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Abstract We calculate the mass-radius relationship of quark stars with the magnetized density-

dependent quark mass model in this work, considering two magnetic field geometries: a statistically

isotropic, tangled field and a force-free configuration. In both cases, magnetic field production decreases

in the case of maximum quark star mass. Furthermore, a tangled, isotropic magnetic field has a relatively

smaller impact on the mass and radius, compared to the force-free configuration, which implies that the

geometry of the interior magnetic field is at least as important as the field strength itself when the influ-

ence of the strong magnetic field on the mass and radius is assessed.
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1 INTRODUCTION

A neutron star, one of the densest objects in the universe,

is an important probe for theories of extreme physics.

Since the density in the interior of neutron stars is up to

the ground state density of atomic nuclei, neutron stars

are probably composed of pure quark matter or quark

matter enveloped by nuclear crusts, called quark stars.

Different quark matter models can be tested by calculat-

ing the structure of quark stars and comparing them with

observations. In particular, observations of neutron stars

with very high masses are useful. If each set of models

predicts a maximum mass lower than the observations,

which models should be excluded? For example, obser-

vations of a 1.97±0.04 M⊙ pulsar and a 2.01±0.04 M⊙

pulsar (Demorest et al. 2010; Antoniadis et al. 2013)

have been used to significantly constrain viable quark

star models.

Quark stars are not only extremely dense, but also

associated with strong magnetic fields, where the esti-

mated surface value is typically ∼ 1012 − 1013 G. In ad-

dition, a few rotating radio transients and X-ray dim iso-

lated neutron stars have been observed with even higher

magnetic fields (Popov et al. 2006). Furthermore, soft

gamma-ray repeaters and anomalous X-ray pulsars have

been reported with the highest magnetic field in neutron

stars by using a unified model of magnetars to explain

their observed features (Duncan & Thompson 1992;

Paczynski 1992; Thompson & Duncan 1995; Melatos

1999). Various observations of magnetars indicate a sur-

face magnetic field value of ∼ 1015 G, and a cata-

log of 26 known magnetars has been presented recently

(Olausen & Kaspi 2014).

As quark stars with strong magnetic fields appear to

exist in nature, many works have been done on the prop-

erties of magnetized strange quark matter (MSQM) with

various phenomenological confinement models. The sig-

nificant effect of a strong magnetic field on the equation

of state (EOS) of quark matter, described by the conven-

tional MIT bag model, was found by Chakrabarty (1996).

The quasiparticle model, in which the effective quark

mass varies with environment, was successfully used by

many researchers to probe dense MSQM (Wen et al.

2012). The special properties of MSQM as described

by the Nambu-Jona-Lasinio model have also been in-

vestigated (Frolov et al. 2010; Fayazbakhsh & Sadooghi

2011).

Another alternative description of strange quark mat-

ter (SQM) is called the density-dependent quark mass
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model (DDQM), in which quark mass is dependent on

baryon density that is treated as a description of the con-

finement of the SQM (Plümer et al. 1984). The DDQM

is stiffer than the other models, because the variation of

quark mass with density is effectively equivalent to the

inclusion of first-order QCD coupling correction along

with confinement. Quark stars described by the DDQM

with strong magnetic fields were studied by Anand et al.

(2000).

However, one is tempted to ask how the magnetic

field geometry affects the structure of quark stars, in ad-

dition to magnetic field strength. The purpose of this

work is to probe the effect of magnetic field geome-

try on the mass-radius distribution of quark stars, by

considering two different field configurations: a statisti-

cally isotropic, tangled field and a force-free configura-

tion (Kamiab et al. 2015).

The paper is arranged as follows. Section 2 is de-

voted to the EOS of the MQSM. The mass-radius (M-

R) relations with an isotropic magnetic field and a force-

free one are described in Sections 3 and 4, respectively.

Section 5 presents our conclusions.

2 EQUATION OF STATE OF MAGNETIZED

STRANGE QUARK MATTER

Here the DDQM model calculated by Anand et al. (2000)

is employed to describe the EOS of MSQM. We treat

SQM as a free Fermi gas of u, d, s quarks and electrons,

in which the mass of each quark is parameterized as

mu = md =
C

3nB
and ms = ms0 +

C

3nB
. (1)

Here C is a constant, nB is the baryon number density

of the quark matter and ms0 is the strange quark mass.

The ranges of these parameters are constrained by the

stability conditions (Benvenuto & Lugones 1998; Wei &

Zheng 2012).

Considering the u, d, s, e system in the presence of a

magnetic field B directed along the z-axis, the energy of

a charged particle is given by (Landau & Lifshitz 1980)

ǫ±i =
[

m2
i + p2

z,i + qiB(2n + s + 1)
]1/2

, (2)

where +(−) refers to spin-up (-down) states of the par-

ticle, mi and qi are mass and charge of the particle re-

spectively, and pz is the momentum along the z-axis. The

thermodynamic potential of the particle is as follows.

Ω = ΣiΩi = −Σi
giqiB

2π2
Σn(2 − δn0)

×

∫

dpz ln
[

1 − e−β(ǫi−µi)
]

−
8

45
π2T 4. (3)

The last term is the contribution of gluons, i =

(u, d, s, e), and g = 6 for (u, d, s) and 2 for an electron.

The pressure Pi, energy density ǫi and baryon number

density ni are obtained:

Pi =
giqiB

2π2

nmax
∑

n=0

(2 − δn0)

×

{

1

2
µikfi −

(

m2
i + 2nqiB +

2mic

3ρB

)

× ln
[ µi + kfi

(m2
i + 2nqiB)1/2

]

}

,

(4)

ǫi =
giqiB

2π2

nmax
∑

n=0

(2 − δn0)

×

{

1

2
µikfi +

1

2

(

m2
i + 2nqiB +

2mic

3ρB

)

× ln
[ µi + kfi

(m2
i + 2nqiB)1/2

]

}

,

(5)

and

ni =
giqiB

2π2

nmax
∑

n=0

(2 − δn0)kfi, (6)

where

kfi = (µ2
i − m2

i − 2niB)1/2, (7)

and

nmax = int
[

(µ2
i − m2

i )/2qiB
]

. (8)

The values C = 75 MeV fm−3 and ms0 = 140 MeV

are used in the following calculations. The pressure and

energy density are now generally functions of the matter

density and magnetic field strength.

The primary process responsible for amplification of

the magnetic field is believed to be dynamos driven by

differential rotation and convection, which produce a tan-

gled magnetic field inside the neutron star (Duncan &

Thompson 1992; Thompson & Duncan 1993). Various

studies suggest that these dynamos naturally saturate at

a locally equipartition-strength magnetic field during the

initial formation of the proto-magnetar after the super-

nova explosion, while different layers of the remaining

stellar core condense to form the neutron star (Chevalier
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Fig. 1 Pressure (P ) versus energy density (ǫ) for different val-

ues of the magnetic field strength (B) with different values of

β. Smaller values of β are associated with higher values of the

magnetic field strength.

2005; Naso et al. 2008). Making a handful of simplified

assumptions and regarding the outcome of the dynamo

process (Kamiab et al. 2015), we expect

ǫB ∝ ǫg , (9)

where ǫg and ǫB are the local energy density of the gas

and the magnetic field, respectively. Since Pg ≈ ǫg/3 at

this time, this immediately implies

β
B2

8π
= Pg, (10)

where β is the standard proportionality factor relating the

gas and the magnetic pressure.

This relation naturally provides a profile of the mag-

netic field that is proportional to the pressure of the mat-

ter. Given a global value of β, we may identify a unique

magnetic pressure at each density. For simplicity, we as-

sume spherical symmetry throughout this work and β re-

mains fixed during the proto-magnetar’s formation, fol-

lowing the quenching of the dynamos. Equations (1)–

(10) enable us to compute the pressure, energy density

and baryon number density with consideration of the beta

equilibrium and electric charge neutrality. Examples of

the EOS with different values of β are shown in Figure 1.

3 M-R RELATIONS WITH AN ISOTROPIC

MAGNETIC FIELD

Choosing a unique EOS of the MSQM (as seen in

Fig. 1), and assuming spherical symmetry and isotropy,

the M-R relations are obtained by solving the Tolman-

Fig. 2 The mass-radius relation for the magnetized EOS with

an isotropic magnetic field. The calculation has been done for

different values of β in Eq. (10).

Oppenheimer-Volkoff equations

dP

dr
= −

G

r2

[

ǫ +
P

c2

] [

M + 4πr3 P

c2

]

×

[

1 −
2GM

c2r

]−1

. (11)

In addition to modifying the EOS of the quark matter,

the strong interior magnetic field may produce magnetic

stress directly. Assuming that the outcome of the dy-

namo process is a small-scale, tangled field, which is

weakly uncorrelated with the generating currents, the re-

sulting stress may be completely described by a mag-

netic pressure, which is given by PB = (1/3)(B2/8π).

The energy density of the magnetic field is given by

ǫB = B2/8π, where B is fixed by the choice of β.

Smaller values of β are associated with higher values of

magnetic field strength in quark stars.

The total pressure and energy density are

P = Pg + PB , ǫ = ǫg + ǫB, (12)

where Pg and ǫg are pressure and energy density of the

gas respectively. Here the magnetic field provides hy-

drostatic support for the star by entering globally in the

Einstein equations.

Figure 2 shows the M-R relations with different mag-

netic field strengths by using different values of β. The

mass and radius of the quark stars decrease with the

effect of the magnetic fields, and larger magnetic field

strengths are associated with smaller maximum mass

and radius in quark stars. According to Equation (10),

β = 1/3 corresponds to a quark star with equal pressure

in the magnetic field and matter. In this condition, we get
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Fig. 3 The central magnetic field strengths in different mass

quark stars with different β values.

Fig. 4 Change in maximum mass of the quark star as a function

of 1/β for the mass-radius relation shown in Fig. 2.

a maximum mass 6.6 percent smaller than the one with-

out the magnetic field.

Figure 3 displays the magnetic field strengths in the

center of different mass quark stars with different val-

ues of β. The central magnetic field strength is around

1013 G, when the quark star’s mass reaches its maximum,

which is reasonable according to our understanding of

the magnetic fields of neutron stars.

To illustrate the effect of magnetic field strength on

the maximum mass and radius of the quark star, Figures 4

and 5 show the maximum mass and radius as functions

of 1/β, respectively. These relative changes are fit well

by

∆Mmax

Mmax
≃ 0.081β−0.177, (13)

∆Rmax

Rmax
≃ 0.063β−0.136, (14)

for an isotropic tangled magnetic field distribution.

Fig. 5 Change in radius of the quark star as a function of 1/β
for the mass-radius relation shown in Fig. 2.

4 M-R RELATIONS WITH A FORCE-FREE

MAGNETIC FIELD

Despite the small-scale, turbulent field that is believed to

be initially produced by the dynamos, the final magnetic

field configuration remains unclear. In this paper, regard-

ing the magnetic field geometry: a force free configura-

tion is also considered. After dynamo quenching and be-

fore the formation of a crust, the quark star will reconfig-

ure the magnetic field geometry via bulk fluid motions,

resulting in a linked, nearly force-free geometry that

is decided by the initial magnetic helicity (Braithwaite

& Spruit 2004, 2006). This is a natural consequence

of helicity conservation, corresponding to the minimum

energy state at fixed magnetic helicity (Broderick &

Narayan 2008). To assess the effect of the force-free con-

dition on hydrostatic equilibrium of the star, we need to

solve the Newton-Euler equation and impose static con-

ditions. According to the results of Kamiab et al. (2015),

in dimensions where G = 1 and c = 1, the Newton-Euler

equation coming from ∇νT µν
gas = 0 is given by

dPg

dr
= −(ǫg + Pg)g, (15)

where g is

g ≡
M + 4π(Pg + P

(r)
B )r3

r2(1 − 2M/r)
. (16)

Using P
(r)
B = 1−2∆

3
〈B2〉
8π and the equipartition assump-

tion, the total radial pressure becomes

Pg + P
(r)
B =

(

1 +
1 − 2∆

2β

)

Pg. (17)

∆ is an anisotropy parameter that quantifies the

anisotropy of this average configuration. An anisotropy
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Fig. 6 The M-R relation for the MSQM. The red curves are for

a force-free configuration of the magnetic field and the black

curves correspond to an isotropic one.

Fig. 7 The central magnetic field strengths in different mass

quark stars with different β values.

parameter ∆ = −1 corresponds to a purely tangential

magnetic field configuration and ∆ = 2 corresponds to

a purely radial field. An isotropic average field will have

∆ = 0. We refer to the isotropic core with ∆ = 0 in a

range of radii from 0 to 3 km.

Using the EOS of the DDQM model (Fig. 1) and

Equations (15)–(17), the resulting M-R relationships

from numerical integration are shown in Figure 6, in

which results based on an isotropic magnetic field are

also plotted for comparison.

In contrast to the case of a tangled, isotropic mag-

netic field, the force-free configuration produces a more

obvious decrease in the maximum mass with the same

value of β. The smaller the β is, the stronger the mag-

netic field is, and the larger the difference in the maxi-

mum mass between the two configurations is.

Fig. 8 Change in maximum mass of the quark star as a function

of 1/β for the force-free configuration of the magnetic field.

Fig. 9 Change in radius of the quark star as a function of 1/β
for the force-free configuration of the magnetic field.

Figure 7 explicates the central magnetic field

strengths of the quark stars with a force-free configura-

tion. The central magnetic field strength is around 1013 G

when the quark star’s mass reaches its maximum, which

is similar to the isotropic case. As before, changes in

mass and radius are fit well by the power law functions,

∆Mmax

Mmax
≃ 0.28β−0.893, (18)

∆Rmax

Rmax
≃ 0.11β−0.61, (19)

which are illustrated in Figures 8 and 9.

5 CONCLUSIONS

In this paper, we have shown that the assumed geometry

of the magnetic field in a quark star is at least as impor-

tant as the field strength itself, when the impact of the

magnetic field on mass and radius is assessed. Both the
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tangled, isotropic magnetic configuration and force-free

one produce decreases in the maximum quark star mass.

Furthermore, a tangled, isotropic magnetic field has a

smaller impact on the mass, compared to the force-free

configuration.

Although the magnetic configurations obviously re-

duce the maximum mass, calculations in this study indi-

cate that quark stars described by the DDQM model are

compatible with observations of massive neutron stars

with mass ≥ 2 M⊙. Nevertheless, these results chal-

lenge the assertion that magnetic fields provide a means

to reconcile the recent observations of very massive neu-

tron stars with relatively soft EOS of the quark matter,

whose calculated maximum mass is otherwise precluded.

Some EOSs of quark matter, such as the MIT bag model

and quark quasi-particle model, support values of maxi-

mum mass that are lower than 1.6 M⊙. Although many

works found that the effect of strong interactions, such

as one-gluon exchange or color-superconductivity, can

stiffen the EOS of quark matter, strong magnetic fields

change the structure of the quark stars and reduce the

mass, which introduce difficulties in explaining the as-

tronomical observations of massive neutron stars.

An interesting possibility is that the relation between

the change of mass and internal magnetic field strength

(Figs. 4–5, 8–9) may provide a new way to distinguish

the internal magnetic field configuration (isotropic vs.

force free) or to probe the dense matter (nucleon vs.

quark) in neutron stars. Different neutron stars might

have dynamos with varying efficiency during their for-

mation processes. Future observations of the M-R rela-

tionship of neutron stars may exhibit a more intrinsic

scatter related to their internal magnetic field. Now the

magnetic field in the interior of neutron stars cannot be

directly measured, but it is generally estimated by using

the virial theorem. If the internal magnetic field can be

measured in the future, which could correlate with this

scatter and provide a sign of correlation, it would be in-

dicative of the field configuration and dense matter in

neutron stars.
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