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Abstract The correlated and coupled dynamics of accretion and outflow around black holes (BHs) are

essentially governed by the fundamental laws of conservation as outflow extracts matter, momentum and

energy from the accretion region. Here we analyze a robust form of 2.5-dimensional viscous, resistive,

advective magnetized accretion-outflow coupling in BH systems. We solve the complete set of coupled

MHD conservation equations self-consistently, through invoking a generalized polynomial expansion in

two dimensions. We perform a critical analysis of the accretion-outflow region and provide a complete

quasi-analytical family of solutions for advective flows. We obtain the physically plausible outflow solu-

tions at high turbulent viscosity parameter α(>
∼0.3), and at a reduced scale-height, as magnetic stresses

compress or squeeze the flow region. We found that the value of the large-scale poloidal magnetic field

BP is enhanced with the increase of the geometrical thickness of the accretion flow. On the other hand,

differential magnetic torque (−r2B̄ϕB̄z) increases with the increase in Ṁ . B̄P, −r2B̄ϕB̄z as well as

the plasma beta βP get strongly augmented with the increase in the value of α, enhancing the transport

of vertical flux outwards. Our solutions indicate that magnetocentrifugal acceleration plausibly plays a

dominant role in effusing out plasma from the radial accretion flow in a moderately advective paradigm

which is more centrifugally dominated. However in a strongly advective paradigm it is likely that the

thermal pressure gradient would play a more contributory role in the vertical transport of plasma.

Key words: accretion, accretion disks — black hole physics — magnetohydrodynamics — galaxies:

active — galaxies: jets — X-rays: binaries

1 INTRODUCTION

Outflows and jets are ubiquitous in nature. They are ob-

served both in the local universe, mostly in black hole

(BH) X-ray binaries (BHXRBs) which are believed to

harbor stellar mass BHs called microquasars (Mirabel &

Rodrı́guez 1994, 1998; Eikenberry et al. 1998), and in

powerful extragalactic radio sources (Blandford & Rees

1974; Begelman et al. 1984; Mirabel 2003) where well-

collimated outflows or jets emerge continuously from

the nuclear region of their host active galaxies (active

galactic nuclei, AGNs) or quasars harboring supermas-

sive BHs. The accreting hot plasma around BHs pow-

ered by extreme gravity of the central object results in

the formation of an outflow/jet which extracts mass, an-

gular momentum and energy from the inner regions of

the accretion flow. The outflows in microquasars are ob-

served only in the low-hard state of BHXRBs (Fender

et al. 2004; Rushton et al. 2010) which are radiatively in-

efficient. Radiatively inefficient accretion flows (RIAFs)

are hot gas pressure dominated systems which are geo-

metrically thick (h(r)/r>
∼0.1) and optically thin, where

h(r) is the scale-height of the accretion region, with

the dynamics of the flow strongly sub-Keplerian and

advection dominated (Narayan & Yi 1994, 1995; Yuan

et al. 2003). RIAFs occur when the mass accretion rate

Ṁ is very low (presumably with Ṁ <∼10−3 ṀEdd),

where ṀEdd is the Eddington accretion rate or the ac-

cretion rate corresponding to the Eddington luminosity.

Outflows/jets are not likely to be observed in the high-

soft state of BHXRBs (Rushton et al. 2010 and refer-

ences therein), which are believed to be powered by a
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geometrically thin and optically thick radiation pressure

dominated Keplerian accretion disk (Shakura & Sunyaev

1973; Frank et al. 2002).

Theoretically speaking, it has been argued (Narayan

& Yi 1994; Ghosh & Mukhopadhyay 2009; Ghosh et al.

2010; Bhattacharya et al. 2010) that a geometrically

thick advective accretion flow has a strong tendency to

drive bipolar outflows due to high thermal energy con-

tent of the hot gas. They may be additionally propitious

to propel outflows/jets because their vertical thick struc-

ture enhances the large-scale poloidal component of the

magnetic field, which plays a critical role in launching

strong and collimated outflows (Meier 1999; Ballantyne

& Fabian 2005).

Apart from the low-hard state of BHXRBs which

power jets, at the other end of the spectrum, strong out-

flows and jets are observed in low excitation radio galax-

ies (LERGs) harboring supermassive BHs. LERGs, a

more general case of low luminous AGNs (LLAGNs),

seem to be accreting gaseous plasma directly from the

hot X-ray emitting phase of the interstellar medium

(ISM) or from the hot X-ray halos surrounding the

galaxy or from the hot phase of the intergalactic medium

(IGM) quasi-spherically in a radiatively inefficient mode

with a near Bondi rate (Allen et al. 2006; Hardcastle

et al. 2006, 2007; Balmaverde et al. 2008; Ghosh &

Banik 2015). LERGs thus resemble the low-hard state

of BHXRBs, having geometrically thick and optically

thin gas pressure dominated advective accretion flow, ac-

creting hot gas at a high sub-Eddington accretion rate.

This strongly advective radiatively inefficient accretion

paradigm (RIAF) or hot mode accretion having consid-

erable geometrical thickness is more prone to emanate

outflows/jets and is very conducive to propel matter ver-

tically outwards out of the accreting region.

However, with the increase in Ṁ as 10−3 ṀEdd ≪
Ṁ <∼10−2 ṀEdd, the flow tends to be more centrifugally

dominated and becomes moderately advective, with the

central BH accreting relatively cold gas as compared to

the hot mode accretion. Incidentally, the moderately ad-

vective accretion flow does not occur in a radiatively in-

efficient mode, but where a considerable amount of both

gas and radiation pressure seem to be present in the sys-

tem, rendering the flow to have a moderate optical depth.

Geometrically, the inner advective region would then be

relatively thinner than that corresponding to RIAFs. The

moderately advective accretion paradigm may also be

susceptible to ejecting outflows. The difference between

this paradigm and that with RIAF, however, may lie in the

acceleration mechanisms to eject bipolar outflows and

jets, which we would eventually investigate in this study.

Nonetheless, with the increase in Ṁ as the flow tends to

become more rotationally/centrifugally dominated with

lesser geometrical thickness, the efficacy of the disk to

eject outflows diminishes. Beyond Ṁ > 10−2 ṀEdd, the

flow would eventually tend towards a Keplerian nature

(Yuan & Narayan 2014; paper II (in preparation)). A ge-

ometrically thin Keplerian accretion disk plausibly fails

to account for the launching and acceleration of outflows

and jets (Ghosh & Mukhopadhyay 2009; Ghosh et al.

2010; Bhattacharya et al. 2010; also see Czerny & You

2016 for further discussion).

Extensive work has been pursued on the origin

of outflows/jets, since the seminal work of Blandford

& Payne (1982) in studying accretion powered hydro-

magnetic outflows, which we focus upon in this study.

Physical understanding of accretion powered hydromag-

netic outflows has either been performed in the sta-

tionary self-similar approximation (Blandford & Payne

1982; Pudritz & Norman 1986; Wardle & Koenigl 1993;

Contopoulos 1996; Ferreira & Pelletier 1995; Ferreira

1997; Casse & Ferreira 2000; Narayan et al. 2007) in the

quasi-analytical regime to demonstrate the importance of

the poloidal component of the magnetic field to launch

outflowing matter from the Keplerian accretion disk, or

through magnetohydrodynamic (MHD) simulations in

both nonrelativistic as well as in relativistic regimes (for

details, see the introduction in Ghosh & Mukhopadhyay

2009; Bhattacharya et al. 2010 and references therein;

also see Pudritz et al. 2007 and references therein).

In most of these studies the authors remain focused

mainly on the launching of outflows/jets from the ge-

ometrically thin Keplerian disk. The formation of the

accretion powered outflow and jet is directly related to

the efficacy of extraction of angular momentum and en-

ergy from the magnetized accretion flow. However, the

exact mechanism by which the radial accretion is di-

verted into strong outflows and plausible jets still re-

mains theoretically elusive. Notwithstanding, jet launch-

ing is completely an MHD process. Accreting material

diffuses across magnetic field lines threading the accre-

tion region, and is then lifted upwards by MHD forces

which then couples to the field and becomes accelerated

magnetocentrifugally. However, if the accreting system

is strongly gas pressure dominated, it may happen that

the gas pressure gradient would play a more contributory

role in lifting the plasma vertically outwards along with

the help of magnetic forces. In addition, turbulent recon-

nection of magnetic field lines may lead to flux annihi-

lation (Bisnovatyi-Kogan & Lovelace 2000). Magnetic

energy dissipates through turbulent magnetic reconnec-

tion, which may also power the outflow/jet emission (de
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Gouveia dal Pino & Lazarian 2005; de Gouveia Dal Pino

et al. 2010; Giannios et al. 2010 and references therein).

Most studies on accretion disk and outflow/jet have

evolved separately, assuming these two to be apparently

dissimilar objects. In light of both deeper theoretical un-

derstanding and observational inferences (Merloni et al.

2003; Fender & Belloni 2004; Fender et al. 2004), it is

evident that the dynamics of outflow and the underlying

accretion are strongly correlated (for details see Ghosh &

Mukhopadhyay 2009; Ghosh et al. 2010; Bhattacharya

et al. 2010 and references therein). Outflows and jets

observed in AGNs and X-ray binaries (XRBs) can only

originate in an accretion powered system, where the ac-

creting plasma around gravitating objects like BHs acts

as a source, whereas the outflow and then the jet acts as

one of the possible sinks (Bhattacharya et al. 2010). The

implicit coupling between accretion and outflow is then

essentially governed by conservation laws; conservation

of matter, momentum and energy. The outflowing matter

carries away mass, angular momentum and energy ex-

tracted from the accreting plasma (Pudritz & Norman

1986). We do not intend to investigate the physics of

jet formation and its launching mechanism which is al-

together a different field of research, but would like to

focus entirely on the inter-correlating dynamics of the ac-

cretion and outflow within the coupled accretion-outflow

region, and the conditions/criteria for jet launching. Any

proper understanding of the dynamics and the conditions

of jet launching should necessarily require a robust un-

derstanding of the dynamics of the magnetized advec-

tive accretion region coupled to outflow, governed explic-

itly by conservation laws. The relevant dynamical solu-

tions at the accretion-outflow coupled surface (the sur-

face from where outflow decouples from radially inward

accretion flow) would then act as boundary conditions at

the base of the jet.

Accretion disk-outflow/jet coupling has been stud-

ied on a number of occasions from an observational an-

gle, in accretion powered systems (Fender & Belloni

2004; Yuan et al. 2005; Körding et al. 2007; Neilsen &

Lee 2009; Soleri et al. 2010; Miller-Jones et al. 2011,

2012; Miller et al. 2013; King et al. 2013). From a the-

oretical perspective, few self-similar studies have been

attempted in the context of accretion-outflow coupling,

both in a non-magnetized and in a magnetized regime

(see Pudritz et al. 2007 and references therein; Ghosh &

Mukhopadhyay 2009; Ghosh et al. 2010; Bhattacharya

et al. 2010; Blandford & Begelman 1999; Soria et al.

1997; Samadi & Abbassi 2016; Xue & Wang 2005; Jiao

& Wu 2011; Jiao et al. 2015). Notwithstanding, theoreti-

cally, it is still difficult to construct a reasonably satisfac-

tory and definitive model of the magnetized accretion-

outflow/jet coupled region, owing to the complicated ge-

ometry and inconclusive understanding of the inflow-

outflow coupled region. On the other hand, few simu-

lations on disk-outflow/jet coupling have also been pe-

formed (Nishikawa et al. 2005; McKinney & Narayan

2007b,a). In these simulations, how the matter gets de-

flected from the equatorial plane has been studied largely

in the Keplerian regime. Casse & Keppens (2004) per-

formed an advective, resistive MHD simulation of the

accretion-ejection structure with the inclusion of the en-

ergy equation, however neglecting the viscosity and ra-

diative loss from the system. Nonetheless, it is still diffi-

cult to simultaneously simulate the accretion and outflow

regions because the time scales of accretion and outflow

are in general very different.

In one of our previous works on accretion-induced

outflow (Ghosh & Mukhopadhyay 2009), we made an

attempt to formulate a unifying scheme of inflow and

outflow in a 2.5-dimensional advective paradigm. In the

present work, we endeavor to develop a robust viscous,

resistive and advective MHD accretion-induced outflow

model in the 2.5-dimensional paradigm, restricting our-

selves to the non-relativistic regime, in the context of ac-

cretion powered hydromagnetic outflows/jets, focusing

entirely on the inter-correlating dynamics of the accre-

tion and outflow within the coupled accretion-outflow

region, without aspiring to explore the mechanism of

launching and ejection of outflows and jets. A com-

plete 2.5-dimensional viscous, resistive, advective global

MHD numerical solution of such a system is left for fur-

ther work, which is beyond the scope at present; we con-

fine our treatment to quasi-analytical/quasi-numerical

power law self-similarity (e.g., Narayan & Yi 1994) in

a quasi-stationary configuration, by upholding the con-

servation equations. All physical quantities are scaled

as powers in r and z according to their dimensions, in

the limit of higher order polynomial expansion. We will

perform a critical analysis of the accretion-outflow re-

gion and provide a complete quasi-analytical family of

solutions. Although the quasi-analytical self-similar so-

lutions are approximate, they, however, can provide a

strong physically intuitive picture of accretion dynam-

ics coupled with the outflow, as well as physical crite-

ria/conditions to eject outflows/jets.

In the next section, we present the formulation of our

model. Section 3 describes the quasi-analytical/quasi-

numerical procedure to solve the model equations of

the accretion-induced outflow. In Section 4, we evaluate

the coefficients of our self-similar solutions and analyze

them. In Section 5, we investigate the nature and behav-
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ior of the family of solutions for accretion-induced out-

flow within the bounded accretion coupled outflow re-

gion. Finally, we end up in Section 6 with a summary

and discussion.

2 2.5-DIMENSIONAL ADVECTIVE

MAGNETIZED ACCRETION-OUTFLOW

COUPLING

We formulate the accretion-outflow coupled model by

considering a 2.5-dimensional viscous, resistive, advec-

tive accretion flow geometry in the MHD regime, in a

quasi-stationary state. The vertical flow is explicitly in-

cluded in the system. We adopt the cylindrical coordinate

system (r, ϕ, z) to describe a quasi-stationary, mean ax-

isymmetric accretion flow. As we have incorporated out-

flow in our system, within the accretion-outflow coupled

region in an advective paradigm, all the dynamical flow

variables; namely, radial velocity (vr), azimuthal veloc-

ity (vϕ), specific angular momentum (λ), vertical veloc-

ity or outflow velocity (vz), isothermal sound speed (cs),

mass density (ρ), thermal pressure (P ) and magnetic field

components (Br, Bz, Bϕ), vary in both r and z. The dy-

namical equations are vertically integrated over an arbi-

trary scale-height h(r) from −h to +h. Here h(r) is not

a hydrostatic disk-scale height but a photospheric surface

within which accretion and outflow are coupled. Above

h(r), the outflow decouples from the accretion flow, gets

further accelerated in the hot nonthermal magnetized

corona and finally forms a relativistic jet. We focus on

this accretion-outflow coupled region within which the

flow is mostly bounded. We only include the rϕ compo-

nent of turbulent stress, which is responsible for radial

transport of angular momentum outwards (angular mo-

mentum gets transported due to the diffusion of turbulent

eddies). Vertical transport of angular momentum occurs

mainly through large-scale magnetic stresses, where the

outflowing matter magnetically extracts or removes an-

gular momentum. The accreting mass is assumed to be

much less compared to that of the central object, and

hence the flow is not self-gravitating. As the accretion

flow is associated with turbulence, we express all the dy-

namical variables in terms of the mean and fluctuating

parts, generically represented as

F = F̄ + F ′, (1)

where F̄ is then the appropriate mean value and F ′ is

the fluctuation corresponding to that variable. We ad-

here to the conventional statistical averaging approach of

Favre (Favre decomposition) used for compressible tur-

bulent flows, where the mean value of the flow velocity is

actually the density weighted mean velocity; and corre-

sponding to the rest of the variables like density, pressure

and magnetic field, the mean values are the conventional

mean. This will then define a mean flow in the disk, plau-

sibly associated with some kind of time average; for a

quasi-stationary flow, one can conceive of a time aver-

age, with time scale much larger than the time scales of

turbulent fluctuations. As the turbulence dominates the

transport process in the accretion flow, we neglect micro-

scopic viscosity and resistivity, in a usual way. Statistical

averaging of MHD equations generates a large number

of turbulent correlation terms. In the present study, we

restrict ourselves to first order turbulent correlation and

neglect second order and higher order correlation terms.

The turbulence is defined in terms of mean Reynolds

and Maxwell stress described through correlations given

by

t̄ij = tRij + tMij

⇒ −

[

ρv′iv
′
j −

(B′
iB

′
j

4π
− δij

B′2

8π

)

]

(2)

where t̄ij is the net turbulent stress. The Reynolds and

Maxwell stresses are commonly parameterized in terms

of kinetic and magnetic turbulent viscosities, νR
ij and νM

ij

respectively, as

ρv′iv
′
j = −νR

ij ρ̄sij , (3)

−
(B′

iB
′
j

4π
− δij

B′2

8π

)

= −νM

ij ρ̄sij , (4)

where s̄ij = ∂v̄i

∂xj
+

∂v̄j

∂xi
− 2

3∇ · v̄δij is the strain tensor.

The turbulent viscosities are parameterized through an α

prescription as

νR
ij ∼ αR

ij c̄sh, νM
ij ∼ αM

ij c̄sh, (5)

where νij = νR
ij + νM

ij is the net turbulent viscosity

and αij = αR
ij + αM

ij is the net turbulent viscosity pa-

rameter. With these parameterizations, the coupled MHD

accretion-outflow dynamical equations for mean flow in

quasi-stationary state are as follows:

(a) Mass transfer:

∂(ρ̄v̄j)

∂xj
= 0. (6)

We define the net mass flow rate, which is a constant,

through an integro-differential equation as

∫ +h

−h

∫

r

∫ 2π

0

[1

r

∂

∂r
(rρ̄v̄r) +

∂

∂z
(ρ̄v̄z)

]

rdϕdrdz

= −Ṁ

(7)
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where the first term is the signature of the radial accre-

tion flow and the second term is attributed to outflow. If

we discard v̄z (neglecting outflow), Equation (7) reduces

to a height integrated continuity equation of the accre-

tion flow, and where Ṁ would then be the usual mass

accretion rate.

(b) Momentum transfer:

The momentum balance equation in the mean field

MHD is given by

∂ (ρ̄v̄iv̄j)

∂xj
= −ρ̄

∂ϕG

∂xi
− ∂p̄

∂xi

+
∂

∂xj

(B̄iB̄j

4π
− δij

B̄2

8π

)

+
∂

∂xj

(

tRij + tMij

)

. (8)

Using Equation (6) and integrating Equation (8) ver-

tically, the radial momentum balance equation is given

by

∫ +h

−h

[

ρ̄v̄r
∂v̄r

∂r
− ρ̄

λ̄2

r3
+ ρ̄v̄z

∂v̄r

∂z

+ρ̄FGr +
∂P̄

∂r
+

1

4π

( B̄ϕ

r

∂

∂r
(rB̄ϕ)

+B̄z
∂B̄z

∂r
− B̄z

∂B̄r

∂z

)

]

dz = 0. (9)

In deriving this we have used divergence criteria of

the magnetic field. FGr is the radial component of the

gravitational force. In a similar fashion, we write the az-

imuthal momentum balance equation as
∫ +h

−h

(

ρ̄
v̄r

r

∂λ̄

∂r
+ ρ̄

v̄z

r

∂λ̄

∂z

)

dz =

1

r2

∂

∂r

∫ +h

−h

(

r2 t̄rϕ

)

dz

+

∫ +h

−h

1

r2

∂

∂r

(r2B̄rB̄ϕ

4π

)

dz +
B̄ϕB̄z

4π

∣

∣

∣

+h

−h
. (10)

The last term in the right hand side of Equation (10)

is the magnetic torque that acts at the accretion-outflow

surface, and which helps in transporting the angular mo-

mentum vertically outwards. This term is responsible for

mass loss in the wind. Next we derive the vertical mo-

mentum balance equation which is obtained from the z

component of Equation (8).

2

∫ h

0

[

ρ̄v̄r
∂v̄z

∂r
+ ρ̄v̄z

∂v̄z

∂z
+ ρ̄FGz +

∂P̄

∂z

+
∂

∂z

( B̄2
ϕ + B̄2

r

8π

)

− B̄r

4π

∂B̄z

∂r

]

dz = 0, (11)

where FGz is the vertical component of gravitational

force. Equation (11) is integrated from 0 to h due to the

reflection symmetry of all the dynamical variables across

the accretion-outflow coupled surface. Equation (11)

contains information on the outflow dynamics within the

accretion-outflow region. The matter starts to acceler-

ate vertically outwards from just above the equatorial

plane of the accretion region. If there is no outflow, then

vz = 0, and if we neglect the magnetic pressure and mag-

netic stresses, Equation (11) reduces to the well known

hydrostatic equilibrium condition in the disk, and the

usual hydrostatic disk scale-height can be obtained.

(c) Divergence condition:

∫ +h

−h

[

1

r

∂

∂r
(rB̄r) +

∂B̄z

∂z

]

dz = 0. (12)

The divergence condition determines the symmetry

property of magnetic field components. Whether the ra-

dial and vertical components of the magnetic field will

follow odd and even symmetry or vice-versa in the z di-

rection can be ascertained from the above equation.

(d) Magnetic induction:

The turbulent magnetic induction equation is derived

from the mean field MHD theory (e.g., Krause & Raedler

1980). Following the usual procedure and neglecting the

dynamo effect, the steady state induction equation in ten-

sorial form is given by

ǫijkǫkmn
∂

∂xj
(v̄mB̄n) − ǫijk

∂

∂xj

(

ǫkmnνR

ml

∂B̄n

∂xl

)

= 0, (13)

where νR
ml is the kinetic part of the turbulent viscosity.

The above equation has been written in the most gen-

eral form considering an anisotropic turbulence. Splitting

Equation (13) into radial and azimuthal directions, we

obtain after vertical integration

∫ +h

−h

[ ∂

∂z
(v̄rB̄z − v̄zB̄r)

+
∂

∂z

(

νR

zz

∂B̄r

∂z
− νR

rr

∂B̄z

∂r

)]

dz = 0, (14)

and
∫ +h

−h

[ ∂

∂z
(v̄ϕB̄z − v̄zB̄ϕ) − ∂

∂r
(v̄rB̄ϕ

−v̄ϕB̄r) +
∂

∂z

(

νR

zz

∂B̄ϕ

∂z

)

+
∂

∂r

(

νR

rr

∂B̄ϕ

∂r
+ νR

ϕϕ

B̄ϕ

r

)]

dz = 0.

(15)
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We do not show the vertical component of the induction

equation here as it is similar to that of the radial equation,

and contains the same information regarding magnetic

dynamics of the flow. Note that turbulent diffusion in the

induction equation arises only from the kinetic part of

the turbulent stress tensor through Reynolds stress. This

is attributed to the mean field approximation, where we

split the quantities into the mean and turbulent parts.

(e) Energy conservation:

The Poynting flux Sj is given by

Sj =
c

4π
ǫjlmElBm. (16)

Using mean field MHD and the induction equation, and

by discarding microscopic resistivity, we write

∂S̄j

∂xj
=

v̄j

c
ǫjlmB̄lJ̄m +

J̄j

c
ǫjlmv′lB

′
m

+
v̄j

c
ǫjlmB′

lJ
′
m +

B̄j

c
ǫjlmJ ′

lv
′
m, (17)

where J is the current density. In contrast to the other

correlation terms, the last term in the right hand side of

Equation (17) is not a first order correlation term, but

rather a second order or higher order correlation term

(Pessah et al. 2006a); we omit this term in our present

study. Presuming that the major contribution to heat gen-

eration in the accretion disk is due to turbulent stress,

which can be considered to be reasonably true in a global

sense (as assumed in the standard picture of accretion

disk theory), we write the energy conservation equation,

using Equation (17) and neglecting the kinetic dynamo

effect, as

∂

∂xj

[

ρ̄v̄j

(

v̄2

2
+

8 − 3β

2β

P̄g

ρ̄
+ ϕG

)

− v̄itRij

]

+
v̄j

c
ǫjlmB̄lJ̄m +

v̄j

c
ǫjlmB′

lJ
′
m

− 1

4π
ǫjlmνR

lk

∂B̄m

∂xk
ǫjlm

∂B̄m

∂xl
+

∂F r
j

∂xj
= 0, (18)

where β = P̄g/(P̄g + P̄r); the ratio of gas pressure to

the total pressure in the accretion-outflow coupled re-

gion is assumed to be constant. P̄r is radiation pres-

sure in the gas-radiation mixture. The radiation field has

been assumed to be locally isotropic. The ratio of spe-

cific heat of the fully ionized gas and radiation are taken

as γg = 5/3 and γr = 4/3 respectively. The ‘ef-

fective ratio of specific heat’ Γ is related to β through

Γ = (8 − 3β)/(6 − 3β). In deriving Equation (18), we

have neglected the turbulent thermal conductivity. The

last term in the above equation represents transport of ra-

diative flux. Multiplying Equation (8) by v̄j and using the

continuity equation, the vertically integrated energy bud-

get for accretion-induced outflow is thus obtained below

∫ +h

−h

[3

2
(2 − β)ρ̄v̄r

∂c̄2
s

∂r
− v̄r c̄

2
s

∂ρ̄

∂r

]

dz

+

∫ +h

−h

[3

2
(2 − β)ρ̄v̄z

∂c̄2
s

∂z
− v̄z c̄

2
s

∂ρ̄

∂z

]

dz

=

∫ +h

−h

[

ρ̄νR
rϕs̄2

rϕ +
1

4π
ǫjlmνR

lk

∂B̄m

∂xk
ǫjlm

∂B̄m

∂xl

]

dz − 2F r+. (19)

The left hand side of the above equation is the sig-

nature of advection of energy flux in radial and verti-

cal directions due to accretion and outflow respectively.

The first and second terms on the right hand side ex-

press turbulent viscous heating due to the rϕ compo-

nent of the stress tensor and the turbulent Ohmic dissi-

pation or Joule’s heat loss respectively in the accretion

flow. Turbulent Ohmic dissipation symbolizes a resistive

flow due to which constant annihilation of the magnetic

flux occurs. The last term of the equation is the flux of

radiation that is escaping from the accretion-outflow sur-

face. Similar to that of the induction in Equation (13),

turbulent diffusion in the energy equation also arises only

through the Reynolds stress tensor.

The net heat flux generated in the accretion flow is

defined by

q+ =

∫ +h

−h

(

ρ̄νR

rϕs̄2
rϕ

+
1

4π
ǫjlmνR

lk

∂B̄m

∂xk
ǫjlm

∂B̄m

∂xl

)

dz. (20)

Defining f as a constant cooling factor scaled through a

relation

q+ − 2F r+ = (1 − f)q+, (21)

the final form of the heat flux equation is obtained by

coupling Equations (19), (20) and (21). A constant f im-

plies that the radiative heat loss from the accretion sur-

face has a linear proportionality with the net heat flux

generated in the system. Although f should vary ra-

dially, however, within a small inner accretion region

where the accretion and outflow are coupled, this pre-

sumption is an acceptable approximation. The parameter

f reflects the extent to which the accretion flow is advec-

tive. f → 1 represents an accretion flow with efficient

cooling or which is radiatively efficient. At the other ex-

tremity, f → 0 epitomizes a strongly advective or advec-

tion dominated system which is radiatively inefficient.

Equations (7), (9), (10), (11), (12), (14), (15) and

(19) exhibit the dynamical behavior of accretion-induced
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outflow in a resistive MHD paradigm for the mean flow.

In the next section, we explore a technique to solve

these eight coupled partial differential equations using

Equations (5), (20) and (21), rigorously.

3 POLYNOMIAL EXPANSION AND SOLUTION

PROCEDURE

The equations describing a turbulent magneto-fluid in the

last section are extremely complicated and it is beyond

our scope to solve them numerically. The only procedure

left in this context is to explore some kind of approximate

analytical method or quasi-analytical method to solve

them. As a first approximation, we follow a power law

self-similar approach (see Narayan & Yi 1994) with a

polynomial expansion to solve the equations for the mean

flow, to obtain the class of solutions. For the present

purpose we invoke a generalized nth degree polynomial

expansion for all the mean quantities, where the mean

flow variables are functions of both the radial and ver-

tical coordinate. We restrict ourselves to the Newtonian

paradigm as power law self-similar solutions are valid

only in the limit of Newtonian approximation. The gener-

alized Newtonian potential at any (r, z) in the accretion-

outflow region is written in the form of a power series

ϕG(r, z) = −GM

(

r−1 −
1

2
r−3z2

+
3

8
r−5z4 − · · ·

)

, (22)

where M is the mass of the central object. The gravita-

tional force in the radial and vertical directions is then

written in the form of a polynomial expansion as shown

below.

FGr(r, z) = GM

∞
∑

n=0

(

−3/2

n

)

r−2−2nz2n. (23)

FGz(r, z) = GM

∞
∑

n=0

(

−3/2

n

)

r−3−2nz2n+1, (24)

where the parentheses on the right hand side of

Equations (23) and (24) denote the usual binomial co-

efficient. FGr and FGz have even and odd symmetry in

the z direction, respectively. We seek a polynomial ex-

pansion with a similar form for all mean flow variables,

where the flow of matter in the accretion region is being

considered to have reflection symmetry about the equa-

torial plane. All the hydrodynamical variables will have

even symmetry except those directly related to FGz . The

mean outflow velocity v̄z will then have an odd symme-

try in the z direction. Consequently, the radial compo-

nent of the magnetic field B̄r and the vertical component

of the magnetic field Bz will have even and odd symme-

try configurations, respectively, which is required from

the divergence condition of the magnetic field. The odd

symmetry configuration of the magnetic field has been

used previously on other occasions in the context of out-

flows/jets from the accretion flows (e.g., Lovelace et al.

1987; Samadi & Abbassi 2016). The flow velocities, an-

gular momentum and density are then written in the fol-

lowing polynomial form

v̄r(r, z) =
∞
∑

n=0

vr2nra−2nz2n,

v̄ϕ(r, z) =

∞
∑

n=0

vϕ2nrb−2nz2n,

λ̄(r, z) =

∞
∑

n=0

vϕ2nrb−2n+1z2n,

v̄z(r, z) =

∞
∑

n=0

vz(2n+1)r
c−2nz2n+1,

c̄s(r, z) =

∞
∑

n=0

cs2nrd−2nz2n,

ρ̄(r, z) =

∞
∑

n=0

ρ2nre−2nz2n. (25)

Similarly, the components of the magnetic field can be

expanded as

B̄r(r, z) =

∞
∑

n=0

Br2nri−2nz2n,

B̄ϕ(r, z) =

∞
∑

n=0

Bϕ2nrj−2nz2n,

B̄z(r, z) =

∞
∑

n=0

Bz(2n+1)r
k−2nz2n+1, (26)

where vr2n, vϕ2n, vz(2n+1), cs2n, ρ2n, Br2n, Bϕ2n and

Bz(2n+1) are dimensionless coefficients which will be

evaluated from MHD conservation equations.

We determine the exponents a, b, c, d, e, i, j and k by

self comparison of various terms in the model equations.

Substituting the solutions from Equations (25) and (26)

in the MHD conservation equations and comparing the

exponents of r and z, we obtain a = −1/2, b = −1/2,

c = −3/2, d = −1/2, e = −3/2, i = −5/4, j = −5/4

and k = −9/4.

Using the above value of exponents and using the

polynomials in Equations (25) and (26), Equations (9),

(10), (11), (12), (14), (15) and (19) can be expanded in

the power of aspect ratio (h/r). Using a simple technique
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given by the form

∞
∑

n=0

unxn
∞
∑

n=0

vnxn
∞
∑

n=0

wnxn

=

∞
∑

n=0

xn
∞
∑

m=0

∞
∑

l=0

un−mvm−lwl, (27)

the above polynomial equations then can be written in a

generic form as

A0

(h

r

)0

+ A1

(h

r

)2

+ A2

(h

r

)4

+ · · · = 0, (28)

where, A0, A1, A2 and · · · are zeroth order, first order,

second order and higher order coefficients which are non-

linear functions of vr2n, vϕ2n, vz(2n+1), cs2n, ρ2n, Br2n,

Bϕ2n and Bz(2n+1) corresponding to n = 0, n = 1,

n = 2, · · · , respectively. Equation (28) is a linear combi-

nation in powers of h/r which are linearly independent.

If we neglect all the terms of order ≥ (h/r)2,

and only keep the zeroth order term, the generic

Equation (28) after neglecting the magnetic field contri-

bution will reduce to algebraic equations of Narayan &

Yi (1994). To exemplify, in the appendix, we have shown

the polynomial expansion of the integro-differential mass

transfer expression, Equation (7), and the radial momen-

tum balance expression, Equation (9), explicitly. Even

if the accretion flow has considerable thickness, h in

general would always be less than r. Further, magnetic

stresses will compress or squeeze the accretion region.

Considering the expression in Equation (28) up to the

term (h/r)2 would then be a reasonable approximation.

Restricting the expansion up to (h/r)2 corresponding to

n = 1 and neglecting the terms with orders ≥ (h/r)4

in the generic expression (28), we equate A0 and A1 to

zero, respectively. Extending this to MHD conservation

equations and assuming isotropic turbulence, after rigor-

ous algebra, we will then have fifteen independent non-

linear algebraic equations with sixteen unknown coeffi-

cients consisting of zeroth and first order only, which are

shown below.

Equation (7) renders

ρ0(vr0 − vz1)t +

[

ρ0(vr2 − vz3) + ρ2(vr0 − vz1)

]

× t3

3
= −Ṁ

4π
. (29)

Equation (12) yields

Bz1 =
Br0

4
, (30)

Bz3 =
3

4
Br2. (31)

Equation (9) produces

−1

2
v2

r0 − v2
ϕ0 + GM − 5

2
c2
s0 −

1

16π

B2
ϕ0

ρ0
= 0, (32)

−1

2
ρ2v

2
r0 − 3ρ0vr0vr2 − ρ2v

2
ϕ0 − 2ρ0vϕ0vϕ2

+2ρ0vz1vr2 + GM(ρ2 −
3

2
ρ0) −

9

2
(ρ2c

2
s0 + 2ρ0cs0cs2)

+
1

4π
(−

5

2
Bϕ0Bϕ2 −

9

4
B2

z1 − 2Bz1Br2) = 0. (33)

Equation (10) provides

1

2
vr0vϕ0 +

3

4
αrϕtvϕ0cs0 +

1

16π

Br0Bϕ0

ρ0
= 0, (34)

1

2
(ρ2vr0vϕ0 + ρ0vϕ0vr2) −

3

2
ρ0vr0vϕ2

+2ρ0vz1vϕ2 +
1

2
αrϕt

(

3

2
ρ2cs0vϕ0

+
3

2
ρ0cs2vϕ0 +

7

2
ρ0cs0vϕ2

)

+
1

16π
(Bϕ0Br2 + 7Br0Bϕ0) = 0. (35)

Equation (11) gives

−3

2
ρ0vr0vz1 + ρ0v

2
z1 + ρ0GM

+2(ρ2c
2
s0 + 2ρ2cs0cs2)

+
1

4π
(2Br0Br2 + 2Bϕ0Bϕ2

+
9

4
Br0Bz1) = 0, (36)

−
3

2
ρ2vr0vz1 −

3

2
ρ0vr2vz1 −

7

2
ρ0vr0vz3

+ρ2v
2
z1 + 4ρ0vz1vz3

+GM(ρ2 −
3

2
ρ0) + 4(ρ2cs0cs2 + ρ0c

2
s2)

+
1

8π
(4B2

r2 + 4B2
ϕ2) −

1

4π
(

−9

4
Br2Bz1 −

17

4
Br0Bz3

)

= 0. (37)

Equation (14) generates

(vr0Bz1 − vz1Br0) + αR

rϕt
(

2cs0Br2 +
9

4
cs0Bz1

)

= 0. (38)

(vr2Bz1 + vr0Bz3) − (vz3Br0 + vz1Br2) + αR

rϕt
(

2cs2Br2 +
9

4
cs2Bz1 +

17

4
cs0Bz3

)

= 0. (39)
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Equation (15) yields

(vϕ0Bz1 − vz1Bϕ0) +
7

4
(vr0Bϕ0 − vϕ0Br0)

+αR

rϕt

(

2cs0Bϕ2 +
7

16
cs0Bϕ0

)

= 0, (40)

3(vϕ0Bz3 − vϕ2Bz1) − 3(vz3Bϕ0 − vz1Bϕ2) +

7

4
[(vr0Bϕ2 + vr2Bϕ0) − (vϕ2Br0 + vϕ0Br2)]

+αR

rϕt

[

6cs2Bϕ2 +
15

16
(cs2Bϕ0 + 9cs0Bϕ2)

]

= 0. (41)

Equation (19) using Equations (20) and (21) renders

3

2
(β − 1)vr0cs0 = (1 − f)αR

rϕ

t
(9

4
v2

ϕ0 +
1

16

B2
ϕ0

4πρ0

)

, (42)

3

2
(β − 1)ρ0vr2c

2
s0 + (9β − 15)ρ0vr0cs0cs2

+
1 + 3β

2
ρ2vr0c

2
s0 + 6(2 − β)ρ0vz1cs0cs2

−2ρ2vz1c
2
s0 = (1 − f)αR

rϕt

[

(9

4
ρ2cs0v

2
ϕ0

+
9

4
ρ0cs2v

2
ϕ0 +

21

2
ρ0cs0vϕ0vϕ2

)

+
1

4π

(

4cs0B
2
ϕ2 + 4cs0B

2
r2 +

81

16
cs0B

2
z1

+9cs0Br2Bz1 +
1

16
cs2B

2
ϕ0

+
9

8
cs0Bϕ0Bϕ2

)

]

. (43)

In the above equations t = h(r)/r. Using

Equations (29), (30), (31), (33), (34), (35), (36),

(38), (39), (40) and (42), and after very complicated

and tedious algebra, we systematically determine the

values of all the first order coefficients in terms of

zeroth order coefficients of hydrodynamic variables.

Substituting them in Equations (32), (37), (41) and (43),

we successfully reduce 15 equations to four nonlinear

algebraic equations comprised of zeroth order coeffi-

cients vz1, vϕ0, Br0 and Bϕ0 only. In an accretion flow,

when there is no net vertical flux, the vertical height of

the accretion geometry is calculated from hydrostatic

pressure balance, assuming the pressure and density at

the outer accretion surface to be zero.

However, this physical condition ceases to exist

when the outflow is incorporated in the system, and

the scale-height of the coupled accretion-induced out-

flow region becomes difficult to ascertain. In these cir-

cumstances, an accretion-outflow coupled surface can be

treated as a photospheric height, delineating between the

accretion-outflow surface and the transition region, lead-

ing to the outflow decoupling from the inflow. As a first

approximation, we treat t = h(r)/r as a parameter to

get physically plausible solutions. In reality, however,

the physical conditions to launch outflow would self-

consistently determine the vertical height of the inflow-

outflow surface, from where the outflow decouples from

the accretion region.

One can then solve the stated four nonlinear equa-

tions through an iterative Newton-Raphson method with

an appropriate initial guess. In this way we can obtain the

values of zeroth and first order coefficients of the corre-

sponding dynamical variables. The values of the coeffi-

cients are scaled by putting G = M = 1, and Ṁ in units

of ṀEdd.

In the next section, we evaluate them for appropriate

choices of parameters Ṁ, β and f .

4 EVALUATION OF THE COEFFICIENTS

In Section 1 we have analyzed the necessity to have a

sub-Keplerian advective accretion regime to eject strong

outflows and jets from the accretion region in the vicinity

of BHs. The corresponding accretion regime can be pos-

sibly envisaged if the mass accretion rate or net mass flow

rate is considerably sub-Eddington (Ṁ <∼10−2 ṀEdd).

The ratio of gas to the total pressure β and the radiative

cooling factor f directly depends on Ṁ . Looking metic-

ulously into the relevant Equations (29–43), we notice

that the continuity equation is written in the integral form

through Equation (29), unlike the other hydrodynamical

equations. This is being deliberately done to preserve in-

formation on Ṁ in the flow, as Ṁ is the most fundamen-

tal parameter which determines the nature of the BH ac-

cretion paradigm. However, this constrains the number of

dynamical equations. For our case, we have 16 unknown

coefficients but 15 equations. To resolve this, we proceed

in the following way.

Ṁ carries the information of density of the flow

which means that if Ṁ is known, in principle, density

also is known. Equation (29) reveals that density in the

accretion-outflow region is a function of two unknown

coefficients ρ0 and ρ2. ρ0 is the signature of inflow

whereas ρ2 is that of outflow. If the outflow is discarded,

ρ2 loses its significance and Ṁ then becomes the usual

mass accretion rate from where ρ0 can be easily calcu-

lated. If rj represents the outer radial boundary of the

accretion-outflow coupled region, then at r ≥ rj the net
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mass flow Ṁ is equivalent to the mass accretion rate of

the flow. At r ≥ rj , density of the accretion flow is just a

function of ρ0, which is then given by (also see Narayan

& Yi 1994)

ρ0 =

[

5 + 2 1−β
1−f

αrϕ

αRrϕ

]3/2

12π
√

2

Ṁ

αrϕ
. (44)

αR
rϕ arises due to a statistical averaging approach. Note

that the value of ρ0 computed in Equation (44) is not

exactly the same as that of ρ0 in Equation (29), where

it is coupled to ρ2. However, we presume that the den-

sity in the accretion flow does not change abruptly due

to emanation of the outflow and jet, as only a small

fraction of matter is ejected through the outflow. With

this presumption, we calculate ρ0 in Equation (29) using

Equation (44), and supply its value to the other nonlinear

equations for further computation.

One can notice that the parameter αR
rϕ is related to

αrϕ. It would be quite convenient if one can estimate

the value of αR
rϕ in relation to αrϕ, at least approxi-

mately. Pessah et al. (2006b) showed that during the late

time of the exponential growth of instability, the ratio of

Maxwell stress to Reynolds stress becomes

tMrϕ

tRrϕ

=
4 − q

q
, (45)

where 0 < q < 2. q is related to angular velocity through

the relation Ω ∼ r−q . q = 3/2 signifies a Keplerian flow

whereas q > 3/2 implies a sub-Keplerian or an advective

accretion flow. Although this relationship corresponds to

late times of the linear phase of instability, even in the

saturated state of instability with fully developed MHD

turbulence the qualitative nature of this relationship re-

mains similar; for 1.6 <∼ q <∼1.9, the magnitudes of the

ratios of Maxwell to Reynolds stresses in the turbulent

saturated state nearly approach the corresponding magni-

tudes obtained during the late times of the linear phase of

instability (Pessah et al. 2006b). For the case of a strongly

advective flow we are interested in, it would be reason-

able to use the relation given in Equation (45) to get an

approximate estimate of the value of αR
rϕ in relation to

αrϕ, as

αR
rϕ

αrϕ
=

q

4
. (46)

The qualitative feature of the dynamical coefficients

for an accretion-induced outflow which are physically

plausible should satisfy the following properties of the

flow variables: v̄r → negative, v̄z → positive and B̄ϕ0 →
negative. All the other variables should have a positive

value. The positivity of B̄r and B̄z is related to open

magnetic field lines threading the accretion flow, across

which the accreting matter diffuses, and then gets ac-

celerated outwards along the poloidal field lines by ex-

tracting angular momentum from the flow. The term

−r2(B̄ϕB̄z)h [last term in Eq. (10)], which is a magnetic

torque on the accretion flow, is attributed to the trans-

port of angular momentum from the h(r) surfaces of the

accretion-outflow region outwards. This term should be

positive in order to launch a jet, which removes angular

momentum from the flow and decouples from the accre-

tion region. This premise makes an obvious choice for

B̄ϕ to have a negative value. It should be remembered

that the negative values of many quantities do not neces-

sarily mean that their magnitude is negative, but it repre-

sents the direction of their flow.

Next we compute the value of the coefficients of all

dynamical variables for three relevant choices of Ṁ with

appropriate values of β and f , conducive to forming out-

flows and jets.

4.1 Case 1. For Ṁ = 10−4 ṀEdd

The particular choice of Ṁ corresponds to RIAF,

which is linked observationally to the low-hard state of

BHXRBs and LERGs/LLAGNs. This type of flow is sig-

nificantly gas pressure dominated and strongly advec-

tive. The flow is considerably geometrically thick, op-

tically thin and radiatively inefficient. We choose appro-

priate values of β and f corresponding to this Ṁ to get

physically plausible solutions. As this flow is highly sub-

Keplerian and strongly advective, an appropriate choice

of value of q ∼ 1.9 has been taken. In Tables 1, 2 and

3, we present the computed values of dynamical coeffi-

cients for β = 0.95 and f = 0.1 with suitable choices

of α and t. For β ∼ 0.95, Γ is ∼ 1.635. It is in-

terestingly found that for q ≪ 1.9 and in the range

of 1.9 ≪ q < 2, we never identified any physically

valid solutions. However, for the much stronger advec-

tive paradigm (Ṁ ≪ 10−4ṀEdd), one would still obtain

physically correct solutions for 1.9 ≪ q < 2.

We will analyze the family of analytical solutions

later, however, we note that the values of the coeffi-

cients are in conformity with desired physically valid so-

lutions (mentioned earlier). We notice that they are ob-

tained only at high α (>∼0.3) and at a reduced vertical

scale-height (t ∼ 0.1) of the accretion-outflow coupled

region. Although t is small, it corresponds to a geomet-

rically thick accretion flow (t>∼0.1, t measures the degree

of flow thickness). We have elucidated the necessity of a

geometrically thick accretion flow to eject outflow and
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Table 1 Ṁ = 10−4 ṀEdd, β = 0.95, f = 0.1, α = 0.3, t = 0.1, q = 1.9

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

7.4864e–5 –0.0899 0.3692 0.7069 0.5867 0.0036 –0.0050 1.3e–3

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–3.4889e–4 –0.2421 0.3471 -33.1161 –0.3551 0.0523 –0.2176 0.0793

Table 2 Ṁ = 10−4 ṀEdd, β = 0.95, f = 0.1, α = 0.5, t = 0.1, q = 1.9

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

4.4918e–5 –0.1494 0.3694 0.3859 0.5891 0.0051 –0.0041 4.25e–3

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–1.1174e–4 –0.0925 0.3211 –7.0486 –0.2300 0.0257 –0.0603 0.0193

Table 3 Ṁ = 10−4 ṀEdd, β = 0.95, f = 0.1, α = 0.5, t = 0.2, q = 1.9

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

4.4918e–5 –0.2876 0.3636 0.6211 0.5977 0.0149 –0.0061 5.2e–3

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–2.1111e–4 –0.7225 0.6940 –9.7460 –0.3859 0.0598 –0.0724 0.0448

jet in previous paragraphs. However, corresponding to

α ∼ 0.3, we never found any physically acceptable solu-

tion for t > 0.1. For higher α ∼ 0.5, however, we obtain

a solution at a maximum value of t ∼ 0.2. This infers that

with the increase of α, plausible physical solutions can be

obtained with a thicker accretion geometry. Nevertheless,

very high α (> 0.5) accretion flow might not be realistic

in nature, and hence we restrict our study to a maximum

plausible value of α ∼ 0.5.

Obtaining physically valid solutions of an accretion-

induced outflow at a reduced geometrical thickness

(scale-height) of the accretion region, as compared to a

non-magnetized accretion flow (without outflow) like ad-

vection dominated accretion flows (ADAFs) for a similar

accretion paradigm, is owing to the fact that the mag-

netic stresses in the flow have a tendency to squeeze

or compress the region by acting oppositely to the ther-

mal pressure gradient, consequently reducing the scale-

height of the accretion region. This squeezing effect has

been discussed by several other authors (e.g., Soria et al.

1997; Casse & Keppens 2004) in the context of magne-

tized accretion flow. This can be noticed from the ver-

tical momentum balance equation (Eq. (11)). As we in-

tend to see the effect of magnetic field on the geomet-

rical thickness of the accretion region, for simplicity we

ignore the outflow in Equation (11). Further, we found

that with the increase in z, the magnitude of all compo-

nents of the magnetic field increases, however the density

and thermal pressure decrease with increase in z. As we

ignore the outflow, for simplicity of our calculation, we

consider density and thermal pressure at accretion flow

scale-height (h) to be negligible as compared to their

equatorial values; this will not alter the qualitative nature

of our argument. Expanding the terms in Equation (11),

and restricting up to h2/r2, Equation (11) will reduce to

the magnetohydrostatic equilibrium equation, given by

ρ̄eq
h2

r3
∼ P̄eq −

1

8π
r−5/4

×
(

Bϕ0Bϕ2 + Br0Br2 +
9

4
Br0Bz1

)

h2

r2
,

where ρ̄eq and P̄eq are the density and thermal pressure

at equatorial plane respectively. The scale-height of the

accretion flow would then approximately be given by

h ∼

√

√

√

√

c2
sr

3

1 + 1
8πρ0

(

Bϕ0Bϕ2 + Br0Br2 + 9
4Br0Bz1

) . (47)

If we neglect the magnetic components, Equation (47)

is then the usual hydrostatic scale-height of the accre-

tion flow. Due to the presence of the magnetic field, the

scale-height is now approximately reduced by a factor
√

1 + 1
8πρ0

(

Bϕ0Bϕ2 + Br0Br2 + 9
4Br0Bz1

)

.

As the region becomes more compressed, the ther-

mal content of gas increases and the excess thermal pres-

sure gradient will help in lifting plasma vertically out-

wards.

4.2 Case 2. For Ṁ = 10−3 ṀEdd

The accretion paradigm corresponding to this Ṁ resem-

bles that in case 1. We choose similar values of β, f , q
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Table 4 Ṁ = 10−3 ṀEdd, β = 0.9, f = 0.1, α = 0.3, t = 0.1,
q = 1.85

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

8.0216e–4 –0.0900 0.5100 0.7370 0.5430 0.0028 –0.0160 7e–4

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–4.7e–3 –0.1960 0.2462 –39.9113 –0.3761 0.1411 –0.8040 0.1058

Table 5 Ṁ = 10−3 ṀEdd, β = 0.9, f = 0.1, α = 0.5, t = 0.1, q = 1.85

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

4.813e–4 –0.1498 0.5106 0.4168 0.5451 0.0040 –0.0136 1e–3

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–1.5e–3 –0.0939 0.2377 –9.0662 –0.2749 0.0721 –0.2418 0.0541

Table 6 Ṁ = 10−3 ṀEdd, β = 0.9, f = 0.1, α = 0.5, t = 0.2, q = 1.85

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

4.813e–4 –0.2948 0.5090 0.6330 0.5533 0.0127 –0.0216 3.2e–3

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–2.8e–3 –0.5535 0.5914 –11.3549 –0.4235 0.1753 –0.2907 0.1315

and t to study features of accretion-outflow coupled dy-

namics. We consider two values of β, β = 0.95 and 0.9,

corresponding to q = 1.9 and 1.85 respectively, keep-

ing the cooling factor f the same. This slightly less q for

β = 0.9 is ascribed to the fact that with the decrease in β,

the amount of the gas pressure in the system decreases,

which makes the flow be less sub-Keplerian. Other val-

ues of α and t are the same as in Section 4.1. We do

not show the values of the coefficients for β ∼ 0.95,

q = 1.9 as they are very similar to those of the scenario

for Ṁ = 10−4 ṀEdd, however, we only present the val-

ues of the coefficients for β ∼ 0.9, q = 1.85 in Tables 4,

5 and 6. The ‘effective ratio of specific heat’ Γ, corre-

sponding to β ∼ 0.9, is ∼ 1.61. Resembling the scenario

corresponding to Ṁ = 10−4 ṀEdd, here too we get so-

lutions only at high α and at a reduced t, the reason being

argued in the previous subsection.

4.3 Case 3. For Ṁ = 10−2 ṀEdd

The earlier values of Ṁ in previous subsections corre-

spond to RIAF. Nonetheless, the moderately advective

accretion paradigm may also be susceptible to eject out-

flows and jets. These accretion flows, which are less

advective as compared to RIAFs, will have lesser gas

pressure content and higher cooling efficiency, are less

geometrically thick and are centrifugally more domi-

nated. They have a moderate optical depth. This ac-

cretion paradigm can be presumably envisaged with

10−3 ṀEdd ≪ Ṁ <∼10−2 ṀEdd; for our analysis, here,

we choose Ṁ ∼ 10−2 ṀEdd.

We choose appropriate values of β and f corre-

sponding to this Ṁ to get physically plausible solutions.

As this flow is sub-Keplerian and advective, q should be

greater than 1.5, but considerably less than that in flows

illustrated in previous subsections. We choose the value

of q ∼ 1.75. For 1.5 < q ≪ 1.75 and for 1.75 ≪ q <

1.85, we never found any physically valid solutions with

Ṁ ∼ 10−2ṀEdd. However, in the stated range one may

still obtain valid solutions, either for Ṁ ≫ 10−2ṀEdd

or for Ṁ ≪ 10−2 ṀEdd.

We evaluate the value of the dynamical coefficients

for appropriate choice of β ∼ 2/3 with f = 0.4 and 0.5,

corresponding to Ṁ ∼ 10−2 ṀEdd. The values of α are

the same as before. We found that for f > 0.5 or β <∼0.6,

the flow becomes nearly Keplerian (vϕ0 ∼ 1) and we

only get physical solutions at t < 0.05. Such a flow is

not favorable for ejection of outflow as reasoned earlier.

Hence we restrict our study to a maximum value of f =

0.5 corresponding to β ∼ 2/3. The corresponding Γ for

β ∼ 2/3 is 1.5. In Tables 7, 8 and 9, we present them for

f = 0.5 for appropriate values of t.

For an easy comparison we furnish the values of vϕ2

corresponding to f = 0.4 for Ṁ ∼ 10−2ṀEdd, with

appropriate α and t in Table 10, whose importance we

will notice as we proceed.

We found that we do not obtain any solution for

t > 0.05 with α = 0.3, and t > 0.1 for α = 0.5. The rea-

son for physical solutions of accretion-induced outflow

at a reduced scale-height has been stated in Section 4.1.

However, obtaining physically valid solutions with Ṁ ∼
10−2ṀEdd at a slightly reduced scale-height as com-
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Table 7 Ṁ = 10−2 ṀEdd, β = 2/3, f = 0.5, α = 0.3, t = 0.05, q = 1.75

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

0.0143 –0.0509 0.9211 0.6728 0.2462 0.0017 –0.0293 4.25e–4

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–0.3132 –0.4994 –0.0714 –152.2853 –0.8796 0.3606 –6.1736 0.2704

Table 8 Ṁ = 10−2 ṀEdd, β = 2/3, f = 0.5, α = 0.5, t = 0.05, q = 1.75

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

0.0086 –0.0847 0.9218 0.4130 0.2468 0.0024 –0.0253 6e–4

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–0.1119 –0.4971 –0.1303 –38.7978 –0.5916 0.1930 –2.0099 0.1447

Table 9 Ṁ = 10−2 ṀEdd, β = 2/3, f = 0.5, α = 0.5, t = 0.1,
q = 1.75

ρ0 vr0 vϕ0 vz1 cs0 Br0 Bϕ0 Bz1

0.0086 –0.1689 0.9244 0.6179 0.2492 0.0084 –0.0441 2.1e–3

ρ2 vr2 vϕ2 vz3 cs2 Br2 Bϕ2 Bz3

–0.1931 –1.1612 –0.3876 –46.8950 –0.9662 0.5086 –2.6172 0.3815

pared to that obtained with Ṁ <∼10−3 ṀEdd is consis-

tent with the fact that as Ṁ > 10−3ṀEdd, the accretion

flow tends to become more rotationally dominated with

a diminishing degree of advection.

If we compare the value of the dynamical coeffi-

cients for Ṁ <∼10−3 ṀEdd and Ṁ ∼ 10−2 ṀEdd, we

found a fundamental difference in the dynamical nature

of v̄ϕ. For Ṁ <∼10−3 ṀEdd, the value of the coeffi-

cient vϕ2 is always positive. On the contrary, the value

of vϕ2 is negative for Ṁ ∼ 10−2 ṀEdd. A negative

value of vϕ2 implies that v̄ϕ decreases in z in the cou-

pled accretion outflow region for Ṁ ∼ 10−2 ṀEdd. To

verify this anomaly, we evaluated vϕ2 for lower β and

higher f , and vice-versa. It is revealing that for f > 0.3

and β < 0.75, we always obtain a negative vϕ2 with

α ∼ 0.5. vϕ2 = 0.0162 corresponds to f = 0.3 and

β = 0.75. With α ∼ 0.3, negative values of vϕ2 are ob-

tained for f>
∼0.4 and β < 0.7. The corresponding value

of vϕ2 = 0.0275 for f = 0.4 and β = 0.7. To reas-

sure ourselves we computed vϕ2 for Ṁ ∼ 10−1 ṀEdd,

and we arrive at a similar result. The above consistent

findings demonstrate that for strong gas pressure and ad-

vection dominated flows (RIAFs), v̄ϕ does not decrease

in z within the accretion-outflow coupled region. On the

contrary, for flows with lesser content of gas and higher

cooling efficiency, which are less advective and centrifu-

gally more dominating, v̄ϕ decreases in z within the cou-

pled accretion-induced outflow region. We comment on

this apparent dichotomy in Section 5. We also found that

with a moderate decrease in α from 0.5 to 0.3, vϕ2 turns

negative at a higher f and at a lower value of β, corre-

sponding to Ṁ ∼ 10−2 ṀEdd.

5 DYNAMICS AND NATURE OF THE

MAGNETIZED ACCRETION-INDUCED

OUTFLOW

In this section, we analyze the family of solutions for

advective flows in the accretion-outflow coupled region

with Ṁ <∼10−2 ṀEdd. Although the mean flow vari-

ables vary in both r and z, we do not display three di-

mensional figures as they are very obscure and difficult

to interpret. As outflow and jet effuse out from the in-

ner region of the accretion flow, we restrict our analysis

up to 50 Schwarzschild radii (rg) within which we pre-

sume that the accretion and outflow are coupled, where

rg = 2GM/c2. Also it has been stated by Kumar &

Chattopadhyay (2013) that VLBI observations of M87

(Junor et al. 1999) have shown that the jet originates from

the vicinity (∼ 50 rg) of a BH/compact object. However,

we do not expect any outflow of the accreting plasma in

the close vicinity of a BH, as the accretion flow remains

highly bounded in the close vicinity of a gravitationally

starved BH. So, we restrict our study up to 5 rg in the in-

ward radial direction, a quite reasonable choice for the in-

ner radius of the accretion-outflow coupled region. Both

r and z coordinates in the figures are expressed in units

of rg . We express Ṁ in our entire analysis in units of

ṀEdd. The dynamical solutions are shown in the follow-

ing figures with G = M = 1. All the flow variables in

the figures represent mean quantities.
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Table 10 β = 2/3, f = 0.4

α t vϕ2

0.3 0.05 –0.0202

0.5 0.05 –0.0485

0.5 0.1 –0.1818
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Fig. 1 Variation of (a) vertically averaged radial velocity, (b) vertically averaged toroidal velocity, (c) vertical/outflow velocity

at height h, (d) vertically averaged sound speed and (e) vertically averaged density along radial coordinate r. r is expressed in

units of Schwarzschild radius. Solid, long-dashed, short-dashed and dotted curves are for (Ṁ = 10−4, 10−3, 10−2, 10−2) with

corresponding (f , β) = (0.1, 0.95), (0.1, 0.9), (0.4, 2/3) and (0.5, 2/3), respectively. The other parameter is α = 0.3. The flow

variables along the vertical axis are in units of
√

GM/rg , and density is in units of (GM)−1/2 × ṀEdd/r
3/2

g . Ṁ is expressed in

units of the Eddington accretion rate.

Figures 1 and 2 display the variation of vertically av-

eraged flow variables as functions of radial coordinate r

in different accretion paradigms. Variation of v̄z and B̄z

are shown only along coupled accretion-outflow surface

h(r) as they are odd functions in z. Figure 1 indicates

that with the decrease in Ṁ , the poloidal components

of the velocity (v̄r, v̄z) and sound speed consistently in-

crease. Conversely, the magnitude of v̄ϕ increases with

the flow becoming less advective and more centrifugally

dominated. It is interestingly found from the tables in

Section 4 that the value of the large-scale poloidal mag-

netic field enhances with an increase in the geometri-

cal thickness of the accretion flow. As one moves from

a strongly advective regime to a moderately advective

regime, there is a sharp fall in the value of poloidal com-

ponent of the magnetic field. This is owing to the fact that

the geometrical thickness of the accretion region corre-

sponding to moderately advective accretion flow is much
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Fig. 2 Variation of (a) vertically averaged radial magnetic field, (b) vertically averaged toroidal magnetic field and (c) ver-

tical magnetic field at h, along radial coordinate r. Solid, long-dashed, short-dashed and dotted curves represent (Ṁ =
10−4, 10−3, 10−2, 10−2) with corresponding (f , β) = (0.1, 0.95), (0.1, 0.9), (0.4, 2/3) and (0.5, 2/3), respectively. The other

parameter is α = 0.3. r is expressed in units of Schwarzschild radius. Magnetic fields are in units of (
√

GM × ṀEdd)
1/2/r

5/4

g .

Ṁ is expressed in units of the Eddington accretion rate.

less as compared to the case in the strongly advective ac-

cretion paradigm, as shown in Figure 2(a) and (b). This

demonstrates the dominating influence of vertical thick-

ness of the accretion flow structure on the poloidal com-

ponent of the magnetic field. In contrast, the toroidal

component of the magnetic field B̄ϕ always increases

with the flow becoming less advective and more centrifu-

gally/rotationally dominated (Fig. 2(c)).

Figure 3 shows variation of the poloidal component

of velocity and magnetic field with α for different accre-

tion paradigms along the radial distance r. v̄r and B̄r

are vertically averaged quantities, whereas v̄z and B̄z

are along the coupled accretion-outflow surface h(r). We

choose the value of corresponding t for different α to

be maximum as illustrated in Section 4. This is because

the system has a greater tendency to relax itself to the

maximum possible height available to render a physi-

cally plausible solution of the coupled accretion-outflow,

as the geometrically thicker accretion flow is more con-

ducive to propel plasma vertically outwards from the ac-

cretion region. We find that with a small increase in α

from 0.3 to 0.5, the value of the poloidal component of

velocity and the magnetic field increases for both accre-

tion paradigms. We do not show the variation of other

flow variables with α as their dependence on α is in-

significant for a particular Ṁ , which can be verified from

the tables in Section 4.

In Figures 4 and 5 we present the variation of

the few dynamical variables in z (which are very rel-

evant to outflow) at any arbitrary location along r, for

10−4 ṀEdd <∼ Ṁ <∼10−2 ṀEdd. Figure 4(a) shows the

dependence of v̄z with z for different Ṁ for α = 0.3,

similar to that in Figure 1. It is found that initially v̄z

increases rapidly in z, however there is a sudden deceler-

ation of v̄z as the flow approaches the coupled accretion-

induced outflow surface. This is due to the fact that the

inward vertical component of gravitational force (FGz)

dominates near the coupled accretion-outflow surface.

Also at low Ṁ corresponding to moderately advective

accretion flow, the increase of v̄z in the vertical direc-

tion is much steeper. The truncation of the curves at a

particular z represents the corresponding vertical thick-
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Fig. 3 Variation of poloidal components of velocity and magnetic field with α for two different accretion paradigms along r. Solid,

long-dashed, short-dashed and dotted curves are for (Ṁ , α, f, t) = (10−4, 0.3, 0.1, 0.1), (10−4, 0.5, 0.1, 0.2), (10−2, 0.3, 0.5, 0.05)

and (10−2, 0.5, 0.5, 0.1) respectively. The units of the variables along the axes are the same as in Figs. 1 and 2. Ṁ is expressed in

units of the Eddington accretion rate.

ness t. Figure 4(b) shows the variation of v̄z in z with

α for two different accretion paradigms similar to that

in Figure 3. The nature of the curves is similar to that

in Figure 4(a). Nevertheless, with the increase in α, the

value of v̄z gets enhanced, and there is a steeper increase

of v̄z in z. The nature of the variation in the toroidal com-

ponent of the magnetic field along z for different Ṁ is

shown in Figure 4(c). It is seen that with the increase in

Ṁ , B̄ϕ increases at a much faster rate along z. Variation

of B̄ϕ with α is insignificant (see tables in Sect. 4) and

hence is not graphically displayed. In Figure 4(d) and

4(e), we show the variation of density in z correspond-

ing to strongly advective and moderately advective ac-

cretion regimes, respectively. Both these figures indicate

that ρ̄ decreases with the increase in α for all Ṁ . Also,

there is a steeper fall of density in z with the increase

in Ṁ . Figure 5 depicts the variation of toroidal velocity

v̄ϕ in z. With the increase in Ṁ (Ṁ > 10−3 ṀEdd) as

the flow becomes less advective and more centrifugally

dominated, v̄ϕ decreases in z for all relevant values of α

and f . This feature of v̄ϕ has already been remarked on

in Section 4. In Figure 5(c) and 5(d), we show them for

Ṁ ∼ 10−2 ṀEdd. We also find that with an increase in

α the profile of v̄ϕ in z becomes steeper.

If the system has a large residual toroidal velocity

(centrifugally dominated), it is possible that the angular

momentum loss in the vertical direction due to the mag-

netic torque will be considerably high, owing to which

the degree of angular momentum loss proportionately in-

creases as the matter flows vertically outwards.

In Figure 6(b) and 6(a) we depict the profile

of differential magnetic torque (−r2B̄ϕB̄z) along z,

as well as differential magnetic torque acting on the

coupled accretion-outflow surface
(

−r2B̄ϕhB̄zh

)

along

r, respectively, corresponding to different accretion

paradigms. This term represents the magnetic extraction

of angular momentum by the outflowing matter, which

is called magnetic braking. The curves show that with an

increase in the value of Ṁ as well as with an increase in α

(for a specific value of Ṁ ), the value of differential mag-

netic torque increases. As Ṁ increases, with the accre-

tion flow becoming less advective and more centrifugally

dominated, the extraction of angular momentum by the

outflowing plasma is greatly enhanced. Consequently,
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Fig. 4 Variation of flow variables along vertical coordinate z corresponding to r = 15 rg . Solid, long-dashed, short-dashed and

dotted curves in (a), (b) and (c) are for the same parameters corresponding to Figs. 1, 2 and 3 respectively. Solid, long-dashed,

short-dashed and dotted curves in (d) are for (Ṁ, α, β, f ) = (10−4, 0.3, 0.95, 0.1), (10−4, 0.5, 0.95, 0.1), (10−3, 0.3, 0.9, 0.1) and

(10−3, 0.5, 0.9, 0.1) respectively. Similarly, the corresponding curves in (e) are for (10−2, 0.3, 2/3, 0.4), (10−2, 0.5, 2/3, 0.4),

(10−2, 0.3, 2/3, 0.5) and (10−2, 0.5, 2/3, 0.5). The units of the variables along the axes are the same as in Figs. 1, 2 and 3. Ṁ is

expressed in units of the Eddington accretion rate.

the gas gets centrifugally accelerated and would leave the

accretion region by removing angular momentum from

the accreting matter. This mechanism predominantly de-

termines the outward flow of matter for accretion flow

with moderate advection. If the system has a large resid-

ual toroidal velocity (centrifugally dominated), it is pos-

sible that the angular momentum loss in the vertical di-

rection due to the magnetic torque will be considerably

high, owing to which the degree of angular momentum

loss proportionately increases as the matter flows verti-

cally outwards. As a consequence, there will be an even-

tual decrease of toroidal velocity v̄ϕ in the vertical direc-

tion within the accretion-outflow coupled region, as seen

in Figure 5(c) and (d), corresponding to accretion flow

with Ṁ ∼ 10−2 ṀEdd. On the other hand, if the ac-

cretion flow is predominantly gas pressure dominated as

in a strongly advective regime (with Ṁ <∼10−3 ṀEdd),

the gas pressure gradient would play a more contribu-

tory role to lift the plasma vertically outwards with the

help of magnetic forces, and the effective contribution of

magnetocentrifugal acceleration to control the dynamics

of outflowing matter gets curtailed as compared to that in

a more centrifugally dominated accreting system.

Figure 6(d) and 6(c) shows the variation of poloidal

component of the magnetic field B̄P [=
√

(B̄2
r + B̄2

z )]

along z and at coupled accretion-outflow surface
(

B̄Ph

)
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Fig. 5 Variation of toroidal velocity as a function of vertical coordinate z corresponding to r = 15 rg . The solid and dotted curves

are for (Ṁ, α, β, f ) in (a) = (10−4, 0.3, 0.95, 0.1), (10−4, 0.5, 0.95, 0.1), (b) = (10−3, 0.3, 0.9, 0.1), (10−3, 0.5, 0.9, 0.1), (c) =

(10−2, 0.3, 2/3, 0.4), (10−2, 0.5, 2/3, 0.4), and (d) = (10−2, 0.3, 2/3, 0.5), (10−2, 0.5, 2/3, 0.5). The units of variables along the

axes are the same as in earlier figures. Ṁ is expressed in units of the Eddington accretion rate.

along r, respectively. The nature of the curves indicates

that as high α renders the accretion-induced outflow to

a greater geometrical thickness (commented earlier), the

large-scale poloidal field gets strongly augmented with

an increase in α for a specific Ṁ due to the dominat-

ing influence of vertical thickness on B̄P. Thus with the

increase in turbulent viscosity parameter α, the value

of differential magnetic torque responsible for centrifu-

gal acceleration of the outflowing plasma, as well as

the large-scale poloidal magnetic field B̄P, gets strongly

augmented; consequently enhancing the transport of ver-

tical flux outwards. In the moderately advective accre-

tion paradigm with more centrifugal domination, the ef-

fective contribution to launch and eject matter vertically

outwards from the accretion region arises mainly from

the magnetocentrifugal acceleration. A small increase in

the turbulent viscosity parameter α from 0.3 to 0.5 in-

tensifies the process of extraction of the angular momen-

tum due to magnetic torque. The eventual result is the

enhanced transport of outward vertical flux with an in-

crease in effective angular momentum transport in the z

direction. This causes vϕ2 to become negative at a lower

f and higher β as compared to that for α = 0.3, as stated

in the last two lines of Section 4.3.

In Figure 7(a) we show the variation of the ratio of

v̄z and poloidal Alfvén velocity v̄AP [= B̄P/
√

(4πρ̄)]

in z for different Ṁ and α. With an increase in Ṁ as

the system becomes less advective and more centrifu-

gally/rotationally dominated, there is an increase in the

ratio of v̄z/v̄AP. In contrast, with an increase in α for a

specific Ṁ there is a sharp fall in the value of the above

ratio. Figure 7(b) shows the variation of the ratio of v̄z

and net Alfvén velocity v̄AT [= B̄/
√

(4πρ̄)] in z simi-

lar to that in Figure 7(a). Figure 7(c) depicts the profile of

plasma βP [= B̄2/(8πρ̄c̄2
s )] in z for different Ṁ and α.

We find that βP always increases steadily in the vertical

direction, and its value becomes strongly augmented with

a small increase in α, however, it always remains mostly
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Fig. 6 Variation of differential magnetic torques and poloidal magnetic fields along r and z. Variation along z is at r =
15 rg. Solid, long-dashed, short-dashed and dotted curves in (a), (b), (c) and (d) are for (Ṁ, α, f, t) = (10−4, 0.3, 0.1, 0.1),

(10−4, 0.5, 0.1, 0.2), (10−2, 0.3, 0.5, 0.05) and (10−2, 0.5, 0.5, 0.1) respectively. The components of magnetic field are expressed

in units similar to earlier figures. r and z are expressed in units of Schwarzschild radius. Ṁ is expressed in units of the Eddington

accretion rate.

below equipartition for all relevant Ṁ and α. Moreover

it is found that with the increase in Ṁ , in general, βP

decreases.

In Figures 8 and 9 we make a comparison of

our magnetized accretion-outflow solutions with those

of ADAF type solutions in Narayan & Yi (1994). In

Figures 8 and 9, we compare the radial profiles for ra-

dial velocity, orbital velocity, sound speed and density,

obtained for our magnetized accretion-outflow solutions

with those of ADAF type solutions, corresponding to dif-

ferent Ṁ and different α. We found that the magnitude of

radial velocity along r that we obtained in our accretion-

induced outflow is less as compared to that obtained in

self-similar ADAF. On the other hand, the magnitude of

orbital velocity along r obtained in our case is higher

as compared to that obtained in ADAF. Also there is a

marginal decrease in the magnitude of sound speed or

equivalently the temperature of the gas along r obtained

in our accretion-induced outflow as compared to that ob-

tained in ADAF. However, the magnitude of density of

the gas along r in our accretion-induced outflow is found

to be quite similar to that obtained in the case of ADAF.

6 DISCUSSION

Observationally it is found that the low/hard state of

BHXRBs, which are supposed to be powered by geo-

metrically thick strongly advective sub-Eddington (pre-

sumably with Ṁ <∼10−3 ṀEdd) and consequently quasi-

spherical and RIAFs, emanates strong outflows and rel-

ativistic jets. Outflows and jets are not observed in

high/soft states of BHXRBs which are powered by a geo-

metrically thin and optically thick standard Keplerian ac-

cretion disk. The physics of the origin and launching of

outflows/jets in Galactic BH systems (also called micro-

quasars) is supposed to be similar with that correspond-

ing to SMBHs in AGNs, as AGNs may be seen as scaled

up BHXRBs (McHardy et al. 2006; Körding et al. 2006).

A geometrically thick advective accretion flow having a

substantial amount of gas pressure, with strong advec-
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Fig. 7 Variation of the (a) ratio of vertical velocity to poloidal Alfvén velocity, (b) ratio of vertical velocity to total Alfvén ve-

locity and (c) plasma βP along z corresponding to r = 15 rg . Solid, long-dashed, short-dashed, dotted and dot-dashed curves

in (a), (b) and (c) are for (Ṁ, α, f, t) = (10−4, 0.3, 0.1, 0.1), (10−4, 0.5, 0.1, 0.2), (10−2, 0.3, 0.5, 0.05), (10−2, 0.5, 0.5, 0.1) and

(10−3, 0.3, 0.1, 0.1) respectively. Ṁ is expressed in units of the Eddington accretion rate.

tion, is more conducive to effuse and accelerate plasma

in the vertical direction out of the inner accretion region.

Although we do not aspire to explore the exact mecha-

nism of launching and ejection of jets, however, it is gen-

erally conceived that the origin, launching and ejection of

outflow and jet from the accretion flow is an MHD pro-

cess. In the present work we mainly focus on accretion

powered hydromagnetic outflows.

Although the distinctive cause of the origin and

launching of accretion powered hydromagnetic outflows

is still inconclusive, however, it is certain that the dynam-

ics of the outflowing matter should be intrinsically cou-

pled to the accretion dynamics through the fundamental

laws of conservation of matter, momentum and energy

within the coupled accretion-induced outflow region, and

should not be treated as dissimilar objects. Conservation

laws are the most valuable foundation in physics, and

play a significant role in understanding astrophysical out-

flows and jets. This is because the physical dynamics of

the coupled inflow and outflow are essentially governed

by the laws of conservation. The nature of the dynamical

solutions in the accretion-outflow coupled region should

then reflect upon the physical conditions/criteria to eject

outflows. For the theoretical analysis of the accretion-

outflow coupling, one needs to be very thoughtful about

proper modeling of the system, which essentially needs

to solve a complete set of MHD conservation equa-

tions in a 2.5-dimensional viscous, resistive and advec-

tive paradigm. In Section 2 we have endeavored to de-

scribe a robust form of accretion-outflow coupled MHD

set of equations in the viscous, resistive and advective

paradigm, upholding all the conservation laws in the 2.5-

dimensional mean field MHD regime. The dynamical

flow variables are then represented through their appro-

priate mean values, describing a mean flow in the disk,

involving a time average with time scale much larger than

the time scales of turbulent fluctuations. The mean flow

variables vary both in (r, z). Statistical averaging gives

rise to the emergence of various turbulent correlation

terms, where we restrict our study to first order turbulent

correlation. Note that the turbulent magnetic diffusivity

and turbulent viscous terms in the induction and energy

conservation equations arise only from the kinetic part of

the turbulent stress tensor through Reynolds stress.
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Fig. 8 Comparison of our magnetized accretion-outflow solutions with those of ADAF type solutions in Narayan & Yi (1994).

In Fig. 8(a), (b), (c) and (d) we compare radial velocity, orbital velocity, sound speed and density, respectively, obtained from our

magnetized accretion-outflow solutions with those of ADAF type solutions. The curves correspond to Ṁ = 10−3. Solid, long-

dashed and short-dashed curves in all the figures correspond to α = 0.3. In all the figures, solid and long-dashed curves are for

flow variables at the equatorial plane corresponding to ADAF type and for our magnetized accretion-outflow solutions, respectively.

Short-dashed curves correspond to flow variables for our magnetized accretion-outflow solution at height h. Long-dashed curves

and short-dashed curves correspond to t = 0.1. Dotted, long dot-dashed, and short dot-dashed curves resemble solid, long-dashed

and short-dashed curves, however they correspond to α = 0.5. Long dot-dashed and short dot-dashed curves correspond to the

equatorial plane and at scale-height h for our magnetized accretion-outflow solution respectively, corresponding to t = 0.1. Other

parameters are (β = 0.9, f = 0.1). Ṁ is expressed in units of the Eddington accretion rate. Velocities and densities are expressed

in units already stated in the caption in Fig. 1.

In this work, we have assumed isotropic turbulence

and also neglected the contribution of other turbulent

stress tensors apart from rϕ, which may be dynamically

important. The contribution of the rϕ component would

be dynamically more dominant as it is responsible for the

radial transport of angular momentum outwards. Vertical

transport of angular momentum occurs mainly through

large-scale magnetic stresses. Nonetheless, in the future

we would like to examine the possibility of their inclu-

sion, as well as investigate the nature of the flow with

anisotropic turbulence.

The inflow and outflow are governed by eight cou-

pled integro-partial differential MHD equations in the

cylindrical geometry. Limited observational inputs put

constraints on the boundary conditions as well as the

scaling relation between accretion and outflow. Owing

to the fact that it is beyond the scope to have com-

plete global numerical solutions of the said coupled par-

tial differential MHD equations, this motivated us to

invoke a necessary and proper quasi-analytical method

to solve them. Ever since the work of Narayan & Yi

(1994), use of power law self-similarity in studying

the accretion flow dynamics, especially ADAFs, to ex-

plain the nature of LLAGNs has become widely pop-

ular. A realistic strongly advective accretion flow pre-

serves self-similarity reasonably well, within an appre-

ciable region of the flow (Narayan & Yi 1994; Narayan

et al. 1997), and has been widely used to explain ob-
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Fig. 9 Figure 9 resembles Fig. 8, however for Ṁ = 10−2. The same line styles as Fig. 8 apply.

servational features in LLAGNs (see Ho 2008 for a

review). Previously, self-similar methods had been in-

deed used to study outflow from the accretion disk on

many occasions (see the references in Sect. 1). It is be-

ing found from many studies that self-similarity holds

approximately well in the context of outflows (Fendt

2006; Pudritz et al. 2007; McKinney & Narayan 2007b,a;

Stute et al. 2014). Keeping the essence of power law

self-similarity, we sought a generalized nth degree poly-

nomial expansion for all the mean flow variables in

two dimensions, and solve the complete set of cou-

pled integro-partial differential MHD conservation equa-

tions within the accretion-outflow coupled region self-

consistently, in the 2.5-dimensional viscous, resistive ad-

vective paradigm, where we have restricted up to order

[h(r)/r]2. The flow of matter in the accretion region is

being considered to have reflection symmetry about the

equatorial plane. Consequently the vertical component of

the magnetic field Bz has odd symmetry about the equa-

torial plane, which is required from the divergence condi-

tion of the magnetic field. The odd symmetry configura-

tion of magnetic field has been used previously on other

occasions in the context of outflows/jets from the accre-

tion flows (e.g., Lovelace et al. 1987; Samadi & Abbassi

2016). It has been argued by Samadi & Abbassi (2016)

that odd symmetry may perhaps be more realistic due to

the fact that the magnetic field is due to dynamo pro-

cesses, and in the disk, the fastest growing dynamo field

mode has odd symmetry (Brandenburg & von Rekowski

2007). We comment on this aspect in more details in

paragraphs 7 and 8 of this section. Nonetheless, in the

future, we would like to pursue a similar kind of study

with an even symmetry configuration of magnetic field.

In Sections 4 and 5, we have analyzed the nature

and behavior of our MHD solutions in the advective ac-

cretion paradigm with Ṁ <∼10−2 ṀEdd. Although we

have not intended to explore the physical mechanism

of outflow/jet launching in the present study, the quasi-

stationary dynamical solutions of the accretion-induced

outflow carry information about the physical condi-

tions/criteria to propel matter vertically outwards out of

the accretion-outflow region. We have mainly focused

within the accretion-outflow coupled region where the

flow is essentially bounded. We obtain solutions at a re-

duced vertical thickness irrespective of the nature of the

accretion paradigm which we have focused on. The mag-
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netic field tends to compress or squeeze the accretion re-

gion by counterbalancing the thermal pressure gradient.

We found that the large-scale poloidal component of the

magnetic field is enhanced with the increase in geomet-

rical thickness of the accretion flow, consistently. With

the increase in Ṁ as 10−4 ṀEdd ≪ Ṁ <∼10−2 ṀEdd,

and with the accretion flow becoming less advective and

more centrifugally dominated with lesser geometrical

thickness, i.e., for a flow with moderate advection, there

is a sharp fall in the value of the poloidal component of

the magnetic field, however with a strong enhancement

in the value of the toroidal component of the magnetic

field and consequently the differential magnetic torque

(−r2B̄ϕB̄z).

This term (differential magnetic torque) is responsi-

ble for the magnetic extraction of angular momentum to

magnetocentrifugally accelerate the outflowing plasma

out of the radial accretion flow, and this predominantly

determines the outward flow of matter in a moderately

advective accretion paradigm which is more centrifu-

gally dominated. However, with the decrease in Ṁ as

the flow becomes strongly advective (Ṁ <∼10−3 ṀEdd)

and geometrically more thick with strong gas pressure

and inefficient cooling, despite a decrease in the value

of −r2B̄ϕB̄z , a consistent increase in vz occurs, indicat-

ing that the gas pressure gradient might play a more con-

tributory role to lift the plasma vertically outwards with

the help of magnetic forces. The plasma in the accre-

tion flow can be lifted outwards and ejected, only if some

physical process can overcome the effect of inward verti-

cal force due to central gravity. The dynamical behavior

of the solutions indicates that in the advective paradigm

both magnetocentrifugal acceleration and thermal pres-

sure gradient, along with magnetic forces, will help in

lifting and accelerating the plasma vertically outwards,

and the gas material will diffuse outwards across mag-

netic field lines. However, the effective contribution of

either magnetocentrifugal acceleration or thermal pres-

sure gradient to lift the plasma vertically outwards de-

pends on the degree to which the flow is advective. In

fact, with the increase in mass accretion rate as the flow

tends to become less advective and more centrifugally

dominated with lesser geometrical thickness, in general,

the efficacy of the disk to eject outflows diminishes.

In Paper II (in preparation), we have quantitatively

demonstrated this aspect with the increase in Ṁ from

10−4 ṀEdd to 10−2 ṀEdd; the accretion flow with Ṁ ∼
10−2 ṀEdd is least conducive to ejecting outflows.

We obtain dynamical solutions in the accretion-

outflow coupled region only at high turbulent diffusive

parameter α(>
∼0.3). The accretion-induced outflow so-

lutions have a profound dependence on turbulent diffu-

sive parameter α. It is being interestingly found from

our solutions that the enhancement in α renders the

accretion-induced outflow region to attain a greater ge-

ometrical thickness. Consequently, the poloidal compo-

nent of magnetic field B̄P, as well as the differential

magnetic torque (−r2B̄ϕB̄z), gets strongly augmented,

enhancing the transport of vertical flux outwards. Also

the plasma beta βP increases steadily in the vertical di-

rection, and its value gets strongly augmented with a

small increase in α, however, it always remains mostly

below equipartition within the accretion-outflow coupled

region.

Although we expect the accretion flow to have a

large α owing to the advective nature of the flow, how-

ever, the values of α that we have obtained in our solu-

tion may have been slightly overestimated. Nonetheless,

it is indeed being found from previous works (Narayan

& Yi 1994, 1995; Narayan et al. 1997; Yuan et al. 2008)

that strongly advective accretion flows, in general, are

mostly plausible for large values of α (α>
∼0.1). Gu & Lu

(2000) also showed that the transition from an outer geo-

metrically thin Keplerian disk to an advection-dominated

accretion flow is possible for α > 0.5. McKinney &

Narayan (2007a), in their general relativistic MHD simu-

lation of the disk-outflow model, found a large turbulent

viscosity parameter in the accretion disk in the vicinity

of the BH. Further, King et al. (2007) suggested a typical

range of α ∼ (0.1 − 0.4) from observational evidence.

One of the important approximations we have used

in our study is to treat the scale-height of the accretion-

outflow coupled region as a parameter. In reality the

physical conditions to launch outflow would consistently

determine the vertical height of the inflow-outflow sur-

face, from where the outflow decouples from the accre-

tion region. Moreover, in our study we have neglected the

effect of spin of the BH in the accretion dynamics and

its subsequent impact on the outflow, as the self-similar

technique can only be used in the Newtonian approxima-

tion. This restricts us from using this method to investi-

gate the physical behavior of the system in the extreme

vicinity of the BH, where general relativistic effects are

indispensable. Although power law self-similarity is an

analytical approximation, and the quantitative feature of

the solutions may have been either overestimated or un-

dervalued, the dynamical solutions show consistent and

predictable behavior, and exhibit many physical insights

on the nature of the accretion-induced outflow, as well

as reflect upon the relevant physical conditions that pro-

pel and eject plasma out of the accretion flow. Power

law self-similarity, thus, seems to be a reasonably good
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approximation, within the accretion-outflow coupled re-

gion.

A very important determinant to launch outflows/jets

is the existence of a large-scale magnetic field in the

disk. One of the most likely mechanisms for the origin

of this large-scale field is through the internally/locally

generated self-sustaining MHD dynamo within the disk,

possibly involving a kind of magneto rotational instabil-

ity (MRI) or in short, through ‘MRI supported disk dy-

namo,’ from a seed magnetic field (Balbus & Hawley

1998; Lesur & Ogilvie 2008). Recently, Salvesen et al.

(2016) performed a local simulation of a vertically strat-

ified accretion disk supported by an MRI dynamo, in the

ideal MHD paradigm, using ‘zero net vertical magnetic

flux’ and with the incorporation of a near-realistic verti-

cal boundary condition (outflowing) to capture the phys-

ically correct effect of magnetic buoyancy in the disk.

The authors found that this local simulation with zero

net vertical magnetic flux renders the disk to be unsta-

ble against magnetic buoyancy with a considerable ex-

pulsion of toroidal magnetic field from the disk, and the

magnetic field expelled by the magnetic buoyancy can-

not be effectively replenished by the ‘MRI-dynamo’ gen-

erated toroidal magnetic field. This makes the disk set-

tle into a weakly magnetized state with the magnetic

field becoming dynamically less important for launch-

ing strong outflows and jets. It then appears that a disk

with zero net vertical magnetic flux will be less suscep-

tible to launching outflows and jets. This result seems

to be particularly sensitive in the context of our present

study, as in a purely axisymmetric case (which we con-

sidered here), the odd symmetry configuration of mag-

netic field that we used will render zero net vertical mag-

netic flux. Salvesen et al. (2016), however, pointed out

that the local approximation they used in their study

is more appropriate in the context of a geometrically

thin accretion disk, where the time scale for the buoy-

ant field to escape vertically is less compared to the

time scale of viscous radial advection of toroidal field.

In case of geometrically thick advective accretion flow

(with 10−4 ṀEdd <∼ Ṁ <∼10−2 ṀEdd) which we have

focused upon in our present study, nonetheless, buoyant

expulsion of magnetic field vertically would presumably

take place on a relatively larger time scale. Many pre-

vious works on the effect of magnetic buoyancy on ac-

cretion disk exist in the literature (e.g., Torkelsson 1993;

Chakrabarti & D’Silva 1994; D’Silva & Chakrabarti

1994; Rozyczka et al. 1996; Ziegler 2001; Johansen &

Levin 2008), with a few of them showing plausible sup-

pression of buoyant escape of magnetic flux from the

disk (Torkelsson 1993; D’Silva & Chakrabarti 1994;

Ziegler 2001). On the other hand, MRI-dynamo activ-

ity is found to be highly sensitive to non-ideal (resistive)

MHD effects (Lesur & Ogilvie 2008; Riols et al. 2015).

A global MHD simulation in the context of a vertically

stratified geometrically thick advective flow, likely sup-

ported by MRI-dynamo in the resistive paradigm with

background zero net vertical magnetic flux and with ap-

propriate vertical boundary condition, thus, would pro-

vide a more definitive understanding of the effect of mag-

netic buoyancy on disk magnetization, and consequently

would shed more light on the nature of magnetic field

configuration in the disk, as well as on the magnetic field

strength, required for ejection processes.

Notwithstanding, in reality, the advective accre-

tion flow is not expected to be purely axisymmetric

(Mukhopadhyay & Chatterjee 2015), and hence, even

with odd symmetry configuration of magnetic field, the

advective flow would then be expected to retain, at least

some, net vertical magnetic flux. Although the present

study has been pursued in a purely axisymmetric frame-

work (owing to mathematical simplicity), slight non-

axisymmetry may not alter the qualitative nature of the

solutions. A detailed non-axisymmetric analysis of such

a system, however, is beyond the scope of the present

work. There may be, however, viable alternative routes

which can give rise to a dynamically important magnetic

field in the disk: either through other types of internally

generated MHD dynamo activities (e.g., Tout & Pringle

1992, 1996; Johansen & Levin 2008) or through inward

advection of external field by the accretion flow from

large radii; nevertheless, these require further investiga-

tions.

Nonetheless, more extensive study is required to un-

derstand the definitive criteria or condition in launching

accretion powered outflows and jets. BH spin is a very

important aspect that needs to be incorporated in the con-

servation equations, at least through the use of pseudo-

Newtonian potentials (e.g., Ghosh & Mukhopadhyay

2007; Ghosh et al. 2014, 2016), while understanding ac-

cretion powered outflow dynamics or the correlated dy-

namics of accretion and outflow. It is found from the

work of Bhattacharya et al. (2010) that the spin of the BH

significantly influences accretion powered outflows/jets;

for a rapidly rotating BH, the outflow power increases by

∼ two orders of magnitude. Moreover, it is also essential

that to have a complete and more realistic understanding

of the dynamics of the accretion-outflow coupled region,

a global numerical solution of such a system in an ad-

vective paradigm should be performed. Also, explicit in-

clusion of cooling/radiative processes is required for the

completeness of energy conservation. The relevant dy-
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namical solutions at the accretion-outflow coupled sur-

face would then necessarily act as boundary conditions

at the base of the jet. A more definitive understanding

of the criteria to launch accretion powered outflows and

jets, thus, requires a complete 2.5-dimensional viscous,

resistive, advective global MHD numerical solution with

the inclusion of BH spin, which is left for future work. In

a subsequent work (Paper II, in preparation), we will in-

vestigate in detail the energetics of magnetized accretion-

induced outflows and study the spectral behavior of ac-

cretion powered sources.
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Appendix A:

The integro-differential continuity equation,

Equation (7), after substitution of the flow variables in

the nth polynomial order, is given by

∞
∑

n=0

[ 1

2n + 1

n
∑

m=0

ρ2(n−m)vr2m

+
1

e + c − 2n + 2

n
∑

m=0

ρ2(n−m)vz(2m+1)

]

(h

r

)2n+1

= −Ṁ

4π
. (A.1)

Similarly the polynomial expansion of all the other

height-integrated MHD equations are done, however we

do not furnish all of them here as the structures of the

equations are huge. As an example we show it for the

radial momentum balance expression, Equation (9).

[

∞
∑

n=0

n
∑

m=0

m
∑

l=0

(a − 2l)ρ2(n−m)vr2(m−l)vr2l

−
∞
∑

n=0

n
∑

m=0

m
∑

l=0

ρ2(n−m)vϕ2(m−l)vϕ2l

+

∞
∑

n=1

n
∑

m=1

m
∑

l=1

2lρ2(n−m)vz[2(m−l)+1]vr2l

+GM

∞
∑

n=0

n
∑

m=0

(

−3/2

m

)

ρ2(n−m)

+

∞
∑

n=0

n
∑

m=0

m
∑

l=0

(e − 2n + 2d)ρ2(n−m)

cs2(m−l)cs2l +
1

4π

[

∞
∑

n=0

n
∑

m=0

(j − 2m + 1)

Bϕ2(n−m)Bϕ2m

+
∞
∑

n=1

n
∑

m=1

[k − 2(m − 1)]Bz[2(n−m)+1]

Bz[2(m−1)+1]

−
∞
∑

n=1

n
∑

m=1

2mBz[2(n−m)+1]Br2m

]

]

1

2n + 1

(h

r

)2n

= 0. (A.2)
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