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Abstract Shear measurement is a crucial task in current and future weak lensing survey projects. The

reconstruction of the point spread function (PSF) is one of the essential steps involved in this process.

In this work, we present three different methods, Gaussianlets, Moffatlets and Expectation Maximization

Principal Component Analysis (EMPCA), and quantify their efficiency on PSF reconstruction using four

sets of simulated Large Synoptic Survey Telescope (LSST) star images. Gaussianlets and Moffatlets are two

different sets of basis functions whose profiles are based on Gaussian and Moffat functions respectively.

EMPCA is a statistical method performing an iterative procedure to find the principal components (PCs)

of an ensemble of star images. Our tests show that: (1) Moffatlets always perform better than Gaussianlets.

(2) EMPCA is more compact and flexible, but the noise existing in the PCs will contaminate the size and

ellipticity of PSF. By contrast, Moffatlets keep the size and ellipticity very well.
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1 INTRODUCTION

Gravitational lensing provides a unique way to map the

matter distribution in the Universe. By measuring the

shape distortion of distant galaxies, one can gain the

lensing signals and thus study the mass distribution in

clusters of galaxies (Mellier 1999) and large scale struc-

tures (Refregier 2003b; Van Waerbeke et al. 2013; Planck

Collaboration et al. 2014), as well as directly probe the

invisible dark sector and fundamental nature of gravity

(Hoekstra & Jain 2008; Massey et al. 2010; Huterer 2010;

Moffat 2006). However, the shape of a galaxy can be dis-

torted by several different mechanisms, such as (1) shear

by lensing effect, (2) convolution with the point spread

function (PSF), (3) pixelation on a CCD and (4) effects

from noise. In order to accurately recover the original

galaxy shape (shape right after the galaxy is lensed), de-

crease statistical error and quantify the intrinsic alignments

of background galaxies (Bartelmann & Schneider 2001),

a number of current and planned large-area surveys have

been proposed, such as Euclid (Laureijs et al. 2011), the

Large Synoptic Survey Telescope (LSST)1(LSST Science

Collaboration et al. 2009), and WFIRST-AFTA (Spergel

et al. 2015), to reduce the statistical uncertainty. On the

other hand, a variety of weak lensing shear measure-

ment algorithms (Kaiser et al. 1995; Luppino & Kaiser

1997; Hoekstra et al. 1998; Refregier & Bacon 2003)

have been proposed and a series of data analysis chal-

1 http://www.lsst.org

lenges, such as GREAT08 (Bridle et al. 2010), GREAT10

(Kitching et al. 2012, 2013) and the most recent one

GREAT32,3(Mandelbaum et al. 2014), have been carried

out to improve precision and reduce systematic biases.

One of the crucial parts in reducing the systematic

biases in shear measurement is modeling the PSF to ad-

equate precision. The scatter and systematic bias in the

size and ellipticity of the reconstructed PSF will intro-

duce systematic bias to the shear measurement (Paulin-

Henriksson et al. 2008, 2009; Massey et al. 2013). PSF is

the spreading of light caused by various complex physical

processes, such as diffraction by the aperture of the tele-

scope, imperfect optics and tracking systems, temperature

variations in the camera, vibrations, optical changes dur-

ing telescope refocusing, and turbulence in the atmosphere

(a concern for ground-based telescopes). This means that

the PSF cannot be represented in the form of a simple ex-

plicit function. A Gaussian PSF has usually been assumed

to serve as a good approximation for most astronomical

cases. However, it deviates from a real PSF due to the ex-

istence of “wings” in stellar profiles. The Moffat function

is shown to describe well the presence of wings (when the

value of β is taken properly) and contains the Gaussian

function as a limiting case (when β → ∞) (Trujillo et al.

2001). However to reproduce the PSF with the precision

needed for weak lensing studies, high-order correction is

required. A technique called Shapelets (Refregier 2003a;

2 http://great3challenge.info
3 http://great3.projects.phys.ucl.ac.uk/leaderboard/
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Refregier & Bacon 2003; Massey & Refregier 2005) de-

composes an object using a series of localized basis func-

tions and compresses the information about the shape into

a small number of expansion coefficients. In this paper, we

use the Gaussian and Moffat functions as primary profiles

to create two basis function sets which we call Gaussianlets

and Moffatlets (Li et al. 2013) respectively to decompose

the PSF.

A minimum of 50 stars is needed for the PSF to be cal-

ibrated in order to control the systematic errors to a level

similar to the statistical errors that have been estimated for

ambitious future surveys (Paulin-Henriksson et al. 2008).

With this ensemble of stars in an image, a set of principal

components (PCs) can be solved via the statistical proce-

dure called principal component analysis (PCA). In Bailey

(2012), a framework called expectation maximization PCA

(EMPCA) is introduced that extends classical PCA to a

form that can incorporate estimates of measurement vari-

ance while solving for the PCs. In this paper, we use this

method to find the PCs of a PSF.

This article is organized as follows. In Section 2 we

describe the three methods, Gaussianlets, Moffatlets and

EMPCA, and their algorithms for reconstructing PSFs. In

Section 3 we describe the simulated structure of the data

we use. In Section 4 we perform numerical tests of our

three methods and compare their reconstruction efficiency.

Finally, we conclude by discussing the limitations and

prospects of our algorithm in Section 5.

2 RECONSTRUCTION METHODS

2.1 Gaussianlets and Moffatlets

The so-called Gaussianlets method we use here is a re-

duced version of shapelets (Massey & Refregier 2005)

where we only keep the basis functions with m = 0. The

explicit mathematical formula of Gaussianlets is

Pl(r) =
1

√
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2σ2
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. (1)

The basis functions in Moffatlets are also circularly sym-
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In both Equations (1) and (2), Ll(x) is the Laguerre

polynomial
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where l runs from 0 to ∞. Mathematically, both sets of

basis functions are orthogonalized and normalized in the

following sense,

∫ +∞

0

Pl(r)Pm(r)dr =

∫ +∞

0

Ql(r)Qm(r)dr

= δlm. (5)

There are free parameters (σd in Gaussianlets and

(β, rd) in Moffatlets) that are adjustable in the basis func-

tions. Tuning their values, we can change the size and

steepness of radial variation in the basis functions. In the

process of modeling, these free parameters are adjusted to

the values that best fit the data, which means the shape of

the 0th order function most closely fits the averaged shape

of a set of stellar profiles. With this strategy, the expansion

is ensured to be very compact.

Using these basis functions, we can reproduce the star

images as follows:

(1) Calculate the center and ellipticity for each stellar pro-

file using the fast fitting algorithms (Li et al. 2012).

(2) According to the center and ellipticity of each star, the

shape parameters of the Gaussian and Moffat model

are also calculated using the fast fitting algorithm (see

Li et al. 2012). Trujillo et al. (2001) argued that a

Moffat function could be used to reliably model the

turbulence prediction when β ∼ 4.765. However, the

PSFs usually measured in real images have bigger

“wings,” or equivalently smaller values of β (2.5 <
β < 4; see Saglia et al. 1993), than those expected

from turbulence theory. In this paper, we simply set

β = 3.5.

(3) Calculate the mean of the best-fitting parameters over

all stars, and use the mean as the value of parameter(s)

in the basis functions to create a set of basis functions

we will then use.

(4) Finally for each star image, we squeeze the circularly

symmetric basis functions to the same ellipticity as the

star has by performing a coordinate transformation and

then decompose the star image into several elliptical

basis functions. The basis functions have to be pixe-

lated on a finite region in order to perform the associ-

ated numerical simulation. This causes violation of the

orthogonality and the coefficients of each basis func-

tion cannot be simply derived from an inner product.

We overcome this difficulty by solving a maximum

likelihood solution (e.g., Andrae et al. 2011).

Finally, we have two parameters (e1, e2) and several

coefficients of basis functions for each star. The first eight

basis functions of Gaussianlets (first row) and Moffatlets

(second row) are shown in Figure 1. We can see that

Moffatlets are more extended than Gaussianlets. This prop-

erty will lead the Moffatlets method to show good perfor-

mance in the reconstruction of the star image.
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Fig. 1 A demonstration of the first eight basis functions of Gaussianlets (first row) and Moffatlets (second row) constructed by the

program. From left to right, as the order of the basis functions increases, the number of “circles” increases. As you will also notice,

Moffatlets basis functions are “fatter” than Gaussianlets basis functions.

2.2 EMPCA

The EMPCA method is an extended version of the clas-

sical PCA. It uses expectation (E-step) and maximization

(M-step) to subtract the eigenvectors. The most important

improvement is that noise in the data can also be taken

into account (Bailey 2012). These improvements provide

a high-efficiency calculation and reasonable handling of

noise. We adopt a per-variable weighting strategy in this

work, which can be summarized as follows. The χ2 func-

tion is defined as

χ2 =
∑

vari, obsj

wij(Aij − φicj)
2. (6)

For given eigenvector φ, the E-step gives the optimal coef-

ficient as

cj ←−

∑

i wijAij
∑

i wijφ2
i

, (7)

Then the M-step improves estimation of the eigenvector as

φi ←−

∑

j wijcjAij
∑

j wijc2
j

. (8)

Here Aij = (a1, . . . , aNstar) is the dataset in which aj is

a vector denoting the jth star, φi is the initial estimation

of the 1st PC we are searching for and cj is the coefficient

calculated by projecting the jth star on the PC. The goal

is to solve the minimization problem of Equation (6) in-

corporating a weight matrix wij . The algorithm starts with

an arbitrary φ, and iteratively updates φ through the E-step

and M-step until convergence. To find higher-order PCs,

we replace A by (A − φc) and repeat the above process.

This procedure can be continued until no more effective

PCs are present.

The weight is simply related to the noise in each pixel

as wij = 1/σ2
ij . Our simulated stars contain Poisson and

Gaussian noise. The estimation of σij is given by the fol-

lowing rule: Gaussian noise σ is evaluated on the outskirt

of each star image, then for pixels with value I smaller than

2σ, we take σij = σ; for pixel value I larger than 2σ, we

take σij =
√

σ2 + gI , where g is the gain of the CCD.

3 DATA DESCRIPTION

In this paper, we invoke PhoSim (Peterson et al. 2015),

our primary tool for generating simulated images. PhoSim

uses a photon Monte Carlo approach to construct images

by sampling photons from models of astronomical source

populations. PhoSim is designed to represent LSST per-

formance and generates images expected for LSST with

high fidelity. All detailed atmosphere, telescope and cam-

era physical effects that determine the shapes, locations

and brightnesses of individual stars and galaxies can be

accurately represented. This makes PhoSim a perfect sim-

ulation tool for study of the PSF.

To examine the PSF effects, four images are gener-

ated using PhoSim version 3.4. We simulate images for

two LSST chips: R22S11 denotes a chip in the center of

the focal plane while R02S01 denotes a chip near the edge

of the focal plane. In PhoSim, all the physical effects can

be separately turned ‘on’ and ‘off’ so that we can have con-

trol over the effects which may affect the PSF. Two of the

images are simulated with diffraction ‘off’ and the other

two with diffraction ‘on.’ For all the other physical effects,

default settings of LSST are used.

In the four images, the pixel size is 0.2′′ pixel−1 and

the pixel values are simulated in ADU unit with gain= 1,

hence the value on each pixel counts the number of photons

falling in it. The star images only contain Poisson noise

and all have roughly the same magnitude. We can then add

different amounts of background Gaussian noise to each

star and estimate the signal-to-noise ratio (SNR) within a

10× 10 square around the brightest pixel by using the def-

inition SNR = Σp(Ip)/
√

Σp(σ2 + Ip), where Ip is the

simulated LSST data with only Poisson noise and σ is the

Gaussian noise we add later.

Based on our simulation, an explicit model fitting is

also performed as a verification of the result in Trujillo

et al. (2001). They claimed that the Moffat function is a

better model for fitting PSFs than the Gaussian function.

We choose several bright stars from our simulation and

then fit them with these two models by minimizing the χ2
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function

χ2 =
∑

i,j

(I0
ij − Fij)

2

σ2
ij

, (9)

where Fij is the fitting function and σij is the Possion noise

in each pixel.

Figure 2 shows the fitted brightness profile along the

diagonal for our four kinds of simulated stars. Clearly,

the Moffat model can fit our simulated stars much bet-

ter than the Gaussian profile. The Gaussian profile only

fits the inner part well but drops too fast in the outer re-

gion. Moreover, the fitting of the Moffat model is well be-

haved even at large radius. Therefore, we would expect that

Moffatlets will also work better than Gaussianlets in the

following tests.

One hundred stars are randomly selected from each

CCD. The test is then divided into four cases: In the first

three cases, a uniform level of Gaussian noise is added to

the 100 stars with σ = 10, 40 and 80 (with 〈SNR〉 ≈
416, 232 and 132 respectively); in the fourth case, differ-

ent amounts of Gaussian noise with the value of σ ran-

domly ranging from 10 to 100 are added to the stars (this

case will be denoted as “ran (10–100)” later in this arti-

cle). By including the last case, we try to mimic 100 stars

with different SNRs (80 <∼SNR <∼500), or in terms of ob-

servations, there are 100 stars with different magnitudes.

Figure 3 shows these four cases of R02S01-diffraction-

OFF simulation.

4 RESULTS

The reconstructions using the three methods are performed

on data that are affected by noise in all four cases. We aim

to test how efficient these three methods are and how the

noise affects the results. For the basis function methods,

the shape parameters are computed according to the av-

erage shapes of the 100 stars. The values of σd and rd

in the Gaussianlets and Moffatlets are listed in Table 1

and Table 2 respectively. These show that the values of

σd and rd taken for “diffraction on” data are larger those

of “diffraction off” data. This is because spikes exist in

“diffraction on” data and make the stars more extended.

Once the parameters are fitted, we can create the basis

functions. Figure 1 demonstrates the first eight basis func-

tions for both Gaussianlets and Moffatlets.

Noise affects the EMPCA method in a very apparent

way. In Figure 4, a set of patterns are clearly resolved by

the PCA algorithm in case 1 (σ = 10). But as more noise

is added, less useful PCs will be extracted. As shown in

case 2 (σ = 40), case 3 (σ = 80) and case 4 (σ = ran (10–

100)), all the higher-order PCs contain visible noise and

no signal can even be easily recognized in some of them.

This introduces uncertainty when choosing the appropriate

number of PCs to be used in the EMPCA method.

Table 1 Value of σd taken in Different Simulation Runs

10 40 80 ran (10–100)

R02S01-diffraction-OFF 1.419150 1.419232 1.419417 1.419747

R02S01-diffraction-ON 1.906670 1.904350 1.904945 1.906408

R22S11-diffraction-OFF 1.443192 1.442398 1.442060 1.440537

R22S11-diffraction-ON 1.921579 1.919953 1.920336 1.921725

Table 2 Value of rd taken in Different Simulation Runs

10 40 80 ran (10–100)

R02S01-diffraction-OFF 3.030692 3.029967 3.029196 3.029439

R02S01-diffraction-ON 4.061016 4.052640 4.051725 4.054829

R22S11-diffraction-OFF 3.083501 3.080003 3.077113 3.072700

R22S11-diffraction-ON 4.094765 4.089887 4.085220 4.086687

Here we introduce the usual χ2 function to quantify

how well the reconstruction is done.

χ2 =
∑

i,j

(

I0
ij − I

(reconstructed)
ij

)2

wij

Npixels
. (10)

I0 refers to the original extracted star with only Poisson

noise. The weight is the same as we employed in the

EMPCA algorithm.

We draw the χ2−curves corresponding to reconstruc-

tions using a different number of PCs (Fig. 5). (The recon-

struction is performed on image R02S01-diffraction-OFF,

σ = 40.) The green line which corresponds to using three

PCs is the lowest. As we decrease the number of PCs used,

the χ2−curve increases in height (as the black line repre-

senting one PC indicates) since fewer PCs mean less infor-

mation is taken into account. As we increase the number

of PCs that are used, the χ2−curve also increases in height

due to the fact that more noise is contained in the recon-

structed star images. In fact, we can see that using seven

PCs is worse than just using one PC. In the following re-

constructions, applied to all data sets, we always use four

PCs.

As for our basis function methods, we expect a larger

number of free parameters because the theoretical basis

functions cannot be more compact than the numerically

solved PCs. Since there are already two parameters (e1, e1)

for each star, we simply adopt four basis functions for the

Moffatlets and Gaussianlets method.

Using the quantity χ2, the three methods are compared

for all data sets in Figures 6, 7, 8 and 9, where the blue, red

and green lines represent the results of EMPCA, Moffatlets

and Gaussianlets respectively. All of these results broadly

support the same conclusions:

(1) EMPCA always performs better than Moffatlets and

Gaussianlets for the high SNR cases. This is because

there are high-order patterns of brightness distribu-

tions in star images which cannot be described by

our elliptical basis functions but can be resolved by

EMPCA. But for the low SNR cases, the results of

EMPCA are comparable with the results of Moffatlets.
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Fig. 2 After computing the best fits for parameters σ and rd, we construct the corresponding Gaussian (green triangles and lines) and

Moffat (red circles and lines) functions and compare to the original star profiles (black crosses and lines). The drawn curves are only

the cross-sections of the 2-dimensional images (Color version is online).

(a) σ = 10 (b) σ = 40 (c) σ = 80 (d) σ = ran (10–100)

Fig. 3 The four panels show background noise added in four different cases. All pictures are drawn according to the same gray scale.

(2) Moffatlets are always better than Gaussianlets. As

mentioned in the introduction and also in Trujillo et al.

(2001), a Moffat function fits a real PSF better than

a Gaussian function. Gaussianlets perform especially

poorly in case 1 since the Gaussian function cannot

describe the presence of large “wings” in a PSF which

are not buried by noise. Several high peaks indicated

by the green line in case 4 (σ = run (10–100)) cor-

respond to stars with higher SNRs. We also see the

“diffraction on” stars can be reconstructed better than

“diffraction off” stars. This is because in our simula-

tion, diffraction spikes are not very sharp, but rather

they make the stars more extended and smooth some

high order minor substructures.

Another two quantities are also introduced to serve

as tests for the efficiency of the reconstructions. The first

quantity is the ellipticity, which is defined as:

e1 =
Q11 −Q22

Q11 + Q22
, (11)

e2 =
2Q12

Q11 + Q22
. (12)

where Qij are second brightness moments of a star image.

A Gaussian filter is employed in calculating the moments.

The full width at half maximum (FWHM) of the Gaussian

filter is the mean FWHM of stars.

The other quantity is the square rms size of a star, de-

fined as

R2 = Q2
11 + Q2

22. (13)

Using these formulas, we first measure (R2, e1, e2) for

the original stars without Gaussian noise added yet. Then,

we calculate (R2, e1, e2) for the reconstructed stars in each
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Fig. 4 The first five PCs extracted in different cases. The first row is the case in which we add Gaussian noise with σ = 10 to the data.

In this case, we can see the most amount of signals. The other three rows are cases of σ = 40, 80 and ran (10–100) respectively. As the

noise increased, less and less signal can be recognized in the higher order PCs.
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Fig. 5 The χ2 of reconstructions by using different numbers of PCs are compared. nstar is the id of the star. The blue line corresponds

to reconstructions done by only one PC. The green, red and black lines correspond to the cases of three, four and seven PCs that are

used. The green line is the lowest one indicating the best fit.

realization. Finally, we compare the differences between

the two, (δR2, δe1, δe2).

Figures 10, 11, 12 and 13 compare δR2. As above,

the blue, red and green lines are for the results of

EMPCA, Moffatlets and Gaussianlets respectively. They

show Moffatlets fit the size of stars best (the average δR2

over 100 stars is close to 0 and the scatter is very small)

and Gaussianlets did worst (the average δR2 is always bi-

ased away from 0 although its scatter is small. As shown in

Figure 2, the Gaussian function decreases too fast at a large

radius, so Gaussianlets underestimate the sizes of PSFs that

have large “wings”). EMPCA also does well but introduces

larger scatters because of the noise in the PCs.

Figures 14, 15, 16 and 17 compare the uncertainty in

ellipticity. The black dots show the ellipticity (e1, e2) mea-

sured from the original stars (without background noise
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Fig. 6 χ2-curves in the test of data set R02S01-diffraction-OFF. Blue lines are for EMPCA, green lines for Gaussianlets and red lines

for Moffatlets. The same denotement is adopted in the following χ2
−plots shown in Figs. 7, 8, 9 and δR2

−plots shown in Figs. 10,

11, 12, 13.

0 20 40 60 80 100
0

0.5

1

1.5

2

n
star

χ
2

σ=10

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

n
star

χ
2

σ=40

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

n
star

χ
2

σ=80

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

n
star

χ
2

σ=ran(10−100)
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Fig. 7 χ2-curves in the test of data set R02S01-diffraction-ON.

added yet) and the colored dots show the deviations of el-

lipticity (δe1, δe2) between reconstructed stars and orig-

inal stars. For the basis function methods, the ellipticity

is measured first for all stars and the basis functions are

then correspondingly reshaped. Therefore, the Moffatlets

and Gaussianlets methods share the same ellipticity and

we just plot the results of Moffatlets here. The ellipticity

is measured from data where Gaussian noise is added, so

when the noise increases, the scatter in ellipticity also in-

creases.

As we can see, the basis function methods fit the

ellipticity of stars much better than EMPCA. Although
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Fig. 8 χ2-curves in the test of data set R22S11-diffraction-OFF.
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Fig. 9 χ2-curves in the test of data set R22S11-diffraction-ON.

EMPCA performs well on the χ2 test, it introduces larger

scatters in the size, especially in the ellipticity of the PSF.

This implies more stars are needed in the EMPCA method

in order to reconstruct an unknown PSF’s size and ellip-

ticity to the required accuracy. We calculate σR2/R2 and

σe in different simulation runs. The corresponding results

are listed in Tables 3, 4, 5, 6 and 7. As shown in Paulin-

Henriksson et al. (2008), uncertainties in size and elliptic-

ity of PSF calibration are the two key parameters which

will propagate into the systematics of shear measurement.

The requirement for systematic bias of a cosmic shear

measurement with σ2
sys <∼10−7 would be σR2/R2 <∼10−3

and σe <∼10−3. This requirement would present a ma-
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Fig. 10 δR2-curves in the test of data set R02S01-diffraction-OFF.
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Fig. 11 δR2-curves in the test of data set R02S01-diffraction-ON.

jor challenge for PSF reconstruction methods using PCA.

Moffatlets satisfy the requirement very well, but just be-

cause no sharp spikes are present in the data. It is chal-

lenge to model sharp spikes using circularly symmetric

Moffatlets.

5 CONCLUSIONS AND DISCUSSION

We use three methods to reconstruct the simulated star im-

ages. The basis function methods use smooth functions

which have explicit formulas and are easy to create. As

our test results have shown, Moffatlets performed better
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Fig. 12 δR2-curves in the test of data set R22S11-diffraction-OFF.
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Fig. 13 δR2-curves in the test of data set R22S11-diffraction-ON.

in image reconstructions than Gaussianlets. This is mainly

because the Moffat function is a better PSF model than the

Gaussian function.

Due to pixelization and finite size, our basis functions

are not exactly orthogonal to each other. This will increase

the cross-correlation between the coefficients. Numerical

orthogonalization algorithms, such as the Gram-Schmidt

process or Householder transformation, can be applied to

resolve this problem. The basis function methods use cir-

cularly symmetric functions which are then shaped into

elliptical ones according to the premeasured ellipticity of

stars. As a result, they only consider radial variation. High-
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Fig. 14 (δe1, δe2) plotted for the test of data set R02S01-diffraction-OFF. In the figure, there are two kinds of spots: black spots

are ellipticity (e1, e2) measured from the original stars before background noise is added; colored spots (blue and red) represent the

difference in ellipticity (δe1, δe2) between the original stars and reconstructed stars using EMPCA and Moffatlets respectively. In

Figs. 15, 16 and 17 we use the same color denotation.

−0.01 0 0.01 0.02 0.03 0.04
−0.02

−0.01

0

0.01

0.02

0.03

e
1

e
2

σ=10

−0.01 0 0.01 0.02 0.03 0.04
−0.02

−0.01

0

0.01

0.02

0.03

e
1

e
2

σ=40

−0.02 0 0.02 0.04
−0.02

−0.01

0

0.01

0.02

0.03

e
1

e
2

σ=80

−0.02 0 0.02 0.04
−0.02

−0.01

0

0.01

0.02

0.03

e
1

e
2

σ=ran(10−100)

 

 

EMPCA Moffatlets

Fig. 15 (δe1, δe2) plotted for the test of data set R02S01-diffraction-ON.
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Fig. 16 (δe1, δe2) plotted for the test of data set R22S11-diffraction-OFF.
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Fig. 17 (δe1, δe2) plotted for the test of data set R22S11-diffraction-ON.

order angular structures, such as diffraction spikes, usually

appear in realistic PSFs and will, in principle, introduce

bias into our results. Our tests show that this is not a ma-

jor issue in our simulated LSST images since the presented

diffraction spikes are not very sharp and Moffatlets can be

reconstructed very well, at least in terms of ellipticity and

size of the PSF. More detailed studies on the issue of sharp

diffraction spikes are beyond the scope of this paper.
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Table 3 Value of [σR2/R2] for EMPCA in Different Simulation

Runs

10 40 80 ran (10–100)

R02S01-diffraction-OFF 0.0080 0.0148 0.0280 0.0209

R02S01-diffraction-ON 0.0079 0.0136 0.0223 0.0150

R22S11-diffraction-OFF 0.0066 0.0128 0.0234 0.0198

R22S11-diffraction-ON 0.0074 0.0108 0.0201 0.0163

Table 4 Value of [σR2/R2] for Moffatlets in Different

Simulation Runs

10 40 80 ran (10–100)

R02S01-diffraction-OFF 0.0058 0.0090 0.0160 0.0149

R02S01-diffraction-ON 0.0026 0.0055 0.0101 0.0081

R22S11-diffraction-OFF 0.0072 0.0093 0.0147 0.0151

R22S11-diffraction-ON 0.0024 0.0048 0.0087 0.0075

Table 5 Value of [σR2/R2] for Gaussianlets in Different

Simulation Runs.

10 40 80 ran (10–100)

R02S01-diffraction-OFF 0.0635 0.0636 0.0647 0.0672

R02S01-diffraction-ON 0.0103 0.0111 0.0134 0.0142

R22S11-diffraction-OFF 0.0578 0.0576 0.0581 0.0611

R22S11-diffraction-ON 0.0100 0.0106 0.0123 0.0130

Table 6 Value of σe for the EMPCA method in Different

Simulation Runs

10 40 80 ran (10–100)

R02S01-diffraction-OFF 0.0018 0.0029 0.0037 0.0028

R02S01-diffraction-ON 0.0018 0.0025 0.0037 0.0035

R22S11-diffraction-OFF 0.0013 0.0017 0.0030 0.0031

R22S11-diffraction-ON 0.0016 0.0027 0.0043 0.0040

Table 7 Value of σe for Moffatlets/Gaussianlets in Different

Simulation Runs

10 40 80 ran (10–100)

R02S01-diffraction-OFF 0.0009 0.0010 0.0013 0.0012

R02S01-diffraction-ON 0.0004 0.0004 0.0005 0.0005

R22S11-diffraction-OFF 0.0006 0.0007 0.0009 0.0009

R22S11-diffraction-ON 0.0004 0.0004 0.0005 0.0005

The EMPCA method has several advantages over the

basis function methods: (1) The resolved PCs are compact

and flexible. It is the most efficient way to reconstruct ir-

regular images. (2) The PCs are orthogonal to each other,

which makes their coefficients independent and they can

be easily interpolated. When using the PCA method, the

resolved PCs inevitably contain noise. This would intro-

duce relatively higher scatter in the size and ellipticity of

the reconstructed PSF and then increase systematic bias in

the cosmic shear measurement.

The current PSF reconstruction method is still not ac-

curate enough to produce a satisfying shear measurement

for weak lensing surveys. High-order angular structures

like diffraction spikes have not been considered in detail in

this paper. However, our tests have shown that Moffatelets

are a very promising tool for PSF reconstruction. In fu-

ture studies, we will combine the angular structures of

Moffatlets and EMPCA techniques together to search for

PCs in a finite Moffatlets space.
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Appendix A: MATHEMATICAL DERIVATION OF

RADIAL FUNCTIONS OF

MOFFATLETS

In this appendix, we give the derivation of the radial func-

tions of the Mofattlets, showing that the basis functions

have an analytic form. We require that radial basis func-

tions are modified by a weight function with a Moffat pro-

file

Ql(r) = Rl(r)w(r), w(r) =
[

1 +
( r

rd

)2]−β

. (A.1)

The radial basis functions satisfy

2π

∫ +∞

0

drrRl(r)Rl′ (r)e
−u(r) = δll′ , (A.2)

where

u(r) = − ln

{

[

1 +
( r

rd

)2]−2β
}

. (A.3)

The corresponding inverse function is

r = a(u) = rd

√

eu/2β − 1 . (A.4)

We have

rdr =
r2
d

4β
e

u
2β du. (A.5)

Then Equation (A.2) reads

πr2
d

2β

∫ +∞

0

duRl[a(u)]Rl′ [a(u)]e−(1−1/2β)u = δll′ .

(A.6)

We change the variables according to v(u) = (1− 1/2β)u
and introduce a new function to relate r and v in the form

r = b(v). Equation (A.2) reads

πr2
d

2β − 1

∫ +∞

0

dvRl[b(v)]Rl′ [b(v)]e−v = δll′ . (A.7)
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We notice that this equation is similar to weighted integra-

tion of Laguerre polynomials (Eq. (4))

∫ +∞

0

dvLl(v)Ll′ (v)e−v = δll′ . (A.8)

Then we have

Rl(r) =

√

2β − 1

πr2
d

Ll[v(r)], (A.9)

where

v(r) =
( 1

2β
− 1

)

ln
[

1 +
( r

rd

)2]−2β

. (A.10)

The final radial basis function reads

Ql(r) =

√

2β − 1

πr2
d

Ll

[

v(r)
][

1 +
( r

rd

)2]−β

. (A.11)
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