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Abstract One of the most puzzling problems in astrophysics is to understand the anomalous resistivity

in collisionless magnetic reconnection that is believed extensively to be responsible for the energy re-

lease in various eruptive phenomena. The magnetic null point in the reconnecting current sheet, acting

as a scattering center, can lead to chaotic motions of particles in the current sheet, which is one of the

possible mechanisms for anomalous resistivity and is called chaos-induced resistivity. In many interest-

ing cases, however, instead of the magnetic null point, there is a nonzero magnetic field perpendicular to

the merging field lines, usually called the guide field, whose effect on chaos-induced resistivity has been

an open problem. By use of the test particle simulation method and statistical analysis, we investigate

chaos-induced resistivity in the presence of a constant guide field. The characteristics of particle motion

in the reconnecting region, in particular, the chaotic behavior of particle orbits and evolving statistical

features, are analyzed. The results show that as the guide field increases, the radius of the chaos region

increases and the Lyapunov index decreases. However, the effective collision frequency, and hence the

chaos-induced resistivity, reach their peak values when the guide field approaches half of the character-

istic strength of the reconnection magnetic field. The presence of a guide field can significantly influence

the chaos of the particle orbits and hence the chaos-induced resistivity in the reconnection sheet, which

decides the collisionless reconnection rate. The present result is helpful for us to understand the micro-

physics of anomalous resistivity in collisionless reconnection with a guide field.
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1 INTRODUCTION

Magnetic reconnection (Dungey 1958; Giovanelli 1946),

an effective mechanism of magnetic energy release, has

been believed widely to play an important and key role

in various eruptive phenomena such as terrestrial aurorae

(Dungey 1961), solar flares (Parker 1957; Sweet 1958)

and γ-ray bursts (Lyutikov 2006). In the theory of mag-

netohydrodynamics (MHD), the evolution of the mag-

netic field B can be determined by the so-called mag-

netic induction equation as follows

∂B

∂t
= ∇× (U × B) − νm∇× (∇× B) , (1)

where U is the plasma flow velocity, νm = η/µ0 is the

magnetic diffusivity coefficient (also called the magnetic

viscosity coefficient), η is the plasma resistivity and µ0

is the vacuum permeability. On the right hand side of the

above equation, the first and second terms represent the

magnetic convection due to plasma flow (∝ U ) and the

magnetic dissipation due to plasma resistivity (∝ η), re-

spectively.

An effective release of magnetic energy into kinetic

energy of the plasma particles requires a sufficiently high

resistivity η. For the case of solar flares, a typical re-

leasing time scale is τ ∼ 103 s, implying the magnetic

diffusivity νm ∼ L2/τ ∼ 1011 m2 s−1 for an inhomo-

geneity scale L ∼ 107 m of the magnetic field. However,
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the magnetic diffusivity coefficient, caused by classical

Spitzer resistivity (Spitzer 1956)

η =
meνei

ne2
, (2)

νm = η/µ0 is typically of the order 1 m2 s−1 for the

characteristic plasma temperature T ∼ 106 K and den-

sity n ∼ 109 cm−3 in the lower solar corona. This is

much less than the above magnetic diffusivity coefficient

required by the effective magnetic energy release during

solar flares, where e is the elementary charge, me and n

are the electron mass and density, respectively, and νei is

the Coulomb collision frequency between electrons and

ions. Such an inconsistency has motivated extensive in-

terest to explore various mechanisms of producing non-

collisional resistivity, also called anomalous resistivity,

such as the lower-hybrid drift wave (Huba et al. 1980),

small-amplitude MHD fluctuations (Boozer 1986), the

electron MHD effect (Bulanov et al. 1992), the Hall ef-

fect controlled by ion inertia (Biskamp et al. 1995) and

the mixing effect of dynamical chaos of particle orbits

(Yoshida et al. 1998; Egedal & Fasoli 2001).

In the neighborhood of the magnetic null point, it

is possible that the spatial inhomogeneity of electromag-

netic fields causes enough strong nonlinearity in the mo-

tion equation of charged particles to result in chaotic mo-

tions of the particles (Grad & Van Norton 1962, Schmidt

1962). The mixing effect of chaotic motions increases

the kinetic entropy of the system that consists of current-

carrying charged particles in the reconnection current

sheet, and yields efficient heating of plasma in the recon-

nection region (Horton et al. 1991; Yoshida et al. 1998;

Egedal & Fasoli 2001). In particular, Numata & Yoshida

(2002, 2003) pointed out that, in an open system with

the convection of particles into and out of the reconnec-

tion region, the continuous dissipation can be carried out

and that the resulting chaos-induced resistivity may ex-

plain the necessary anomalous resistivity leading to a fast

magnetic reconnection.

Although magnetic reconnection is commonly con-

sidered as a basically two-dimensional process in which

oppositely directed magnetic field lines merge with each

other, it is possible that in many interesting cases the am-

bient magnetic field still has a surviving non-zero com-

ponent perpendicular to the merging field lines. This sur-

viving field is usually termed the guide field (Ricci et al.

2004, Fitzpatrick & Porcelli 2004). Without doubt, the

presence of a guide field considerably changes the dy-

namical characteristics of particle orbits in the recon-

nection region (Liu et al. 2009). Following Numata &

Yoshida (2002, 2003), this paper investigates the chaos-

induced resistivity in the presence of a constant guide

field. The result implies that the presence of a guide field

indeed influences significantly the chaos of the particle

orbits and hence the chaos-induced resistivity in the re-

connection region.

The remainder of this paper is organized as follows.

The basic model is described in Section 2, and the chaotic

behavior of individual particle dynamics is discussed in

Section 3. The multi-particle statistical characteristics

and the effective resistivity in a current sheet are further

analyzed in Section 4. Finally, summary and conclusion

are presented in Section 5.

2 BASIC PHYSICS MODEL

For the sake of simplicity, we take a two-dimensional X-

shaped field (the degenerate case of a Y-shaped field) in

the x-y plane of a Cartesian rectangular coordinate sys-

tem (r = (x, y, z)) as the reconnection field and a uni-

form field along the z axis as the guide field (see Fig. 1),

which is represented by

B =

(

y

R0

,
x

R0

, δ

)

B0, (3)

where B0 is the characteristic strength of the reconnec-

tion magnetic field, R0 the characteristic scale of the

magnetic field variation and δ the dimensionless mea-

surement of the guide field strength in the unit of B0.

In addition, a constant electric field along the guide mag-

netic field is given by

E = (0, 0, Ez) , (4)

where Ez is the constant electric field.

The collisionless motion of a charged particle with

mass m and charge q is controlled by the motion equa-

tions as follows

dr

dt
= v,

dv

dt
=

q

m
(E + v × B) , (5)

where E and B are the electric and magnetic fields in

Equations (4) and (3), respectively. For the sake of con-

venience, we normalize the spatial and temporal vari-

ables by R0 and τA ≡ R0/vA, respectively, where vA

is the Alfvén velocity corresponding to the characteristic

strength of the magnetic field B0. The electric and mag-

netic fields are normalized by MAvAB0 and B0, respec-

tively, where MA = Ez/ (vAB0) is the Alfvén Mach

number of the electric drift velocity vE = E × B/B2.

Thus, the dimensionless form of Equation (5) reads as:

dr′

dt′
= v

′,

dv′

dt′
=

R0

λc

(MAE
′ + v

′ × B
′) , (6)
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Fig. 1 X-shaped magnetic field in the reconnection region,

where R0 is the characteristic scale of the magnetic field varia-

tion.

where the variables with the superscript “′” are dimen-

sionless forms of the corresponding variables, λc ≡

vA/ωc is the collisionless skin depth of the charged parti-

cles and ωc ≡ qB0/m is the characteristic gyrofrequency

with the sign of the charge q (i.e., ωc is positive and nega-

tive for ions and electrons, respectively). In addition, the

dimensionless electric and magnetic fields in Equations

(4) and (3) are given by,

E
′ = (0, 0, 1) (7)

and

B
′ = (y′, x′, δ) . (8)

In the above equations the parameters λc and ω−1
c

are the characteristic spatial and temporal scales of indi-

vidual particles, in which the kinetic effect plays an im-

portant role. In particular, when the inhomogeneity scale

of the field R0 is much larger than the kinetic scale of par-

ticles λc (i.e., R0 ≫ λc), the long-term average motion

orbit (t ≫ ω−1
c ) is dominated by the flow drift velocity

vE. However, when R0 ∼ λc strong inhomogeneity in

the reconnection region leads to substantial deviation of

the particle motion from the flow drift motion described

mainly by vE and results in chaotic orbits.

3 CHAOTIC BEHAVIOR OF INDIVIDUAL

PARTICLE ORBITS

Motion associated with orbits of charged particles with

mass m and charge q in the electromagnetic field de-

scribed by Equations (7) and (8) can be calculated nu-

merically by Equation (6). To stress the importance of

chaotic orbits, we take R0 = λc and hence τA = ω−1
c in

the calculation below. The numerical calculation is per-

formed on the basis of the Runge-Kutta method with an

adaptive time step to gain better calculation precision.

The initial position and velocity of the particle are ran-

domly taken within the phase space regime

−1.0 < x′ < 1.0, −0.1 < y′ < 1.0, z′ = 0.0

−0.5 < v′x < 0.5, −0.5 < v′y < 0.5,

−0.5 < v′z < 0.5, (9)

and the initial time and space steps are taken as δt′ =

0.01 and |δx′| = 0.01, respectively.

In principle, in the magnetized region of r′ > 1 the

magnetic field is strong enough to conserve the mag-

netic moment µM = w⊥/B of a particle, where w⊥

is the perpendicular kinetic energy of the particle, and

the guiding center of the particle moves at the drift ve-

locity vE = E × B/B2. In the nonmagnetized region

around the X point with r′ < 1, however, the strong in-

homogeneity in the magnetic field breaks conservation

of the magnetic moment µM of the particle, and the par-

ticle undergoes a chaotic orbit and experiences an almost

stochastic acceleration and deceleration by the electric

field Ez .

Figure 2 shows the projections of the particle or-

bits onto the x-y plane perpendicular to the guide field,

where the parameters δ = 0.5 for the guide field (i.e.,

Bz = 0.5B0) and MA = 0.002 for the electrostatic field

(i.e., Ez = 0.002vAB0) have been used. These orbits can

be categorized into three kinds (Gontikakis et al. 2006):

(i) mirror-oscillation orbits in the left column in Figure 2

which make mirror oscillations with the majority in the

magnetized region and between times skimming through

the nonmagnetized region; (ii) magnetized-drift orbits

in the middle column in Figure 2 which gradually drift

apart from the nonmagnetized region into the magne-

tized region via the drift motion vE; and (iii) chaotic or-

bits in the right column in Figure 2 which continually

pass by the X point in the nonmagnetized region and

present obviously orbital randomicity due to scattering

by the X point (Numata & Yoshida 2002). Based on the

analysis of cluster observations of a magnetotail recon-

nection event, Wang et al. (2010) found that the lower

and higher energetic electrons in the reconnection re-

gion have a field-aligned bidirectional velocity distribu-

tion and an isotropic velocity distribution, respectively,

which can be considered as evidence for the existence of

mirror and chaotic motions, respectively.

Figure 3 shows variations of the magnetic moment

(µM) and the distance from the X point (R) correspond-

ing to the particle orbits in Figure 2. From Figure 3, the
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Fig. 2 Three kinds of particle orbits: (i) mirror-oscillation orbits; (ii) magnetized-drift orbits; and (iii) chaotic orbits.

magnetic moment and distance in the mirror-oscillation

orbits (the left column) quasi-periodically vary because

of the mirror oscillation motion of the particles and vari-

ation of the magnetic moment can be attributed to ac-

celeration and deceleration by the electrostatic field Ez

during the mirror oscillation. For the case of magnetized-

drift orbits in the middle column, the magnetic moment

is approximately conserved and the distance slowly in-

creases as the particle gradually drifts apart from the

X point as shown in the middle column of Figure 3.

For particles with chaotic orbits in the right column in

Figure 2, both magnetic moment and distance vary dra-

matically via stochastic acceleration by the electrostatic

field Ez during which they continually skim through the

nonmagnetized region and are scattered randomly by the

X point.

The degree of stochasticity of individual particle mo-

tion on a given orbit can be measured quantitatively by

the maximal Lyapunov index of the given orbit in 6-

dimensional phase space, which characterizes the aver-

age divergence of initially neighboring orbits (Numata &

Yoshida 2003).

Figure 4 shows the maximal Lyapunov indices of

the corresponding orbits in Figure 2, in which the out-

ermost lines are the one-dimensional maximal Lyapunov

index and other lines, from outer to inner, are in turn

the differences between the two- and one-dimensional,

the three- and two-dimensional, the four- and three-

dimensional, the five- and four-dimensional, and the six-

and five-dimensional maximal Lyapunov indices. From

Figure 4, as expected, the chaotic orbits have Lyapunov

indices much larger than those of the mirror-oscillation

and magnetized-drift orbits, implying that the randomic-
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Fig. 3 The variations of the magnetic moment (µM, red lines) and the distance from the X point (R, blue lines) of the particles on

the orbits shown in Fig. 2.

ity of the chaotic orbits is remarkably higher than that of

regular mirror-type and magnetized-drift orbits.

4 STATISTICAL CHARACTERISTICS AND

EFFECTIVE RESISTIVITY IN A CURRENT

SHEET

In order to study the macroscopic statistical properties of

chaotic particle orbits, especially the effective resistivity

associated with randomicity of these chaotic orbits, we

further simulate the statistical distribution and the kinetic

evolution of a multi-particle system by using 2×105 par-

ticles. The associated initial positions and velocities have

uniform distributions in the region −1.0 < x′, y′ < 1.0

and −0.5 < v′x, v′y, v′z < 0.5, respectively. Following

Numata & Yoshida (2003), we estimate the radius of the

chaos region, RC , based on the temporal stability of the

Lyapunov index, that is, the Lyapunov index for the en-

semble average orbits of particles within the chaos region

does not decrease with the average staying time in the

chaos region.

Figure 5 shows the radius of the chaos region in-

creases as the guide field Bz increases for Alfvén

Mach numbers MA = 0.0005, 0.001, 0.002 and 0.003,

which represents acceleration by the electric field Ez =

MAvAB0. Moreover, the radius RC increases faster with

the guide field Bz for a larger Mach number MA.

The corresponding stable Lyapunov index, on the

other hand, decreases as the guide field increases, but

does not sensitively depend on Mach number as shown in

Figure 6. This indicates that the randomicity of motion of
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Fig. 4 The Lyapunov indices of the particle orbits shown in Fig. 2.

particles in the chaos region is reduced by the presence

of the guide field. One of the possible causes is that the

guide field considerably strengthens the magnetic field

in the chaos region, and as a result the magnetic gyromo-

tion of particles in the chaos region has a smaller gyro-

radius and less probability of stochastic scattering by the

X point.

Particles in the chaos region are stochastically accel-

erated by the electric field Ez , and as a result the ensem-

ble average velocity along the guide field, v̄z , increases

approximately proportionally to the average staying time

in the chaos region t̄ (Numata & Yoshida 2003), that is,

v̄′z(t̄
′) = αt̄′. (10)

Figure 7 plots the acceleration coefficient α versus

the guide field Bz for acceleration by the given electric

field with Mach numbers MA = 0.0005, 0.001, 0.002

and 0.003. From Figure 7 the acceleration coefficient α

increases considerably with the electric field (i.e., MA)

as expected, implying that the acceleration of electrons is

dominated by the parallel electric field in the presence of

the guide field (Wan et al. 2008; Huang et al. 2010). The

result presented in Figure 7 also shows that the acceler-

ation coefficient α decreases as the guide field strength-

ens, implying the guide field can effectively depress the

average acceleration the particles in the chaos region. A

possible reason is that a stronger guide field leads to a

larger chaos region, in which more particles further away

from the X point are included in the larger chaos region

and their net acceleration efficiency is reduced by the

stronger transverse magnetic field perpendicular to the

electric field. Moreover, from Figure 7 it can be found

that this reduced effect becomes more significant for a

stronger electric field and a stronger guide field. It should



M. Shang et al.: Chaos-induced Resistivity of Collisionless Magnetic Reconnection 3–7

Fig. 5 The radius of the chaos regions RC versus the guide field Bz , where RC and Bz are normalized by the characteristic scale

of the ambient magnetic field variation R0 and the characteristic strength of the reconnection field B0 respectively.

Fig. 6 The Lyapunov indices versus the guide field Bz normalized by B0.

be pointed out that this result does not contradict the test-

particle simulations of Liu et al. (2009), who found that

the guide field favors the acceleration of energetic parti-

cles for a fixed reconnection region.

It is evident that without supplying new particles the

number of particles in the chaos region decreases due to

particles escaping from the chaos region. The number of

particles in the chaos region decreases approximately ex-

ponentially (Numata & Yoshida 2003)

n(t̄′) = n0 exp(−βt̄′), (11)

and hence the loss rate of particles from the chaos region

is
dn(t̄′)

dt̄′
= −n0β exp(−βt̄′) (12)

with a loss rate index β. Figure 8 shows the particle loss

rate index β versus the guide field for the given electric
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field with MA = 0.0005, 0.001, 0.002 and 0.003. From

Figure 8 the particle loss rate index β increases consid-

erably with the electric field (i.e., MA) and this indicates

that acceleration by the stronger field leads to particles

escaping faster. On the other hand, for the weak guide

field of Bz < 0.5 B0 the loss rate index β increases

slightly with the guide field strength. For the guide field

of Bz > 0.5 B0, however, the loss rate index consid-

erably decreases as the guide field increases, especially

for the case of acceleration from the strong field with

MA > 0.001.

To estimate the effective resistivity for a steady con-

dition in equilibrium, Numata & Yoshida (2003) pro-

posed considering a sustained system, in which the total

number of particles is conserved through supplying new

particles with zero average velocity. When including the

acceleration of new particles using Equation (10), under

the steady, equilibrium case, such a sustained system has

a steady ensemble-average velocity

v̄′0 =
α

β
. (13)

On the other hand, a steady, equilibrium case can be

reached when the electrostatic force by the electric field

eEz is balanced by an effective collision resistance νeffvz

with the effective collision frequency νeff , and the result-

ing steady velocity may be obtained as follows

v̄′0 =
MAE′

z

νeff

=
MA

νeff

. (14)

Comparing Equations (13) and (2) leads to the effective

collision frequency

νeff =
β

α
MA. (15)

Figure 9 presents the effective collision frequency

versus the guide field for the electric field with Mach

numbers MA = 0.0005, 0.001, 0.002 and 0.003. The

result displayed in Figure 9 demonstrates that, as shown

by Equation (15), the effective collision frequency νeff

and hence the chaos-induced resistivity increases consid-

erably with the electric field because acceleration by the

stronger electric field requires a larger resistance to bal-

ance the higher chaos-induced resistivity. For the weak

guide field of Bz < 0.5 B0, νeff increases with guide

field strength because the loss rate index β increases. For

a guide field of Bz > 0.5 B0, however, the effective colli-

sion frequency considerably decreases as the guide field

increases. This is consistent with the result of particle-

in-cell simulations by Pritchett & Coroniti (2004); Fu

et al. (2006); Wan et al. (2008); Huang et al. (2010), who

found that the reconnection rate may be largely reduced

Fig. 7 The acceleration coefficient α versus the guide field

Bz for the given electric field Ez with Mach numbers MA =

0.0005, 0.001, 0.002 and 0.003.

Fig. 8 The loss rate index β versus the guide field Bz for the

given electric field Ez with the Mach numbers MA = 0.0005,

0.001, 0.002 and 0.003.

for the case of a large guide field of Bz > B0. In particu-

lar, the effective collision frequency and hence the chaos-

induced resistivity reaches its peak value near the guide

field approaching one half of the characteristic strength

of the ambient reconnection field, that is, Bz ∼ 0.5 B0.
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Fig. 9 The effective collision frequency νeff versus the guide

field Bz for the given electric field Ez with Mach numbers

MA = 0.0005, 0.001, 0.002 and 0.003.

This results from competition between the chaos region

scale and the local Lyapunov index, which increases and

decreases, respectively, with the guide field as shown in

Figures 5 and 6.

5 SUMMARY AND CONCLUSIONS

Magnetic reconnection is now believed to be largely re-

sponsible for the energy release in various astrophysi-

cal eruptive phenomena. However, the generation mech-

anism of anomalous resistivity in magnetic reconnec-

tion has been an open and puzzling problem. Numata &

Yoshida (2002) pointed out that the magnetic null point

in the reconnecting current sheet can act as a scatter-

ing center and lead to chaotic motions of particles in

the current sheet. They proposed that this chaos possi-

bly contributes to the formation of anomalous resistiv-

ity, called chaos-induced resistivity. In many interesting

cases, however, instead of the magnetic null point, there

is a nonzero magnetic field perpendicular to the merging

field lines, that is, the so-called guide field.

Taking account of the effect of this nonzero guide

field, by use of the particle simulation method, we calcu-

late the particle orbits in the magnetic reconnection re-

gion. The result shows that although the dynamic orbits

of the particles differ widely and show great complexity,

the majority of them can conform to one of the following

three kinds: the mirror-oscillation orbit, the magnetized-

drift orbit and the chaotic orbit. Analysis of the Lyapunov

index of these particle orbits, which represents the degree

of particle motion stochasticity, indicates that the contri-

bution to the anomalous resistivity comes mainly from

the chaotic orbits. In order to study the contribution of

these particle chaotic orbits on anomalous resistivity, we

further simulate the statistical distribution and its evolv-

ing properties of a multi-particle system by using 2×105

particles. The results show that the radius of the chaos

region increases with the guide field but the Lyapunov

index decreases with the guide field. However, the ef-

fective collision frequency, and hence the chaos-induced

resistivity, has its peak value near Bz = 0.5 B0 (i.e., the

guide field is one half of the reconnection field).

The anomalous resistivity is an important parame-

ter, and plays a key and deciding role in magnetic energy

release, especially in the collisionless reconnection rate.

The present result is helpful for us to understand the mi-

crophysics of anomalous resistivity in the case of colli-

sionless reconnection with a guide field.

Acknowledgements Research by DJW and MS was

supported by the National Natural Science Foundation

of China (NSFC, Grant Nos. 41531071 and 11373070),

LC was supported by the NSFC (Grant No. 41304136)

and by the Key Laboratory of Solar Activity at National

Astronomical Observatories (Grant KLSA 201502), and

PFC was supported by the NSFC (Grant Nos. 11025314

and 11533005).

References

Biskamp, D., Schwarz, E., & Drake, J. F. 1995, Physical

Review Letters, 75, 3850

Boozer, A. H. 1986, Journal of Plasma Physics, 35, 133

Bulanov, S. V., Pegoraro, F., & Sakharov, A. S. 1992, Physics

of Fluids B, 4, 2499

Dungey, J. W. 1958, in IAU Symposium, 6, Electromagnetic

Phenomena in Cosmical Physics, ed. B. Lehnert, 135

Dungey, J. W. 1961, Physical Review Letters, 6, 47

Egedal, J., & Fasoli, A. 2001, Physical Review Letters, 86,

5047

Fitzpatrick, R., & Porcelli, F. 2004, Physics of Plasmas, 11,

4713

Fu, X. R., Lu, Q. M., & Wang, S. 2006, Physics of Plasmas,

13, 012309

Giovanelli, R. G. 1946, Nature, 158, 81

Gontikakis, C., Efthymiopoulos, C., & Anastasiadis, A. 2006,

MNRAS, 368, 293

Grad, H., & Van Norton, R. 1962, Nucl. Fusion Suppl., 1, 61

Horton, W., Liu, C., Hernandez, J., & Tajima, T. 1991,

Geophys. Res. Lett., 18, 1575



3–10 M. Shang et al.: Chaos-induced Resistivity of Collisionless Magnetic Reconnection

Huang, C., Lu, Q., & Wang, S. 2010, Physics of Plasmas, 17,

072306

Huba, J. D., Drake, J. F., & Gladd, N. T. 1980, Physics of

Fluids, 23, 552

Liu, W. J., Chen, P. F., Ding, M. D., & Fang, C. 2009, ApJ, 690,

1633

Lyutikov, M. 2006, MNRAS, 369, L5

Numata, R., & Yoshida, Z. 2002, Physical Review Letters, 88,

045003

Numata, R., & Yoshida, Z. 2003, Phys. Rev. E, 68, 016407

Parker, E. N. 1957, J. Geophys. Res., 62, 509

Pritchett, P. L., & Coroniti, F. V. 2004, Journal of Geophysical

Research (Space Physics), 109, A01220

Ricci, P., Brackbill, J. U., Daughton, W., & Lapenta, G. 2004,

Physics of Plasmas, 11, 4102

Schmidt, G. 1962, Physics of Fluids, 5, 994

Spitzer, L. 1956, Physics of Fully Ionized Gases (New York:

Interscience Publishers)

Sweet, P. A. 1958, in IAU Symposium, 6, Electromagnetic

Phenomena in Cosmical Physics, ed. B. Lehnert, 123

Wan, W., Lapenta, G., Delzanno, G. L., & Egedal, J. 2008,

Physics of Plasmas, 15, 032903

Wang, R., Lu, Q., Huang, C., & Wang, S. 2010, Journal of

Geophysical Research (Space Physics), 115, A01209

Yoshida, Z., Asakura, H., Kakuno, H., et al. 1998, Physical

Review Letters, 81, 2458


