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Abstract We study cosmic dynamics in the context of the normal branch of the DGP braneworld model.

Using current Planck data, we find the best fitting model and associated cosmological parameters in non-flat

ΛDGP. With the transition redshift as a basic variable and statefinder parameters, our result shows that the

Universe starts its accelerated expansion phase slightly earlier than expected in ΛCDM cosmology. The

result also alleviates the coincidence problem of the ΛCDM model.
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1 INTRODUCTION

Nowadays, we know from observations that our Universe

is experiencing an accelerated expansion phase accord-

ing to some unknown mechanism (Riess et al. 1998;

Perlmutter et al. 1998, 1999; Kowalski et al. 2008;

Amanullah et al. 2010; Sahni & Starobinsky 2000). A mys-

terious fluid with negative pressure, dubbed dark energy, is

the most important candidate which can drive this accelera-

tion (Peebles & Ratra 2003; Padmanabhan 2003; Oliveros

& Acero 2015; Brevik et al. 2015; Frieman et al. 2008;

Wang & Mukherjee 2007). The cosmological constant,

Λ, is the simplest dark energy component despite the re-

lated coincidence problem (Weinberg 1989; Zaripov 2014;

Basilakos & Lima 2010; Basilakos et al. 2010). Also, we

know that the Universe underwent a phase transition dur-

ing its evolution. In this era, it changed its decelerated ex-

pansion to an accelerated phase. Thus, the so called decel-

eration parameter, q(z), switches from positive to negative

values for a specific value of redshift called the transition

redshift, zt.

In addition, we expect the redshift of any cosmological

source to change after a time interval because of the evolu-

tion and expansion of the Universe. Although this redshift

drift is small and could not be measured at low redshifts,

it is a unique way to determine the expansion history of

the Universe directly and without any ambiguity (Sandage

1962; McVittie 1962). Observationally, we can express this

change in redshift as a spectroscopic velocity drift of the

source which is on the order of several cm s−1 yr−1.

On the other hand, in the past two decades the the-

ory of extra dimensions has attracted a great deal of at-

tention among researchers (Maia et al. 2004; Rudra et al.

2012; Shahidi & Sepangi 2011). It was derived by us-

ing the braneworld scenario of Randall and Sundrum (RS)

and developed gradually. Among many extensions of the

RS model, the model proposed by Dvali, Gabadadze and

Porrati (DGP) is of particular interest, because one branch

of this model explains the certain late-time acceleration

of the Universe without any dark energy component, ir-

respective of its own problems. In the DGP braneworld

model, our 4D world is a brane embedded in an infinite

5D Minkowskian bulk. Also, all the matter fields are con-

fined to the brane and only gravity can leak into the bulk.

According to the two ways that a brane can be embedded

in the bulk, the model features two separate branches de-

noted by ǫ = ±1, with distinct characteristics. The ǫ = +1
branch is called the self-accelerating solution in which

the Universe experiences a late-time acceleration due to

modification of gravity. On the other hand, the ǫ = −1
branch where the Universe is not able to accelerate with-

out a dark energy component is called the normal branch

(de Rham et al. 2008; Dvali et al. 2000; Bouhmadi-López

2009; Quiros et al. 2009).

This paper is organized as follows. In Section 2, we

study the ΛDGP model, i.e., a spatially non-flat DGP

model in the presence of a cosmological constant as a

dark energy component. We express the transition red-

shift in terms of our model parameters via q(zt) = 0 and

then estimate it numerically, using a best-fitting procedure.

Section 3 deals with the redshift drift and drift velocity. In

this section we test our model with observations. Also, in

each case we compare our results with the ΛCDM model.

In Section 4, a statefinder diagnostic procedure is used to

distinguish our model among different dark energy models.

In Section 5, the important coincidence problem is inves-
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tigated in our model. Section 6 provides conclusions and

remarks.

2 TRANSITION REDSHIFT

As we mentioned in the introduction, our Universe has ex-

perienced a transition from a decelerated expansion to an

accelerated one in its expansion history. The redshift of

this transition is called transition redshift, zt, which is one

of the important parameters in cosmology. In this section

we are trying to obtain this value directly, using a numer-

ical approach in the non-flat ΛDGP model. With this aim,

we start with the Friedmann equation and after calculating

the related deceleration parameter, we use the condition

q(zt) = 0 to obtain an expression for zt, in terms of our

model parameters. Then, considering zt as a free param-

eter, a best-fitting procedure is used to determine the best

values of model parameters. Using these values we plot

the curves q(z) and (zt, Ωm0) for the model under consid-

eration and compare them with the ΛCDM model. Also,

we can compare the curve (zt, Ωm0) with the observational

constraints from the Planck satellite.

In the non-flat ΛDGP model we have the following modified Friedmann equation on the brane (Xu & Wang 2010)

H2 +
K

a2
=

(√

ρ

3M2
p

+
1

4r2
c

−
1

2rc

)2

, (1)

where H = ȧ/a, a = a(t), Mp and rc = κ2
(5)/κ2

(4) are the Hubble parameter, scale factor, the 4D Planck mass and the

so called crossover distance, respectively. Also, ρ = ρm + ρΛ where ρm is related to the matter content on the brane and

ρΛ = M2
p Λ. In addition, K = ±1 is the curvature parameter. Using the fractional energy densities of

Ωm =
ρm

3M2
p H2

,

ΩΛ =
Λ

3H2
,

Ωrc
=

1

4r2
cH2

,

ΩK = −
K

a2H2
, (2)

one can rewrite the Friedmann equation as below

E2(z) = (
√

Ωm0(1 + z)3 + Ωrc0 + ΩΛ0 −
√

Ωrc0)
2 + ΩK0(1 + z)2, (3)

where E(z) = H(z)/H0 and the zero index means the present value of any cosmological parameter. The deceleration

parameter q = −ä/(aH2), in terms of redshift, is defined as

q(z) =
(1 + z)

H(z)

dH

dz
− 1. (4)

So, it can be rewritten in terms of fractional energy densities as

q(z) =
3Ωm0(1 + z)3(

√

Ωm0(1 + z)3 + ΩΛ0 + Ωrc0 −
√

Ωrc0)

2[(
√

Ωm0(1 + z)3 + ΩΛ0 + Ωrc0 −
√

Ωrc0)
2 + ΩK0(1 + z)2]

√

Ωm0(1 + z)3 + ΩΛ0 + Ωrc0

+
ΩK0(1 + z)2

(
√

Ωm0(1 + z)3 + ΩΛ0 + Ωrc0 −
√

Ωrc0)
2 + ΩK0(1 + z)2

− 1 (5)

and the transition redshift can be expressed as

zt =

{[

4Ωm0Ωrc0 + 2Ωm0ΩΛ0 + 2
√

Ω2
m0Ωrc0(4Ωrc0 + 3ΩΛ0)

]

Ωm0

}1/3

Ωm0
− 1. (6)

One can check that this expression is exactly the same as the one obtained in a flat ΛDGP model. Now, we use the

numerical χ2 method to obtain the best-fitting values of our model parameters. To this end, we have utilized the observa-

tional data from Type Ia Supernovae (SNeIa), Baryon Acoustic Oscillations (BAOs) and Cosmic Microwave Background

(CMB) radiation. To constrain our model parameters with respect to SNeIa, we use 557 data points from the Union sample

(Amanullah et al. 2010). The related χ2 value is defined as

χ2
SNe =

557
∑

i=1

[µthe
i (zi) − µobs

i (zi)]
2

σ2
i

. (7)
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Here, µthe
i and µobs

i are the theoretical and observational values of the distance modulus parameter, respectively, and

σi represents the observationally estimated error. The distance modulus is the difference between the absolute and ap-

parent magnitude of a distant object and is given by µ(z) = 5 log10 DL(z) − µ0 where µ0 = 5 log10 h + 42.38,

h = (H0/100) km s−1Mpc−1 and

DL(z) ≡ (1 + z)

∫ z

0

dz′

E(z′)
(8)

is called the luminosity distance. Furthermore, we can constrain our model free parameters using the definition of BAO

distance

DV (zBAO) =

[

zBAO

H(zBAO)

(
∫ zBAO

0

dz

H(z)

)2]1/3

. (9)

To this end, we use the joint analysis of the 2dF Galaxy Redshift Survey at z = 0.20 and SDSS data at z = 0.35 (Reid

et al. 2010; Percival et al. 2010) as the BAO distance ratio which is model independent

DV (z = 0.35)

DV (z = 0.20)
= 1.736 ± 0.065 . (10)

The related χ2 value can be obtained using

χ2
BAO =

{[

DV (z = 0.35)/DV (z = 0.20)
]

− 1.736
}2

0.0652
. (11)

Table 1 Best-fitting Values of non-flat ΛDGP Model Parameters

Model parameters Best-fitting values

Ωm0 0.291
+0.001
−0.003

zt 0.638
+0.001
−0.003

ΩK0 0.011
+0.001
−0.002

ΩΛ0 0.671
+0.004
−0.002

Ωrc0 0.0001
+0.0001
−0.0002

The CMB shift parameter, R (Wang & Mukherjee

2006; Bond et al. 1997), which is defined as

R ≡ Ω
1/2
m0

∫ zCMB=1091.3

0

dz′

E(z′)
, (12)

contains the major observational information from CMB.

Thus to take into account the contribution of CMB in our

analysis we use the χ2 below

χ2
CMB =

[R − Robs]
2

σ2
R

, (13)

where Robs = 1.725 ± 0.018 (Komatsu et al. 2011). Now,

minimizing χ2
SNe + χ2

BAO + χ2
CMB, we obtain the best-

fit values of our model parameters. Also, in this procedure

we have considered zt to be a free parameter. The results

are shown in Table 1. In comparison with the correspond-

ing transition redshift of the ΛCDM model zt = 0.632
(Planck Collaboration et al. 2014), in the non-flat ΛDGP

model the Universe starts its accelerated expansion phase

earlier. Note that the value of Ωrc0 has been obtained indi-

rectly, using the best-fitting values of other model parame-

ters, together with Equation (6).

In Figure 1, the deceleration parameter as a function

of redshift for the best-fitting values has been drawn with

a dashed curve in black. In Figure 2, we have indicated the

transition redshift, zt, as a function of Ωm0. Also, the ob-

servational data for zt and Ωm0, extracted from the Planck

satellite, have been shown by horizontal and vertical lines,

respectively. It seems that this model fits observations well.

3 REDSHIFT DRIFT

The cosmic redshift parameter is related to the scale fac-

tor a(t) and consequently to the cosmic time t indirectly.

Then, we conclude that the redshift also changes with time.

The variation of redshift with respect to time, called red-

shift drift, can be used to directly measure the variation of

Hubble parameter, H(z), and also the acceleration of the

Universe. According to Linder (1997), if we introduce t0
and te, respectively as the time in which a signal is de-

tected in the frame of the observer and the time in which

the signal is emitted from the source, then

dz

dt0
=

d

dt0

(

a(t0)

a(te)
− 1

)

=
ȧ(t0) − ȧ(te)

a(te)
(14)

and one can derive the McVittie equation

ż = H0(1 + z) − H(z). (15)

The appearance of a difference in the value of ȧ, in

Equation (14), is the reason that we can regard the red-

shift drift as a measure of acceleration of the Universe.

Also, using the best-fitting values in Table 1 and consider-

ing the McVittie equation, we can plot the curve ż(z) and

deal with the expansion history of the Universe (see Fig. 3).
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Fig. 1 Deceleration parameter as a function of redshift for the ΛCDM model and non-flat ΛDGP model for the best-fitting values of

our model parameters. The curve and the value of zt for the two models are very similar to each other, but our model switches from

deceleration to acceleration a little earlier than the ΛCDM model.

Fig. 2 Transition redshift as a function of Ωm0 for the ΛCDM model and non-flat ΛDGP model for the best-fitting values of our model

parameters. The horizontal and vertical blue lines are related to observations. The Planck satellite result with a 68% confidence limit on

the present matter density parameter is Ωm0 = 0.314±0.020 (Planck Collaboration et al. 2014). The best-fitting value of the transition

redshift that corresponds to the 68% confidence limit, with respect to some observational data, has been obtained in Lu et al. (2011)

using a deceleration parameter of zt = 0.69+0.20
−0.13 . Both models are in good agreement with observations.

We should note here that recently, forecasting analysis us-

ing the redshift drift has attracted a great deal of attention.

It has been shown in a number of works that the mock red-

shift drift data can significantly improve the constraints on

model parameters (Corasaniti et al. 2007; Geng et al. 2014,

2015).

Using some calculations one can reach the relation be-

low

q =
1 − ż′

1 − ż
1+z

− 1, (16)

where we have represented derivative with respect to z by

a prime. Also, from Equation (15), we can obtain

ż′ = H0(1 − E′(z)). (17)

With regard to Equation (17), in the diagram ż(z), the

slope of the curve is negative if E′(z) > 1, and it is pos-

itive if E′(z) < 1. Also, the extremum point is related

to E′(z) = 1. Analyzing Equations (15), (16) and (17)

and considering Figure 3, one can find that during decel-

erated expansion, ż changes from negative to positive val-

ues. Then, starting the accelerating phase it turns and ap-
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Fig. 3 q, ż and ż′ as a function of redshift in the non-flat ΛDGP model for the best-fitting values of our model parameters.

Fig. 4 Drift velocity as a function of redshift for the ΛCDM

model and non-flat ΛDGP model for the best-fitting values of our

model parameters. Both models fit observations well.

proaches zero at the present and continues to have negative

values in the future. Furthermore, as shown in Figure 3, ż′

changes from negative to positive as well in the decelerat-

ing phase. But during accelerated expansion, it extends to

larger positive values.

In a Universe filled only with a matter component, the

expansion slows because of the effect of gravity. But to-

day, we know from observations that our Universe is at

an epoch in its expansion history in which it has started

to accelerate. This behavior indicates the existence of a

dark energy component with negative pressure. In terms

of dimensionless density parameters of dark matter Ωm

and dark energy Ωd, this epoch is related to the redshift

zeq in which Ωm = Ωd. This redshift differs from zt in

that the Universe starts its acceleration. The comparison

between these two values is another interesting quantity in

cosmology. The corresponding value of zeq, which can be

obtained from Planck Collaboration et al. (2014), shows

zeq = 0.298 for the ΛCDM model. In the non-flat ΛDGP

model and for simplicity we use new variables Ω′

i = E2Ωi.

Then, Ω′

m = Ωm0(1 + z)3 and Ω′

d = ΩΛ0. The condition

Ω′

m(zeq) = Ω′

d(zeq) leads to an expression for zeq in terms

of our model parameters as

zeq =
(ΩΛ0

Ωm0

)
1

3 − 1. (18)

Using Table 1, we obtain zeq = 0.321 in our model which

is larger than the corresponding value in the ΛCDM model.

But, similar to the ΛCDM model, zt > zeq. Thus, without

the need for domination by the dark energy component, the

Universe can start its accelerated expansion phase.

In addition, we know from observations that the ve-

locity of a light source changes with respect to t0, though

this variation is very small. It is just on the order of a few

cm s−1, if we consider a time interval of about 30 years.

There is a relation between this velocity drift and the red-

shift drift parameter of

v̇ =
dv(z)

dt0
=

c

(1 + z)

dz

dt0
, (19)

which is on the order of several cm s−1 yr−1.

Figure 4 shows the behavior of v̇(z) for both the

ΛCDM and ΛDGP model in comparison with observa-

tional data from CODEX, including eight points (Cristiani

et al. 2007). Both the curves are in good agreement with

observations.

4 STATEFINDER DIAGNOSTIC

To distinguish and classify different dark energy mod-

els, a few approaches have been proposed. Among them,

the statefinder diagnostic is of particular interest. This ap-

proach has been found in terms of two new geometrical
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Fig. 5 The evolution of the statefinder parameter r versus s, in

the non-flat ΛDGP model for the best-fitting values of our model

parameters. There is a very small deviation from the point (1, 0),

related to the ΛCDM model. This confirms the analogy and close-

ness of the two models.

variables which are related to the third derivative of scale

factor with respect to time (Sahni et al. 2003). In a non-flat

Universe these two new variables are defined as

r =
˙̈a

aH3
,

s =
r − 1 + ΩK

3(q − 1/2 + ΩK/2)
· (20)

Also, they can be rewritten in terms of the equation

of state parameter w and its first derivative with respect to

time (Sahni et al. 2003) as

r = 1 − ΩK +
9

2
wd(1 + wd)Ωd −

3

2

ẇd

H
Ωd,

s = 1 + wd −
1

3

ẇd

wdH
. (21)

So, for the ΛCDM model with wd = −1, we have (r, s) =
(1, 0). The pair (r, s) has been utilized frequently in the lit-

erature to discriminate a wide variety of dark energy mod-

els (Alam et al. 2003; Visser 2004; Zhang et al. 2008, 2010;

Setare & Jamil 2011; Sami et al. 2012; Cui & Zhang 2014).

For this aim, one can compare the corresponding trajecto-

ries in the r-s plane. Moreover, deviation from the fixed

point (1, 0) related to the ΛCDM model can be studied us-

ing these curves.

Figure 5 illustrates the trajectories belonging to the

ΛDGP model. The range of change of statefinder param-

eters, especially r, is very small, as can be seen from

Figure 6, which means that our model has a tiny departure

from the ΛCDM model. Also, the curve r(s) approaches

the fixed point (1, 0) at late times.

5 COINCIDENCE PROBLEM

One of the most important problems in the ΛCDM model is

the coincidence problem, namely why the energy densities

of dark matter and dark energy are of precisely the same

order today? In another words if we introduce

R =
ρm

ρd
, (22)

then the coincidence problem asks why R is of order unity

now?

Many scenarios have been proposed to solve or at

least alleviate this problem. For instance, some dynam-

ical dark energy models have been put forward to re-

place the cosmological constant (Peebles & Ratra 2003;

Padmanabhan 2003). Also, the coupling and interaction

between dark sectors of the Universe have been used for

this goal (Chimento et al. 2003; Olivares et al. 2006;

Amendola et al. 2006; Del Campo et al. 2006; Olivares

et al. 2008; Karwan 2008; Egan & Lineweaver 2008; Lee

et al. 2008; Zhang et al. 2009). In these articles the au-

thors investigated different approaches to resolve the co-

incidence problem. Some of them show that R is inde-

pendent of initial conditions and study attractor solutions.

Some others argue that R does not change much during

the whole history of the Universe. Also, in many of them

the authors introduce a mechanism in which R tends to a

constant value at late times or varies more slowly than the

scale factor today.

But here, we do not replace Λ with a dynamical dark

energy term. Also, we do not consider any interaction be-

tween dark sectors. We only try to investigate the effect of

the extra dimensions. We can show that in a ΛDGP model,

though the coincidence problem is not solved in full, it can

at least be ameliorated. With this aim we can introduce an

effective dark energy term in our model if we rewrite the

Friedmann equation in standard general relativistic form as

Ωm + Ωeff + ΩK = 1 .

Thus we obtain

Ωeff = ΩΛ − 2
√

Ωrc

√

1 − ΩK (23)

and we can interpret the ratio defined in Equation (22) in

our model as R = ρm/ρeff .

Figure 7 illustrates the behavior of R in the whole his-

tory of the Universe until now for both ΛCDM and ΛDGP

models. It is obvious that in our model the coincidence

problem has been slightly alleviated and this is only be-

cause of considering the effect of extra dimensions. Also,

Figure 8 shows the behavior of Ωm, Ωeff and ΩK versus

redshift in our model.

6 CONCLUSIONS

In this paper we used a non-flat ΛDGP model and obtained

best-fitting values of transition redshift zt and other model

parameters using SNe+BAO+CMB data. We found that the
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Fig. 6 The evolution of the statefinder parameters r and s versus redshift, in the non-flat ΛDGP model for the best-fitting values of our

model parameters.

Fig. 7 The trajectory of R versus ln(1+z) for the ΛCDM model

and non-flat ΛDGP model for the best-fitting values of our model

parameters. The coincidence problem in our model has been al-

leviated.

transition from decelerating expansion to the accelerating

phase in our model happens earlier than in the ΛCDM

model. The cosmic redshift drift was studied exactly and

the correlations between q, ż and ż′ were investigated in

this model. We obtained zeq in our model and found that,

like the ΛCDM model, before domination by the dark en-

ergy component, the Universe starts its accelerated expan-

sion.

With regard to Figures 2 and 4, we concluded that our

model is in a good agreement with observational data re-

leased by both Planck and CODEX. We see that our model

is marginally consistent with the transition redshift derived

indirectly from observations, better than the ΛCDM model.

We applied a statefinder diagnostic scenario in our model

and found that this model shows a tiny deviation from the

Fig. 8 The trajectory of Ωm, Ωeff and ΩK versus redshift in the

non-flat ΛDGP model for the best-fitting values of our model pa-

rameters. It is obvious that Ωm + Ωeff + ΩK = 1.

ΛCDM model. Also, from Figure 7, we found that our

model improves the coincidence problem.
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