frequency domain.

Here we introduce a reduced power spectrum (RPS, re-

duced to one dimension) to analyze the power left in the

above three residual images. In order to avoid the regions

in which pixels are not totally covered by all dithered

frames, we select an all-covered area which is generally

1/4 times the true case, i.e. a pixel size of 256 × 256

(critical sampling pixel) and has the same center as the

critical sample. We define the RPS as the radial power

distribution in the fast Fourier transform (FFT) image of

the all-covered area. Therefore, in the frequency direc-

tion the RPS has 128 pixels. In Figure 4, the black line

stands for RPS of the true case. Other colors are the RPS

(lower is better) of the three residuals between the true

case and three reconstructions: green for Drizzle, blue

for iDrizzle and red for fiDrizzle. Here one can find that

most high frequency power is left in the three residu-

als. As expected, Drizzle is the worst one. Due to the

oversampling mechanism and low-pass filtering, iDriz-

zle performs a little better than fiDrizzle at the high fre-

quency end. However, iDrizzle loses much more power

in low and medium frequencies than fiDrizzle because of

the HSDC. This is the reason why Lena reconstructed by

fiDrizzle has a high contrast level in Figure 2 and why the

residual from iDrizzle in Figure 3 is still recognizable.

3.2 The Quantitative Comparison

In weak gravitational lensing astronomy, people usually

calculate the lensing effect by measuring the shapes of

background galaxies and comparing them with a ran-

domly oriented sample of galaxies. Its final result sen-

sitively depends on the accuracy of shape measurement,

which means a high fidelity image co-adding method can

significantly improve the SNR of a weak lensing sig-

nal, thus enhancing the accuracy and reliability of the re-

sult. We extract a spiral galaxy image with a resolution

of 512 × 512 from the Hubble Space Telescope (HST)

observation HST jc1g03010 drc.fits at R.A. =

195.01238deg and Dec = 28.023106deg as the true pic-

ture to test. Then the true image is dithered to 10 frames

(down sampled to 1

3
× 1

3
lower resolution) by apply-

ing random shifts, rotations and CCD geometric distor-

tions to mimic the undersampled dithered observations.

Note that here iDrizzle has an oversampled grid with

resolution 4 × 4 times the critical case. During the re-
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Fig. 4 The RPS for residuals between reconstructions and the true image. The RPS for Drizzle is in green, iDrizzle in blue and

fiDrizzle in red, while the black line is the RPS of the true image (NOT the residual).

Fig. 5 Another image reconstruction test, using HST data (with image center at R.A. = 195.01238 deg and Dec = 28.023106 deg).

The layout of panels is similar to Fig. 2.

construction, six iterations are executed in both iDriz-

zle and fiDrizzle. We plot the three kinds of reconstruc-

tions in Figure 5 with the same layout as in Figure 2.

The color stands for the flux received by the pixels that

were part of the observing equipment and is already

scaled to the same scope. Also we show the residual plot

in Figure 6 with the same representation and layout as

in Figure 3. Similar to the result in Section 3.1, both

iDrizzle and fiDrizzle recover better image quality than

Drizzle. However, the visual difference between iDriz-

zle and fiDrizzle is not significant. So, we investigate the

flux at the pixels that satisfy X = Y in the four panels of

Figure 5.

In Figure 8, the flux profile, which is normalized to

the flux of the central pixel of the true image, is plotted

in the upper panel: the true one is in black, Drizzle in

green, iDrizzle in blue and fiDrizzle in red. The lower

panel shows the flux profile of the X = Y pixels in

the residuals displayed in Figure 6. Here the size of

3 × 3 critically sampled pixels equals that of one orig-

inal pixel. Evidently, fiDrizzle provides the best fitting

result to the true case, especially at the center. Figure 7

shows a similar result as that in Figure 4: fiDrizzle is

the best one in low and medium frequencies, but also

leaves a few high frequency noises in the reconstruction.

However, for shear measurement of weak gravitational

lensing, low frequency information plays an important
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Fig. 6 Residual maps for the HST image reconstructions. The layout of panels is the same as in Fig. 3.
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Fig. 7 The residual RPS for the HST image reconstructions. The color representation of lines is the same as that in Fig. 4.

role. Following Hirata & Seljak (2003), the ellipticity of

an object is defined as

e+ = (Mxx − Myy)/(Mxx + Myy) ,

e× = 2Mxy/(Mxx + Myy) , (7)

where Mij represents the moments (see Hirata & Seljak

(2003) for details). The spin-2 tensor e = (e+, e×) is

the so-called ellipticity tensor. In order to avoid the prob-

lem of divergence, a circular Gaussian weighting func-

tion with a weight radius of rw is convolved into the

four images in Figure 5 before the measurement. We then

plot the ellipticity tensor e of the source as a function of

weight radius rw and show them in Figures 9 and 10.

The color definition of line types is the same as that in

Figures 8 and 4. Since only 39.3% of the weight is lo-

cated in an area with radius rw, but 86.5% is in 2 × rw,

here we use 2 × rw as the variable, which means if one

faces a uniformly illuminated source, the flux from pixels

in ≤ 2rw contributes 86.5% of the total to the measure-

ment.

From low to high frequency, Drizzle has no advan-

tage compared with iDrizzle or fiDrizzle. This reflects

how important pixelation deconvolution is in the image

co-adding process. In the ellipticity measurement, power
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Fig. 9 Measuring the ellipticity component e+ as a function of weight radius rw. The error bars are estimated from the noise in the

image. Line types are the same as those in Fig. 8.

at low frequency determines the signal, while noise at

high frequency mainly affects the scatter of the final re-

sult. In Figure 9, fiDrizzle behaves better than iDrizzle

from small scales to large, and has the lowest system-

atic error among the three reconstructions at large scales.

Note that gravitational lensing is very sensitive to sys-

tematic error. It turns out that the HSDC effect is the main

reason that prevents iDrizzle from obtaining enough low

frequency power and reducing the systematic bias in re-

construction. However, there is little difference between

iDrizzle and fiDrizzle in the e× component of elliptic-

ity in Figure 10. In this case, we find the disadvantage of

fiDrizzle at high frequency does not badly affect the shear

measurement because most of the high frequency noise

is averaged out so as to be negligible at large scales.

4 THE COMPUTATIONAL COMPLEXITY

There is no doubt that Drizzle runs much faster than the

other two algorithms because it does not need more iter-

ations. The computation of each mimic observation [or

blot program in Fruchter & Hook (2002)] is similar to

that of Drizzle. Then fiDrizzle costs 2N times the com-

putational complexity of Drizzle, which depends on the
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Fig. 11 Residuals from fiDrizzle for different numbers of dithers. The upper left panel is for one dither, the upper right panel for

two dithers, four frames are in lower left panel and five frames are in the lower right.

number of iterations N . In Figure 2, the true image has a

size of 512×512pixel, thus each original frame (observa-

tion) has a pixel size7 of 256/
√

2×256/
√

2 ≃ 181×181.

Note that the workload of Drizzle depends not only on

the number of total original pixels, 5 × 181 × 181, but

also on the resolution of the output grid (for this ex-

7 This size ensures that rotated and shifted dithered images (or field

of view) cannot severely exceed the region of the true image.

ample, the critical sampling is 2 × 2 times higher than

the original grid). So, Drizzle costs at least T (n) =

5 × 181 × 181 × 2900 ≃ 470 000 000 computations8,

and thus has a computational complexity O(2000n2) (set

n = 512). After five iterations, fiDrizzle has a total com-

8 Here we convert the surface integral into a line integral via the

Green formula. After a series of polygon clipping operations and line

integral computations, it costs ∼ 2900 floating-point calculations in

each original pixel.
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putational complexity O(20 000n2), due to both Drizzle

and the mimic observation process in each iteration. As

for iDrizzle, there are three expenditures in amount of

calculation:

– First, iDrizzle requires an oversampled output grid

which has a 2× 2 (in this example) times higher res-

olution than the critical sampling. Then it results in a

4 times higher number of computations than fiDriz-

zle, i.e. a complexity O(80 000n2).

– Second, the workload of oversampled image FFT,

smoothing and inverse FFT are, at least, T (n) =

5×2×10242×2×log2(1024) ≃ 210 000 000, i.e. the

total computational complexity is O(80n2log2n).

– Third, the final sin c interpolation contributes an

O(64n2) computation complexity9.

Compared with fiDrizzle, iDrizzle is mainly delayed

by the oversampling strategy. The CPU time consumed

by the filtering process is about a few percent of the total

when the size of an oversampled image is about 1024 ×
1024. Combining the results above, we find that iDrizzle

is not only decelerated in the rate of convergence (the

HSDC effect) but also delayed in computational speed

for the same reason − the oversampling strategy.

5 DEPENDENCY ON THE NUMBER OF

DITHERED FRAMES AND ITERATIONS

In this section, we discuss how fiDrizzle or iDrizzle de-

pends on the number of dithered frames K and iterations

N . We run fiDrizzle to reconstruct the picture of Lena

for one, two, four and five frames. Each reconstruction is

performed in five iterations. N = 5 is a tradeoff between

signal extraction and artifact reduction, such as the ring-

ing artifact near sharp transitions, which is introduced

by low pass filtering but is enhanced by successive it-

erations. The residual (the difference between the fiDriz-

zle reconstructions and the true image) plot is shown in

Figure 11; the upper left panel is for one dither, the up-

per right panel is for two dithers, four frames are in the

lower left panel and five frames are in the lower right.

Obviously, the residuals are significantly reduced when

we increase the number of co-added frames. Moreover, a

strong argument can also be found in the RPS plot of the

residuals in Figure 12. In order to compare fiDrizzle (in

solid lines) with previous work, we also plot the results of

iDrizzle (in dotted lines, with the same filter as Figure 2)

in the RPS figure. Note that the color representation is to-

tally different from the above figures: reconstructions for

one, two, four and five frames are in purple, red, blue and

9 We use 16 points at each interpolation.

black respectively. Figure 12 shows that the quality of re-

construction strongly depends on the number of dithers

when K is small. While the degree of this dependence

decreases as K increases, one can also find that com-

pared with fiDrizzle the advantage of iDrizzle on the high

frequency end is diminished as the number of dithers K

increases.

Now we fix the number of dithers K to be 5 and

change the number of iterations N = 0, 1, 3, 5 for both

fiDrizzle and iDrizzle. Here we only show the fiDrizzle

reconstructed picture of Lena in Figure 13; the upper left

panel is for zero iterations, namely the Drizzle result, the

upper right panel is for one iteration, three iterations are

executed in the lower left panel and five iterations are

in the lower right. The efficiency of signal extraction is

very high at the beginning several iterations, which re-

sults in the portrait of Lena vanishing quickly. Sufficient

evidence is shown in Figure 14. Reconstructions for zero,

one, three and five iterations are in purple, red, blue and

black respectively (solid lines). As before, we also illus-

trate the results from iDrizzle with corresponding itera-

tions and colors, but in dotted lines. Note that for the case

of zero iterations with iDrizzle, we perform the filtering

process after the first Drizzle step is complete, with no

more signal extraction steps. From Figure 14, due to the

HSDC effect we find that fiDrizzle converges more effec-

tively than iDrizzle in low and medium frequencies. The

low frequency difference between solid and dotted (same

color) lines becomes large as the number of iterations N

increases.

6 DISCUSSION AND CONCLUSIONS

The oversampling - low pass filtering - interpolating pro-

cess is a standard industry practice for improving the

SNR in analog to digital (A/D) signal transition and ex-

traction. Naturally, this process is adopted by the previ-

ous work related to iDrizzle. Of course, there is no prob-

lem if one initially wants an oversampled reconstruction

or the process does not involve iterative signal extrac-

tion from the residuals. However, the oversampling - low

pass filtering - interpolating process and iterative signal

extraction coexist in iDrizzle, which inevitably encoun-

ters the HSDC effect. As a result, compared with fiDriz-

zle’s direct sampling to the critical case, iDrizzle not only

costs more computational resources but also converges

ineffectively which leads to an inadequate reconstruc-

tion for low frequency signals and, eventually, affects the

systematic errors in weak lensing shear measurement as

described in Section 3.2. Briefly, in this work we reach

some goals:
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Fig. 12 The residual RPS of iDrizzle and fiDrizzle for different numbers of dithers. The reconstructions for one, two, four and five

frames are in purple, red, blue and black respectively. fiDrizzle is shown in solid lines, while iDrizzle is in dotted lines.
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Fig. 13 Residuals from fiDrizzle for different numbers of iterations. The upper left panel is for zero iterations, the upper right panel

is for one iteration, three iterations are executed in the lower left panel and five iterations are in the lower right.

– We discover the HSDC effect in the iterative signal

extraction process and mathematically prove its ex-

istence.

– For the same number of iterations, fiDrizzle con-

verges more effectively than iDrizzle, especially at

low and medium frequencies, thus obtaining a better

quality reconstruction.

– Instead of oversampling the frames to a high reso-

lution grid (iDrizzle), fiDrizzle directly samples the

dithers to the critical resolution and omits the filter-

ing and interpolation procedures, which finally saves

more computational resources.

As mentioned before, iDrizzle can generate accurate im-

ages of objects with unresolved or nearly-unresolved

components. fiDrizzle inherits this function as well if one

co-adds the dithers in an oversampled grid at the very

beginning. However, any features less than the scale of

the maximum angular resolution of the optics are unbe-

lievable, which are smoothed by the filter in iDrizzle, but

retained in fiDrizzle. Nevertheless, it does not affect the

photometry in both iDrizzle and fiDrizzle. In that sense,

we do not include a comparison of unresolved features in

the paper.
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Fig. 16 Residuals between the reconstructions (in Fig. 15) and the true image for oversampling (left) and critical sampling (right)

cases.
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rf = 200 in blue. The black line is for fiDrizzle.

It is worth mentioning that compared with iDrizzle,

fiDrizzle displays its lack of reconstruction accuracy at

the high frequency end. In our upcoming work, on one

hand we improve fiDrizzle to enable it to restore a part

of details at the high frequency, and on the other hand,

we develop a totally new image co-adding method called

Tessellated Simple Surface Fitting (TSSF), which can ef-

fectively balance pixelation deconvolution and noise re-

duction.

In the future, many new telescopes will start

astronomical observation, e.g. NASA’s Wide Field

Infrared Survey Telescope (WFIRST), the European

Space Agency (ESA)’s Euclid, the National Science

Foundation (NSF) funded Large Synoptic Survey

Telescope (LSST) and the Chinese Space Station opti-

cal Telescope (CSST). Huge amounts of imaging data

will be generated by those telescopes. How to effectively

and efficiently process these data will be an urgent re-
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quirement. We believe that the fiDrizzle algorithm has

some advantages and can make some contributions in

astronomical image processing as long as undersampled

dithers exist.
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Appendix A: A SIMPLE EXAMPLE FOR

TESTING THE HSDC EFFECT

Here we use one of the original images in Figure 1. The

result is shown in Figure 15. The upper-left panel is the

true image. After a dither observation one gets a 1

2
× 1

2

lower resolution image as the upper-right one (for con-

venience of comparison, here zoomed in 2 × 2). The

lower-left panel is a reconstruction on a 2 × 2 higher

resolution grid (oversampling) than the critical sampling

and finally interpolated back to the critical sampling after

a 5-iteration process, namely PCS
⊗∑5

j=1
DOS

j . The

lower-right panel shows the critical sampling reconstruc-

tion, i.e.
∑5

j=1
DCS

j . Obviously, the original dithered

frame (upper-right) has the worst quality among the four

panels. Aliasing and blurring dominate the edge of high

contrast and the stripes in the hat. If observing carefully

one can find the lower-right image has higher gray reso-

lution than the lower-left one (due to the HSDC effect).

However, the lower-left image has a few advantages over

the lower-right one in the high frequency end (see also

Figs. 16 and 17).

The difference between the over (or critical) sam-

pling reconstruction and the true image is shown in

Figure 16, left for the oversampling residual, right for

the critical sampling. The difference is very significant

in visual appearance.

A similar result can be found in the frequency do-

main, shown in Figure 17. The definition of Figure 17

has been made in Section 3.1. Significantly, critical sam-

pling is much more advantageous at the low frequency

end, however, there is a little worse performance at the

high frequency end than the oversampling mode. This

example also conveys such a message that even if some-

body has only one dithered image, he (or she) can get

more details through the iterative reconstruction process

only if the frame’s position information can be taken into

account.

Appendix B: CHOOSE A PROPER FILTER FOR

IDRIZZLE

A gentle taper in Fourier space can suppress the ring-

ing effect. However, it also suppresses the low frequency

which is necessary in image reconstruction. Following

Fruchter (2011), a similar filter, which has a sharp cut-

off near the Nyquist frequency, is adopted in this paper

to balance the ringing suppression and the low passband

requirement. Here a circular mask (in Fourier space) that

falls from 90% to 10% transmission over a width of 0.1

times Nyquist frequency is used. Figure 18 is an example

for how to choose a proper filter for the HST image re-

construction case in Section 3.2. Here we keep the trans-

mission intact, but tune the characteristic radius of the

circular filter rf (a distance from the center of the FFT

image to the inflexion of the transmission). Finally, a rel-

atively good case with rf = 150 is selected. In order to

ensure its validity, we also check it by visual and quanti-

tative comparison with other cases, e.g. rf = 130 or 200.
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