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Abstract A rotating mass dipole can be used to understand the dynamical behaviors around elongated

asteroids as well as binary asteroids. In this paper an improved dipole model with oblateness in both

primaries is investigated. The dynamical equations of a particle around the improved model are first

derived by introducing the oblateness coefficients. The characteristic equations of equilibrium points

are obtained, resulting in the emergence of new equilibria in the equatorial plane and the plane xoz de-

pending on the shape of the spheroid. Numerical simulations are performed to illustrate the distribution

of these equilibrium points. Significant influence from the oblateness of the primaries on the topological

structure is also analyzed via zero-velocity curves.
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1 INTRODUCTION

The scientific exploration of asteroids and comets

has again come into focus after the successful flight

of the ROSETTA mission along with the ground-

breaking soft landing of the Philae probe on the comet

67P/Churyumov-Gerasimenko. The mission, proposed

and performed by ESA, aimed to gain a better under-

standing of comets as well as the early solar system1.

In fact, there have been several missions involving mi-

nor bodies over the past decades, with targets ranging

from near Earth asteroids to the Kuiper belt. For example,

the Hayabusa spacecraft, developed by JAXA, performed

the first sample return mission from an asteroid, 25143

Itokawa, during a seven year mission (Tsuchiyama et al.

2011). The more recent New Horizons, launched by

NASA in 2006, successfully made a flyby of the dwarf

planet Pluto on 2015 July 14 and also aims to have a flyby

encounter with one or two Kuiper belt objects (Fountain

et al. 2008). In addition, an ambitious future space mis-

sion proposed by NASA was funded in March 2015, and

is known as the Asteroid Redirect Mission (ARM). The

spacecraft will rendezvous with a near Earth asteroid and

⋆ Partially presented at the 2015 AAS/AIAA Astrodynamics

Specialist Conference, Vail, CO, August 9-13, 2015
1 http://www.esa.int/Our Activities/Space Science/Rosetta

may transport a boulder from its surface to a stable lunar

orbit2.

Besides the above practical achievements, a lot of

theoretical progress has also been made, including but

not limited to trajectory design (Gong et al. 2009; Zou

et al. 2014), the dynamical model for asteroids (Scheeres

2014) and some innovative orbiting methods (Zeng et al.

2015b, 2016b). Regarding those fundamental problems,

one big challenge is to construct the gravitational model

for an irregularly shaped central body. Due to various ir-

regular shapes of minor bodies, the widely used spherical

harmonic model cannot be simply applied to those bodies

where the function would converge very slowly or even

diverge near the body’s surface (Cui & Qiao 2014). In

order to overcome this problem, a new method, i.e., the

polyhedral model, was proposed by Werner & Scheeres

(1996) and applied to the asteroid 4769 Castalia. Due

to the high accuracy of this model based on the geo-

metrical shape of the central body, it has been widely

employed in numerous studies to obtain the precise

gravitational field, including the asteroid 4179 Toutatis

(Scheeres et al. 1998), Eros (Yang et al. 2015), Itokawa,

216 Kleopatra, (8567) 1996 HW1 (Wang et al. 2014)

and so on. Through observation, it can be easily found

that the aforementioned asteroids maintain an elongated

shape even with different sizes. Some of them can also be

2 http://en.wikipedia.org/wiki/Asteroid Redirect Mission
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referred to as contact binary asteroids (Magri et al. 2011)

or dumbbell-shaped bodies. In particular, the successful

flyby of Toutatis by the Chinese Chang’e-2 spacecraft

(Huang et al. 2013) has brought us many new insights

(Zhao et al. 2015; Jiang et al. 2015) into this near-Earth

asteroid.

As typical irregularly shaped bodies, elongated as-

teroids or comets have been the target of a considerable

number of investigations. Some alternative methods are

also presented to better understand the dynamics near

those elongated bodies, such as a rotating mass dipole

(Goździewski 1998), a massive straight segment (Elipe &

Lara 2003), perpendicular material segments (Bartczak

& Breiter 2003) or a simple dumbbell-shaped body con-

sisting of two spheres and a cylinder (Li et al. 2013).

These studies usually focus on the dynamics around

these simple models, rather than the connection between

these models and the minor bodies. An attempt from

Elipe & Lara (2003) has been made by using a finite

straight segment to approximate the exterior potential

of asteroid Eros. Another earlier investigation was con-

ducted by Prieto-Llanos & Gomez-Tierno (1994) who

adopted the rotating mass dipole to approximate the

Mars-Phobos system.

Recently, Zeng et al. (2015a) proposed a method to

approximate the potential distribution outside of natu-

ral elongated bodies by using the rotating mass dipole

in which several sample minor bodies were illustrated.

The essence of this method is to make the equilibrium

points of the dipole model coincide with the central

body as much as possible through adjusting the associ-

ated system parameters. The dipole model was proposed

by Chermnykh in 1987 (Chermnykh 1987), which was

adopted to approximate the gravitational field of a dumb-

bell (Kokoriev & Kirpichnikov 1988). As is known in this

field, the polyhedral method can give an accurate poten-

tial distribution, but it needs to discretize the geometri-

cal surface of each target body. However for the rotating

dipole model, this approach may provide some common

characteristics of elongated celestial bodies by only vary-

ing its system parameters.

The equilibrium points of irregularly shaped aster-

oids are always a key point in understanding the dynam-

ical behaviors around these bodies (Ostro et al. 2000).

Mondelo et al. (2010) presented the four equilibrium

points around 4 Vesta along with their stabilites. By using

the polyhedral method, Wang et al. (2014) investigated

the location and stability of equilibrium points of 23 mi-

nor bodies, including asteroids, comets and moons of

planets. According to their results, there are usually four

equilibrium points outside the elongated bodies. This is

one reason that the rotating mass dipole can be used to

approximate elongated bodies. The discussions on equi-

librium points undoubtedly benefit the understanding of

the topological structure and would be significant for the

trajectory designs of space probes in the vicinity of these

irregularly shaped bodies.

The focus of this study is the extension of the rotat-

ing mass dipole when oblateness is present in both pri-

maries. The equilibrium points of such a system have

never been fully investigated. It is also expected that

this paper could provide some common properties of

equilibrium points around elongated bodies by varying

their system parameters. The contents are organized as

follows. Section 2 introduces the dynamical equations

of the dipole system with oblateness of two primaries.

The characteristic equations of equilibria associated with

such a system are derived in Section 3, with respect to the

equatorial plane and the plane xoz. In Section 4, numer-

ical simulations are performed by considering all three

scenarios of the perturbed dipole model, including dou-

ble oblate, double prolate and oblate-prolate primaries.

Finally, the influence of oblateness in the primary on

topological structure near the central body is discussed

by taking the scenario of oblate-prolate primaries as a

representative example.

2 DYNAMIC EQUATIONS OF THE PERTURBED

DIPOLE MODEL

The originally proposed dipole model is composed of

two point masses which are connected with a massless

rod at a constant distance (Chermnykh 1987). Here, the

two point masses are replaced by two spheroids m1 and

m2 with a natural assumption of m1 ≥ m2. They rotate

around their common center of mass with an angular ve-

locity of ω aligned with the principal axis that has the

highest moment of inertia. To keep a constant distance d

between the two primaries, the massless rod may provide

a compressive or tensile force.

Figure 1 illustrates the body-fixed frame oxyz (also

known as the synodical frame) for the dipole model

where the two primaries can be oblate or prolate

spheroids. The origin of oxyz is at the barycenter of the

system while its plane oxy coincides with the equatorial

plane of the dipole system. The axis ox is collinear with

the two primaries pointing from m1 to m2. The axis oz

is along the direction of angular velocity resulting in ω =

ωz while axis oy completes the right-handed frame.

When a spacecraft orbits an asteroid with a non-

negligible physical size, the spacecraft can be mostly

treated as a point mass. The dynamic equations of a par-
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Fig. 1 The body-fixed frame oxyz for the rotating dipole with

oblateness in both primaries.

ticle around a minor body can be written in the form

r̈ + 2ω × ṙ + ω × (ω × r) + ω̇ × r = −∇U, (1)

where r is the position vector from the origin to the

spacecraft as shown in Figure 1. The right term ∇U is

the gradient of the effective potential of the dipole model.

Its definition is U = G · (m1/r1 + m2/r2) where G is

the gravitational constant with a value of 6.67 ×10−11

m3 kg−1 s−2. The parameters ri (i = 1, 2) are the dis-

tance between the particle and the primaries, respec-

tively. Since most celestial bodies in the solar system are

in a pure spinning state with respect to the principle axis,

representing the highest moment of inertia, the term ω̇

can be zero.

To improve the calculation efficiency, dimensionless

units are applied to Equation (1). The length unit is set

as d, i.e., the distance between the two primaries, the

mass unit is the system mass M = m1 + m2 and the time

unit is ω−1. Given the mass ratio µ = m2 / M , the posi-

tions of the two tip masses m1 and m2 are [−µ, 0, 0]
T

and [1 − µ, 0, 0]
T

, respectively. Here, the investigated

region of the mass ratio is (0, 0.5] without considering

the case of µ = 0. The position vectors of the particle

with respect to m1 and m2 after the unit transformation

are

r1 = [x + µ, y, z]T, r2 = [x + µ − 1, y, z]T. (2)

Since the centrifugal term in Equation (1) is con-

served, the dynamic equations can be re-organized as

r̈ + 2ω × ṙ = −∇V, (3)

where the new effective potential V can be expressed ex-

plicitly with

V = −
ω2

2
·
(

x2 + y2
)

− κω2·
(1 − µ

r1
·W1

+
1 − µ

r2
·W2

)

, (4)

and the functions Wi are

Wi = 1 +
Ai

2r2
i

·

(

1 −
3z2

r2
i

)

, i = 1, 2. (5)

The dimensionless parameter κ derived in

Equation (4) is very important whose definition

is

κ =
GM/d2

ω2d
=

GM

ω2d3
. (6)

One can easily note that it represents the ratio be-

tween the gravitational force and the centrifugal force,

usually referred to as ‘the force ratio.’ If the value of

κ is exactly unity, then the dipole model will degener-

ate to the classical circular restricted three body problem

(CRTBP) (Szebehely 1967) with oblateness in both pri-

maries. Therefore, the rotating dipole model is a gener-

alization of the CRTBP in terms of the dynamical equa-

tions.

The original CRTBP was proposed in the 1770s

with applications to the Trojan asteroids (Hou et al.

2014), the Sun-Earth system and similar dynamical sys-

tems (Szebehely 1967), while the modified CRTBP with

oblateness of primaries can be dated back to the 1970s.

Many authors, such as Vidyakin (1974), Sharma & Rao

(1976) and Idrisi (2014), have investigated this problem

with theoretical discussions. In 2003, Oberti & Vienne

(2003) successfully applied this theory to the Saturn sys-

tem based on observed data, by considering the effect of

Saturn’s oblateness on the motions of Tethys and Dione’s

Lagrangian moons Telesto, Calypso and Helene. These

studies will undoubtedly be beneficial for the analysis of

the dipole problem in this paper.

The dimensionless angular velocity of the perturbed

dipole model in Equation (4) is no longer unity. It should

be updated with

ω =

√

1 +
3

2
(A1 + A2), (7)

where Ai (i = 1, 2) is the oblateness coefficient of the

primaries, whose definition is (Sharma & Rao 1976)

Ai =
(ρe

i )
2
− (ρp

i )
2

5d2
, i = 1, 2, (8)

where the parameter ρ is the radius of the primary as a

spheroid. The superscript ‘e’ represents the equatorial ra-

dius of the primary while ‘p’ corresponds to its polar ra-

dius. Different from the CRTBP, the value of Ai (i = 1,

2) can be negative for the perturbed dipole model corre-

sponding to a prolate spheroid.

Substituting Equation (4) and Equation (5) into

Equation (3) yields the scalar form of the dynamic equa-

tions

[

ẍ, ÿ, z̈
]T

+ [−2ωẏ, 2ωẋ, 0]
T

= − [∇Vx, ∇Vy, ∇Vz ]
T , (9)
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where the gradients of the effective potential are specified

as

∇Vx = −ω2·
{

x − κ·
[ (1 − µ)(x + µ)

r3
1

·Q1

+
µ(x + µ − 1)

r3
2

·Q2

]}

, (10)

∇Vy = −ω2y·

[

1 − κ·

(

1 − µ

r3
1

·Q1 +
µ

r3
2

·Q2

)]

,

(11)

∇Vz = κω2z·

[

1 − µ

r3
1

·

(

Q1 +
3A1

r2
1

)

+
µ

r3
2

·

(

Q2 +
3A2

r2
2

) ]

, (12)

and the auxiliary function Q is defined as

Qi = 1 +
3Ai

2r2
i

−
15Aiz

2

2r4
i

, i = 1, 2, (13)

and the subscript ‘i’ corresponds to the two primaries.

The dynamic system of Equation (9) in the synodic

coordinate frame leads to the Jacobi’s integral

C =
ṙṙ

2
+ V, (14)

which is the only conserved term found for such a dy-

namical system up until now. The case of C = V in

Equation (14) specifies a surface in the configuration

space, usually termed the zero-velocity surface, deter-

mining the allowable region of the possible motion for

a particle in the vicinity.

3 EQUILIBRIUM POINTS OF THE DIPOLE

SYSTEM

The equilibrium points of the perturbed dipole system

can be categorized into two groups. One is in the equa-

torial plane and the other is out of plane, specifically,

located in the plane xoz perpendicular to the equato-

rial plane. Similar to the CRTBP, there should be some

collinear equilibrium points and some Lagrange points

(also non-collinear equilibrium points). The equilibria of

the dipole system can be obtained with zero values of

both velocities and accelerations in Equation (9) corre-

sponding to the right terms also being zero

[∇Vx, ∇Vy , ∇Vz ]
T

= 0. (15)

Based on the above equation, the positions of

collinear equilibrium points will be first derived, fol-

lowed by the non-collinear equilibria and out-of-plane

equilibrium points.

3.1 Equilibrium Points in the Equatorial Plane

For equilibrium points in the equatorial plane, the

value of z is zero, resulting in the third component of

Equation (15), ∇Vz , being zero. Therefore, the posi-

tions of the equilibria can be located by setting both

Equation (10) and Equation (11) to zero as

x−κ·

[

(1 − µ) (x + µ)

r3
1

·Q1 +
µ (x + µ − 1)

r3
2

·Q2

]

= 0,

(16)

and

y·

[

1 − κ·

(

1 − µ

r3
1

·Q1 +
µ

r3
2

·Q2

)]

= 0, (17)

where the angular velocity of the dipole system is al-

ways positive. The collinear equilibrium points can be

obtained by setting y = 0 in Equation (17) satisfying the

condition

x − κ·

[

(1 − µ) (x + µ)

| x + µ |3
·

(

1 +
3A1

2 | x + µ |2

)

+
µ (x + µ − 1)

| x + µ − 1 |3
·

(

1 +
3A2

2 | x + µ − 1 |2

) ]

= 0. (18)

With the definition of two auxiliary sign functions

s1 = sign (x + µ) ,

s2 = sign (x + µ − 1) ,
(19)

one can rewrite Equation (18) without the absolute values

as

x − κ·

[

(

1 − µ
)

· s1

(x + µ)2
·
(

1 +
3A1

2(x + µ)2

)

+
µ· s2

(

x + µ − 1
)2 ·

(

1 +
3A2

2
(

x + µ − 1
)2

)

]

= 0, (20)

yielding a nonlinear equation of x in the form of a poly-

nomial. The nonlinear equation with the highest degree

of nine will be directly solved by the Matlab function

‘fsolve’ with a tolerance of 10−10 to guarantee the accu-

racy of the collinear equilibrium points.

For the non-collinear equilibria in the equatorial

plane with y 6= 0, Equation (17) would be satisfied with

1 − κ·

(

1 − µ

r3
1

·Q1 +
µ

r3
2

·Q2

)

= 0. (21)

Combining the above equation with Equation (16)

gives

2r5
i − 2κr2

i − 2κAi = 0, i = 1, 2. (22)
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Equation (22) indicates that the distance between the

non-collinear equilibrium point and the primary must

satisfy the above quantic polynomial. Hence, the non-

collinear equilibrium point is the intersection point of

two circles. One circle is centered at m1 with a radius

of r1 and the other is centered at m2 with a radius of

r2. Meanwhile, the magnitude of the radius, i.e., r1 and

r2, only depends on the force ratio and the oblateness

coefficient. Note that there may be two positive roots of

Equation (22) for the case of a negative oblateness coef-

ficient, indicating that new non-collinear equilibria will

be found for such a system compared to the CRTBP.

By solving the above equation, the radii r1 and r2

can be obtained. Combining with Equation (2), the co-

ordinate values x of the non-collinear equilibria can be

calculated

xT =
r2
1 − r2

2

2
+

1

2
− µ, (23)

where the subscript ‘T’ denotes the non-collinear points.

Their corresponding y-coordinates should be

yT = ±

√

r2
1 − (xT + µ)2

= ±

√

r2
2 − (xT + µ − 1)2, (24)

which indicates there is always a pair of non-collinear

equilibria axisymmetric with respect to the axis ox ex-

cept for the boundary case of a double root.

3.2 Out-of-Plane Equilibrium Points

The discovery of out-of-plane equilibrium points may

have been first made by Radzievskii (1950) for a Sun-

planet-particle system, where two additional equilibrium

points in the xoz plane were found. Such equilibria were

also found by Ragos & Zagouras (1993) in the photo-

gravitational restricted three body problem. Douskos &

Markellos (2006) analyzed the existence of such equilib-

rium points in the CRTBP by considering the oblateness

of the less massive primary. In this paper, such investi-

gations will be extended to the case of both primaries

having oblateness.

As seen from Equation (15) and Equations (10)–

(12), the positions of the out-of-plane equilibrium points

with y = 0 and z 6= 0 should fulfill Equation (16) and the

remaining equation

1 − µ

r3
1

·

(

Q1 +
3A1

r2
1

)

+
µ

r3
2

·

(

Q2 +
3A2

r2
2

)

= 0. (25)

It seems impossible to obtain analytical solutions of

Equation (16) and Equation (25). Hence, approximate so-

lutions in the form of power series to third order are usu-

ally generated by using the software Mathematica. Here,

the locations of these equilibria will be found via numer-

ical simulations in the next section.

4 NUMERICAL EXAMPLES AND DISCUSSIONS

The distribution of equilibrium points for the perturbed

dipole system will be given via numerical simulations.

Only a few sample cases will be presented and paramet-

ric studies will be neglected in this section. For exam-

ple, the parameters of the dipole model in the following

discussions are arbitrarily set to be κ = 1 and µ = 0.5.

Different values of κ and µ correspond to different grav-

itational potential distributions which can be seen from

the result of Zeng et al. (2015a). The boundary condition

for the oblate primary should be a circular disk while

a massive straight segment centered at the prolate pri-

mary along the axis oz is the other limiting case. For the

above two boundary conditions, the respective values of

the oblateness coefficient are 0.05 and −0.05, which will

be used in the subsequent simulations.

4.1 Case of Double Oblate Primaries

Figure 2 illustrates the locations of equilibrium points

in the equatorial plane oxy along with the zero-velocity

curves. The oblateness coefficients for both primaries

are 0.05. The five equilibria are similar to the classical

Lagrange points L1 to L5, i.e., four exterior points E2

to E5 and one inner point E1. The coordinates of these

points are listed in Table 1. For this particular case, the

gravitational potential of the rotating mass dipole is sym-

metrical with respect to all three planes, including xoy,

xoz and yoz. If both primaries are supposed to be point

masses, then the perturbed dipole model will degenerate

into the classical dipole model. For the classical dipole

model, the coordinates of its equilibria can be obtained

as x (E2) = 1.1984, y (E2) = 0, x(E4) = x(E5) = 0

and y(E4) = −y(E5) = 0.8660. Thus, it can be found

that all exterior equilibria move far away from the oblate

primaries.

For each oblate primary, there is also a pair of equi-

librium points nearly right above and below the oblate

spheroid. Such a case has been analyzed by Zeng et al.

(2016a). To assure the integrity of this paper, it will be

also briefly discussed. These points are shown in Figure 3

along with zero-velocity curves in the plane xoz and

their coordinates are listed in Table 1. Note that these

points are obtained by solving the nonlinear equations of

Equation (16) and Equation (25). Based on the research

work done by Douskos & Markellos (2006), the initial

values of x0 = 1 − µ and z0 =
√

3|A2| are effective for

obtaining the equilibria Ez1 and Ez2 near m2. Similarly,
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Table 1 Positions of Equilibrium points of the Dipole Model with Double Oblate Primaries

E1 E2 E3 E4 E5 Ez1 Ez2 Ez3 Ez4

x 0 1.235 –1.235 0 0 0.493 0.493 –0.493 –0.493

y 0 0 0 0.893 –0.893 0 0 0 0

z 0 0 0 0 0 0.377 –0.377 0.377 –0.377

Table 2 Positions of Equilibrium Points of the Dipole Model with Double Prolate Primaries

E1 E2 E3 E4 E5 LN1 LN2 LN3 LN4

x 0 1.151 –1.151 0 0 0.210 0.786 0.435 0.435

y 0 0 0 0.835 –0.835 0 0 0.269 –0.269

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

E4

E5

E3 E2E1
m1 m2

Fig. 2 Equilibria in the equatorial plane and zero-velocity

curves for the rotating mass dipole with two oblate primaries.

x

z

−1.5 −1 −0.5 0 0.5 1 1.5
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−0.4

0

0.4

0.8
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Fig. 3 Equilibrium points in the plane xoz and zero-velocity

curves for the dipole model with two oblate primaries.

the initial values of x0 = −µ and z0 =
√

3|A1| are used

to determine the equilibria Ez3 and Ez4 around m1.

4.2 Case of Double Prolate Primaries

From Figure 2, the topological structure in the plane

xoy of the perturbed dipole system with double oblate

primaries is similar to that of the CRTBP with minor

changes. However, for the dipole model with double pro-

late primaries, the topological structure in the plane xoy

given in Figure 4 is totally different from that of the

CRTBP. The oblateness coefficients for the two prolate

primaries are −0.05. To clearly show the new equilib-

ria, Figure 4(a) presents the distribution of equilibria in

the plane xoy marked with their corresponding names. In

Figure 4(b), zero-velocity curves are illustrated to show

the topological structure around the dipole model along

with the equilibrium points.

There are a total of 13 equilibrium points in the plane

xoy. Due to the prolate primary, four additional equilib-

ria LN1 to LN4 near m2 are found whose coordinates are

listed in Table 2. Around the primary m1, another four

equilibria LN5 to LN8 are also found which are sym-

metrical with LN1 to LN4 with respect to the axis oy.

For example, it satisfies x(LN(i+4)) = −x(LNi) and

y(LN(i+4)) = y(LNi) where i = 1, 2, 3, 4. Therefore,

the coordinates of LN5 to LN8 are not given in Table 2.

It should be pointed out that the symmetrical property

about axis oy is only fulfilled with A1 = A2. If the

oblateness coefficients of the two primaries are different,

the symmetrical property with respect to axis oy will be

invalid. Particularly, the exterior points E2 to E4 move

close to the prolate primaries based on Table 2.

For the above case, no equilibrium point is found

in the plane xoz. Hence, the emergence of out-of-plane

equilibria is due to the oblate spheroid while the pro-

late spheroid can produce new equilibria in the equa-

torial plane. The influence of the system parameters on

the equilibrium points has been addressed by Zeng et al.

(2015a, 2016a), including the oblateness coefficient, the

force ratio and the mass ratio by only considering the

oblateness of the second primary. Such parametric stud-

ies will be neglected in consideration of the length of this

paper.

It should be stated that the oblateness coefficient of

0.05 or −0.05 may be relatively too large to find cor-

responding physical minor celestial bodies. In general,

the oblateness coefficient for the restricted three body

problem is at the level of 10−3. For example, the maxi-

mum value is approximately 0.004 for the Saturn-Mimas
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Fig. 4 Equilibrium points in the equatorial plane and zero-velocity curves for the rotating mass dipole with both primaries being

prolate.
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Fig. 5 Equilibrium points in the equatorial plane and zero-velocity curves for the rotating mass dipole with oblate-prolate primaries.

system (Sharma & Rao 1976). As for elongated aster-

oids with small values of oblateness coefficients, the new

equilibria LN and Ez should be very near the oblate or

prolate primaries which are expected at the inner part of

the central body. That is also the reason why we call E2

to E5 exterior equilibrium points.

4.3 Case of Oblate-Prolate Primaries

From Sections 4.1 and 4.2, it can be estimated that for the

case of the dipole model with oblate-prolate primaries,

there should be a total of 11 equilibrium points, i.e., nine

points in the plane xoy and two in the plane xoz.

Figure 5 shows the locations of the equilibrium

points in the plane xoy along with zero-velocity curves.

The example here fully represents the case of one oblate

primary and one prolate primary since the first primary

can be prolate by rotating the model by 180 degrees.

Figure 6 illustrates the out-of-plane equilibria around the

prolate spheroid m2 and zero-velocity curves.

With oblate-prolate primaries, the gravitational po-

tential of the dipole model still maintains the symmet-

rical property with respect to the plane xoz and xoy. It

has been pointed out that the exterior equilibria E2 to

E5 get shifted away from oblate primaries while prolate

primaries attract these points to approach themselves.

For this particular case, the point E1 is not at the ori-

gin whose value is 0.091 as seen from Table 3 where all

of the equilibrium points in the system have been listed.

Such a result is also consistent with the analysis that the
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Table 3 Positions of Equilibrium Points of the Dipole Model with Oblate-Prolate Primaries

E1 E2 E3 E4 E5 LN1 LN2 LN3 LN4 Ez1 Ez2

x 0.091 1.153 –1.231 0.050 0.050 0.197 0.785 0.485 0.485 0.491 0.491

y 0 0 0 0.863 –0.863 0 0 0.276 –0.276 0 0

z 0 0 0 0 0 0 0 0 0 0.38 –0.38
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Fig. 6 Equilibrium points in the plane xoz and zero-velocity

curves for the dipole model with oblate-prolate primaries.
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curves in the plane xoz.

equilibria move away from the oblate primary and ap-

proach the prolate primary. However, such rules cannot

be applied to the new equilibrium points.

Above all, all three cases of the dipole model with

oblateness in both primaries have been presented via nu-

merical examples to fully introduce the attributes of the

equilibrium points. The simulation conditions are spec-

ified as [κ, µ, |Ai|]
T = [1, 0.5, 0.05] where i = 1, 2.

Besides the five classical equilibria associated with the

CRTBP, new equilibrium points are obtained due to the

oblateness of the primaries. For each prolate primary,

there could be four additional equilibria in the equato-

rial plane. While for the oblate primary, a pair of out-

of-plane equilibria can be found in the plane xoz. The

maximum number of equilibrium points for the proposed

dipole system is 13 corresponding to the case of two pro-

late primaries.

The stability of the system equilibria is a signifi-

cant problem for understanding the dynamical behaviors

around these points. The method used by Zeng et al.

(2015a) could be adopted to investigate the stability of

these points. Based on the results given by Zeng et al.

(2015a, 2016a), it can be predicted that the equilibria E1

(Hirabayashi et al. 2010), E4, E5, LN1, LN2, LN5 and

LN6 are conditionally stable, dependent on the values of

[κ, µ, |Ai|]
T

(i = 1, 2). Other equilibrium points, includ-

ing E2, E3, LN3, LN4, LN7, LN8 and Ezi (i = 1, 2, 3,

4), should be expected to be unstable. Due to the length

of this paper, the stability of these equilibrium points will

be left for further investigations.

5 INFLUENCE OF OBLATENESS ON

TOPOLOGICAL STRUCTURES

The oblateness of the primary plays an important role in

the topological structure around the dipole system. In this

section such an effect will be investigated through check-

ing the variation of the zero-velocity surface by vary-

ing the oblateness coefficient. The system parameters are

[κ, µ, |A2|]
T

=[1, 0.5, −0.05]
T

which are representative

of the perturbed dipole model. The investigated region

for the variable A1 is [−0.05, 0.05]. For the case of posi-

tive A1, zero-velocity curves, in the plane xoz in the val-

ues of Jacobi’s integral corresponding to the out-of-plane

equilibrium points Ez3 (Ez4), are shown in Figure 7. For

clarity, the sketch map of the dipole model is not illus-

trated in the figure. The topological structure changes a

lot along with the increase of A1 from 0.01 to 0.05.

The projection of the zero-velocity surface in the

plane xoy is given in Figure 8 with four independent fig-

ures corresponding to different values of A1. The curves

in each figure correspond to the Jacobi integral’s val-

ues of E3, E4, LN7 (LN8) and LN1. Along with the in-

crease A1 from –0.05 to –0.01, noticeable changes in the

zero-velocity curves can be found at the region between

m1 and m2, transforming from the forbidden area to the

nearly connected region. Such variations should be con-

sidered for the motion of surrounding particles very close

to the dipole model.

Besides the above theoretical discussions on the im-

proved dipole model, additional comments are made to
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Fig. 8 Influence of the first prolate primary on zero-velocity curves in the plane xoy.

introduce potential applications of this model. Although

the dipole model can reduce the calculation effort and

simplify the gravitational function, it is only a rough ap-

proximation for real asteroids. Even if the asteroid can

be nearly treated as two connected spheroids, they may

not be aligned along their symmetry axes. Nevertheless,

it can also be approximated by using the dipole model,

because we recently found that the dipole model can be

treated as a special case of the mass concentration ap-

proach, usually referred to as Mascons (Colagrossi et al.

2015). The improved model including oblateness is ex-

pected to be more accurate to some extent in depicting

dumbbell-shaped asteroids.

Another application of the above model is to approx-

imate the potential distribution of doubly synchronous

binary asteroid systems (Shang et al. 2015), where the

force ratio is always unity. As a preliminary estima-

tion, the CRTBP with a corresponding mass ratio will be

worked out. Due to the close distance of the two bodies,

it would be better to take the oblateness of the primaries

into account, in which the improved dipole model degen-

erates to the model of Sharma & Rao (1976). Moreover,

the zonal and tesseral terms in higher orders of the pri-

maries, such as C22, C30 and C31, should be considered

for different asteroids, which may be comparable with

the C20 term (Feng et al. 2015). Such a problem should

not be overlooked, particularly in the near realm of aster-

oids, which will be left for further studies.

6 CONCLUDING REMARKS

An improved dipole model has been proposed by consid-

ering the oblateness of both primaries. Besides the five

equilibrium points in the equatorial plane similar to the

classical Lagrange points of the CRTBP, new equilibria

were obtained due to the oblateness of the primaries. A

total of three topological scenarios have been analyzed

including the double oblate, double prolate and oblate-

prolate spheroids. For an oblate primary with a positive

oblateness coefficient, a pair of new equilibrium points

in the plane oxz was found located nearly right above

and below its polar regions. For the case of a negative
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coefficient, four new equilibria have been discovered in

the equatorial plane near the prolate primary. There are

up to 13 equilibrium points for the case of double prolate

primaries.

The significant influence of the primary’s oblateness

on the topological structure around the dipole model has

been presented by using the zero-velocity curves in both

planes oxy and oxz. With the increase of the oblate-

ness coefficient, the forbidden region of motion near

the dipole model in the same Jacobi’s integral gradually

opened up to be unified with previously allowable areas

for the oblate primary in the plane oxz. By varying the

oblateness coefficient, zero-velocity curves in the near

region of the dipole model change a lot from separated

regions to a unified area. The above discussions would

benefit the understanding of the dynamic environment

close to elongated asteroids and binary asteroid systems.
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