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Abstract Considering features of stellar spectral radiation and sky surveys, we established a computational

model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar

flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using

stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then deter-

mined reasonable parameters that produced highly accurate estimates under certain gray deviation levels.

Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data

from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were

accurate when we compared them to known values from literatures. This research makes full use of catalog

data and presents an original technique for studying stellar characteristics. It proposes a novel method for

calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and

practical data for finding information about radiation in any band.

Key words: physical data and process: radiative transfer — methods: data analysis — astronomical

databases: miscellaneous — stars: atmospheres

1 INTRODUCTION

In order to obviously (Ahn et al. 2012) distinguish targets

in sky surveys, appropriate detection bands need to be se-

lected. The bands used by existing large scale sky surveys

are listed in Table 1 (Neugebauer et al. 1984; Wright et al.

2010; Skrutskie et al. 2006; Ishihara et al. 2010; Egan et al.

2003; Ahn et al. 2012; Zhao et al. 2012; Kordopatis et al.

2013; Steinmetz et al. 2006; Aihara et al. 2011; Xiang

et al. 2015; Yuan et al. 2015; Luo et al. 2015). The de-

tected bands that already exist are not comprehensive, and

the flux density across large ranges of wavelength cannot

be obtained. In other words, stellar radiation energy cannot

be obtained in some other bands, but we need information

about energy in those bands. It is therefore important to de-

velop methods to determine the required information about

radiation from existing data. It is important to derive stellar

atmospheric parameters (including stellar effective temper-

atures, surface gravity and chemical abundances) from dif-

ferent stellar spectral data. Stellar effective temperatures

effect luminosities and spectral characteristics, and they

are also closely related to stellar physical properties, chem-

ical compositions and stellar evolution (Huang et al. 2015).

Thus, if we can obtain stellar effective temperatures and

detected angular parameters, we can reduce the complex-

ity of this problem and derive the radiation energy of any

band.

A star’s color is determined by its effective temper-

ature. Preliminary information about stars such as effec-

tive temperatures can be obtained from the stellar color

or approximate spectral type. We can calculate stellar

physical parameters from low-resolution spectra using

the Indirect Calculation Method, Infrared Flux Method,

Template Matching Method, Neural Network Method,

Non-parametric Estimation Method, Color Selection

Method, and so forth. The Indirect Calculation Method is

used to find the effective temperatures of a star using the

distance between the star and the Earth, and the bright-

ness of the star. Blackwell & Shallis (1977) and Blackwell

et al. (1980) used the Infrared Flux Method to calculate

stellar effective temperatures and angular diameters. This

approach needs a precise sequence of infrared and temper-

ature data. However, precise data regarding these physical

properties can only be determined for a limited number of

stars, regardless of what method they use. Only a small

number of stars have been precisely measured. Soubiran

et al. (1998) and Katz et al. (1998) established a stellar

spectral template library including 211 stars. They used

the Nearest Neighbor Method to calculate stellar spec-

tral radiation fluxes. Bailer-Jones (2000) calculated syn-

thetic spectra and stellar spectral radiation fluxes using the

Neural Network Method. Zhang et al. (2005) proposed

fitting and estimating stellar effective temperatures using

a polynomial exponential model and the Non-parametric
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Table 1 Sky Survey and Detection Bands

Probe name Detection bands (µm)

Infrared Astronomical Satellite (IRAS) 12, 25, 60, 100

Wide-field Infrared Survey Explorer (WISE) 3.4, 4.6, 12, 22

Two Micron All Sky Survey (2MASS) 1.25, 1.65, 2.17

AKARI , previously called InfraRed Imaging Surveyor (IRIS) 9, 18

Midcourse Space Experiment (MSX) 4.25, 4.29, 8.23, 12.13, 14.65, 21.34

Sloan Digital Sky Survey (SDSS) 0.3551, 0.4686, 0.6166, 0.748, 0.8932

Large sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) 0.37–0.9

Estimation Method. They first decomposed spectral data

using Principal Component Analysis (PCA). They then

derived the fitting surface of the polynomial exponential

function that corresponded to its surface temperature us-

ing the PCA data. Stellar surface temperatures were cal-

culated using the final resulting polynomial logarithmic

function. Engelke et al. (2006) composed a library of stel-

lar spectral templates using spectral data fragments that

were recorded by spectrometers. They used the spectral

template technique proposed by Cohen (1993), in which

any segment of spectral radiation flux can be fitted and

composed using this spectral template library. However,

it is not accurate and fundamental stellar information (in-

cluding stellar effective temperatures and detection angles)

was not calculated. Rebassa-Mansergas et al. (2010, 2012,

2013) searched for white dwarf-main sequence binaries

using template matching and the Color Selection Method

based on optical and infrared photometry from the Sloan

Digital Sky Survey (SDSS). Ren et al. (2014) calculated

stellar temperatures using the Template Matching Method,

and estimated the distance of DA/M binaries. They focused

on white dwarf-main sequence binaries.

The above summary shows that existing publications

mainly used star catalog data and spectral template tech-

nology to calculate stellar atmospheric parameters. Most

models used star catalogs to directly record stellar radi-

ation energy, and simulated bands are limited. Based on

this, we applied a particle swarm optimization algorithm

to these data to calculate effective stellar temperatures and

detected angular parameters considering stellar radiation

flux data from surveys. These two parameters can be used

to indirectly calculate radiation energy of any band that is

required. In this work, we investigated impacts of algorith-

mic parameters, gray deviations and the selection of ob-

served samples on inversion results. We also analyzed the

performance of inversion models and determined the op-

timal inversion parameters. We compared our results with

known data to verify the accuracy and applicability of the

inversion model.

2 METHODS

2.1 Stellar Effective Temperature Model

Stars have characteristics that are similar to blackbodies.

However, the presence of gases at different temperatures,

pressures and densities on the stellar surface means that

some bands have significant absorption or emission lines.

It is important that we study gases and characteristics of

stellar surfaces in relation to these absorption or emis-

sion lines. If the stellar atmosphere is supposed to be in

a state of thermodynamic equilibrium, stellar surface tem-

peratures can be calculated using the relevant blackbody

radiation formula. Assuming stars have similar spectral

emissivity and gray characteristics (as discussed later in

this article), if these parameters can meet our requirements

regarding detection accuracy, then this assumption is valid.

Planck’s law describes the electromagnetic radiation emit-

ted by a blackbody in thermal equilibrium at a definite tem-

perature, and that the spectral emissive power of the black-

body in some bands is

Eb(λ1−λ2) =

∫ λ2

λ1

c1λ
−5

exp[c2/(λT )] − 1
dλ. (1)

Here, Eb(λ1−λ2) represents the spectral emissive power of

the blackbody from λ1 to λ2 (W · m−2); λ is the wave-

length (m), T is the thermodynamic temperature of the

blackbody (K); c1 is the first radiation constant (c1 =
3.7419 × 10−16 W · m2); and c2 is the second radiation

constant (c2 = 1.4388× 10−2 m · K).
We denote the stellar spectral emissivity as ελ1−λ2

.

The band radiation power is

Eλ1−λ2
=ελ1−λ2

· Eb(λ1−λ2), (2)

and the band radiation intensity is

Iλ1−λ2
=Eλ1−λ2

/π. (3)

The radius of the effective stellar temperature for the cal-

culation is r, and the distance between the stellar surface

and the receiving surface of the detector is R. Then, the

solid angle between the stellar surface and the detector is

dΩ = dAs/R2 = πr2/R2. (4)

A schematic diagram of the solid angle is shown in

Figure 1. The band radiation power received at the detector

is

Ep(λ1−λ2) = dΩ · Iλ1−λ2
. (5)

The band radiation power received at the detector can be

calculated from Equations (1) - (5), and is defined as

Ep(λ1−λ2) =
r2

R2
· ελ1−λ2

·

∫ λ2

λ1

c1λ
−5

exp[c2/(λT )] − 1
dλ.

(6)
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Fig. 1 Schematic diagram of the stellar solid angle.

Thus, we can define the stellar detected angular parameter

as

ξλ1−λ2
= ελ1−λ2

·

(

r2/R2
)

. (7)

Equation (6) can be written as

Ep(λ1−λ2) = ξλ1−λ2
·

∫ λ2

λ1

c1λ
−5

exp[c2/(λT )] − 1
dλ, (8)

which can be used to determine the band radiation power

received at the detector that is above the Earth. In other

words, the band radiation power received at the detector is

calculated using the stellar effective temperature (Teff) and

the detected angular parameter (ξλ1−λ2
), which is,

Ep(λ1−λ2) = f (Teff , ξλ1−λ2
) . (9)

Because the stellar surface contains gases that have differ-

ent temperatures, pressures and densities, some bands have

significant absorption or emission lines. Therefore, the ra-

diation power from the stellar band is not exactly the same

as a blackbody. To be more specific, there are differences

from an ideal blackbody in some bands. This deviation is

defined as the gray rate, (δλ1−λ2
). Equation (9) can also be

written as

Ep(λ1−λ2) = f (Teff , ξλ1−λ2
, δλ1−λ2

) . (10)

2.2 Acquisition of Parameters in the Stellar Effective

Temperature Model

The average radiation flux data for a fixed band can be ob-

tained using a satellite detector, but the radiation flux data

of other bands cannot. To solve this problem, we consider

the following. We calculate effective stellar temperatures

and detected angular parameters using inversion and sev-

eral fixed band average radiation flux data. We can use this

model to get stellar flux data in any band.

Therefore, we regard the physical model established in

Section 2.1 as the direct problem, and use stochastic parti-

cle swarm optimization (SPSO) to solve the inverse prob-

lem. This process is illustrated in Figure 2.

The direct problem can be described as follows. First,

we calculate the radiation power of some bands using

known stellar effective temperatures and detected angu-

lar parameters. Then, we determine the average radiation

flux density data. The corresponding inverse problem cal-

culates some band radiation power using the average ra-

diation flux density data. Then, stellar effective tempera-

tures and detected angular parameters are calculated with

an inverse method. The average flux density data are the

driving source of the inverse problem. In this paper, these

data were obtained from the Midcourse Space Experiment

(MSX) catalog.

The MSX was launched by the United States in 1996,

and has been used to study the Galactic plane and areas

that are not covered by observations from the Infrared

Astronomical Satellite (IRAS). MSX carries an infrared

instrument called SPIRIT, which is a 35 cm aperture off-

axis telescope with a high sensitivity. Data from version

2.3 of the MSX point source catalog were used in this pa-

per. The MSX infrared photometric catalog contains data

on 177 860 stars. Estimations of the right ascension, dec-

lination, proper motion and average flux density for six

bands of stars are listed in the MSX catalog. The six bands

are 6.8–10.8 µm, 4.22–4.36 µm, 4.24–4.45 µm, 11.1–13.2

µm, 13.5–15.9 µm and 18.2–25.1 µm. The flux density of

radio sources is

Sv = (θ, φ) cos θdΩ, (11)

where Sv (W ·m−2
·Hz−1) represents the emitted energy.

The brightness of a radio source (also called its in-

tensity) represents the emitted energy per unit frequency

interval per unit area per unit time interval per unit solid

angle. The integral illumination is obtained by multiplying

the average energy density over the band. That is,

Ep(λ1−λ2)=

∫ λ2

λ1

Eλdλ =

∫ c/λ2

c/λ1

Eγdγ, (12)

which corresponds to the radiation power in the frequency

interval. The MSX catalog table contains estimations of the

average flux density for six bands of stars. We can deter-

mine the radiation power of these six bands.

We cannot determine analytical solutions because the

equation is nonlinear. We apply numerical methods to the

inverse problem. Additionally, it is difficult to define gen-

eral numerical methods that produce satisfactory results

because the range of effective stellar temperatures is large

and detected angular parameters may range over several

orders of magnitude. We apply the particle swarm opti-

mization (PSO) algorithm that was proposed by Eberhart

et al. (1995) and Kennedy (2007). The algorithm can find

a global optimal solution or a good approximate solution.

It can escape from a local minimum in solution space in

order to find a global optimal solution. PSO has been stud-

ied extensively and applied to many fields. Recently, the

SPSO algorithm has been developed. Yuan et al. (2010)

used SPSO to calculate the inverse problem for atmo-

spheric aerosol size distribution. Qi et al. (2008, 2011)
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Table 2 Radiation Power in Six Bands at Different Effective Temperatures

Initial parameters Band radiation power (10−16 W · m−2)
Detected angular Effective 6.8–10.8 4.22–4.36 4.24–4.45 11.1–13.2 13.5–15.9 18.2–25.1

parameters temp. (K) (µm) (µm) (µm) (µm) (µm) (µm)

1000 15.039 2.611 3.841 2.661 1.601 1.234

2 × 10−19 5000 172.210 75.497 108.222 22.736 12.359 82.945

10000 377.966 181.093 258.973 48.369 26.005 17.184D i r e c t p r o b l e mI n v e r s e p r o b l e m B a n dr a d i a t i o np o w e r A v e r a g er a d i a t i o n f l u xd e n s i t yS t e l l a r e f f e c t i v et e m p e r a t u r e s a n dd e t e c t e d a n g u l a rp a r a m e t e r s
Fig. 2 Direct and inverse problems of derived stellar parameters.

adopted PSO to analyze the inverse transient radiation in

one-dimensional non-homogeneous participating slabs and

retrieve properties of participating media using different

spans of radiation signals. Wang et al. (2011) calculated

the absorption coefficient in a one-dimensional medium

and reconstructed the coal fire depth profile using SPSO.

We applied the SPSO algorithm to solve the inverse prob-

lem of effective stellar temperatures and detected angular

parameters.

2.3 Analysis of the PSO and the SPSO Algorithms

In standard PSO, every possible solution is represented as

a particle in a population, and each particle has its own po-

sition and velocity related to the inverse problem. All par-

ticles in the solution space search for the global optimum

by pursuing an optimal adaptation that is determined by an

objective function.

The mathematical description of PSO is as follows.

There are M particles in a D-dimensional search space,

and the spatial position of each particle represents a

potential solution. The position vector for particle i is

Xi = (xi1, xi2, · · ·, xiD), and the velocity vector is

Vi = (vi1, vi2, · · ·, viD). The best position that this

particle has experienced (i.e., individual best) is Pi =
(pi1, pi2, · · ·, piD) and is denoted Pbest. The correspond-

ing best position of all the particles (i.e., global best) is

denoted by Pg = (pg1, pg2, · · ·, pgD). The particle veloc-

ity depends on the personal best and global best, and it is

given by

Vi (t + 1) =wVi (t) + c1r1 [Pi (t) − Xi (t)]

+ c2r2[Pg (t) − Xi (t)].
(13)

Here, t is the current iteration, w is the inertia weight, c1

and c2 are constant accelerations, and r1 and r2 are random

numbers in [0, 1]. The new location of Xi is

Xi (t + 1) = Xi (t)+Vi (t+1) . (14)

Table 3 Different Combination Plans

Different Plans Band Combinations (µm)

Plan A 6.8–10.8, 4.22–4.36, 4.24–4.45

Plan B 6.8–10.8, 4.24–4.45, 13.5–15.9

Plan C 6.8–10.8, 4.24–4.45, 18.2–25.1

Plan D 6.8–10.8, 13.5–15.9, 18.2–25.1

Plan E 4.22–4.36, 4.24–4.45, 11.1–13.2

Plan F 11.1–13.2, 13.5–15.9, 18.2–25.1

We set w = 0, and then get

Xi (t + 1) =Xi (t) + c1r1 [Pi (t) − Xi (t)]

+ c2r2[Pg (t) − Xi (t)].
(15)

This formula reduces the global search capability, but in-

creases the local search capability. So, if Xj(t) = Pj =
Pg , particle j will “fly” at a velocity of zero. To improve

the global search capability, we conserve the current best

position of the swarm Pg and particle j’s best position

Pj , then give a new position Xj(t + 1) to particle j, and

other particles are manipulated according to Equation (15),

thus the global search capability is enhanced. Because of

the need to sample the particle’s position from the domain

when Xj(t) = Pj = Pg , the modified PSO algorithm is

called SPSO.

The standard PSO algorithm may prematurely con-

verge to suboptimal solutions that are not even guaranteed

to be local extrema. By contrast, the SPSO, which is de-

veloped based on the analysis of standard PSO, is more

efficient because of its local search capability according to

Cui et al. (2004). The SPSO algorithm was compared with

the PSO algorithm in the following, and then the optimal

choice was obtained.

We used the following computational procedure to

solve the stellar parameters problem.

Step 1: Set the input parameters of the system. The

population size is set to 50, but it is adjustable and change-

able. The maximum number of iterations is 3000. There are

two variables and we set the acceleration constants to c1 =
1.80 and c2 = 1.80. We assume that the effective tempera-
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ture is within 1000−20 000 K and that the detected angular

parameters are between 1.0 × 10−21 and 1.0 × 10−16. In

this algorithm, we expand the above parameters to meet

the computing requirements. That is, the range of effec-

tive temperatures is set to 1.0 × 102.5
− 1.0 × 104.5 K,

and the range of detected angular parameters is set to

1.0 × 10−26
− 1.0 × 10−10. This determines the bound-

ary of the solution space.

Step 2: Calculate the fitness value of each particle. A

particle’s fitness value is equal to its objective function

value. The objective function is

Fitnes si=

√

[

(Eipa − Eipb) /Eipa

]2

, (16)

where Eipa represents the initial value of the inversion and

Eipb represents the value for particle i.
Step 3: Compare the fitness value of each particle with

the a priori best, Pi. If the fitness is lower than Pi, set this

value as the current Pi, and record the corresponding par-

ticle position.

Step 4: Compare the fitness value of each particle with

the a priori best Pg; if the fitness is lower than Pg , set this

value as the current Pg, and record the corresponding par-

ticle position.

Step 5: Generate the new particle, and update the ve-

locity and position of other particles using Equations (13)

and (15). If Xj(t) = Pj = Pg , the position of particle j is

generated randomly.

Step 6: Check the stopping criteria. If the pre-set max-

imum number of generations is reached or if no improve-

ment to the best solution is obtained after a given number

of iterations, then the process is terminated. Otherwise, we

increment the iteration index (t = t + 1) and go back to

Step 2.

We compared the performances of the PSO and SPSO

algorithms. For standard PSO, w = 1.0, and for SPSO

w = 0.0. There were two termination criteria: (1) when

the iteration accuracy was below a fixed level of 10−10 and

(2) when we reached more than 3000 generations. We used

five particles for both algorithms. The results are compared

in Figure 3. The SPSO algorithm converged much faster

than the standard PSO algorithm. Moreover, the SPSO al-

gorithm found better values than the standard PSO algo-

rithm with a smaller number of generations. Therefore, we

applied SPSO to solve the stellar parameters problem.

3 NUMERICAL EXPERIMENTS AND RESULTS

Stellar effective temperatures and detected angular param-

eters can be calculated using the above SPSO algorithm if

the stellar band radiation power is known. The accuracy

of results is related to initial values of parameters in the

inversion algorithm, the selected inversion bands and the

applicable inversion temperature range. To verify the ac-

curacy and stability of the SPSO algorithm for calculating

stellar effective temperatures and detected angular param-

eters, we analyzed the following examples and studied the

three factors separately.
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The six band radiation power is different if effective

temperatures and detected angular parameters are differ-

ent. Table 2 shows the band radiation power data for dif-

ferent initial temperatures.

Case 1. Number of particles

The number of particles in the SPSO algorithm has

an important effect on the inversion efficiency, and it is

directly related to the accuracy. Thus, we must determine

the optimal number of particles.

We set the number of particles to 5, 10, 20 and 50 and

calculated the results in Figure 4. An increase of the par-

ticle number corresponds to a decrease in the number of

generations required for the algorithm to converge. When

the convergence value was set to 1.0 × 10−8, 749 genera-

tions were required when there were five particles, whereas

only 86 generations were required when there were 50 par-

ticles.

When calculating effective temperatures and detected

angular parameters, nonlinearities mean that more parti-

cles significantly increase the computation time, but do not

help the convergence of the residual. Therefore, consider-

ing the computation time and the accuracy, we selected 50

particles.

Case 2. Selection of the inversion band

From the six bands of the MSX catalog, three bands

of radiation power data were used as initial values for the

inversion. The six combinations (Plans A, B, C, D, E and

F) are shown in Table 3.
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Table 4 Relative Errors for Different Gray Deviations When Teff = 1000 K using SPSO

Parameter True value
γ = 0 γ = 5 γ = 15 γ = 30

SPSO εrel% SPSO εrel% SPSO εrel% SPSO εrel%

Teff 1000.0 1000.0 0.000 999.3 0.069 1001.4 0.142 1014.8 1.4805

ζ × 10−19 2.0000 2.0000 0.000 2.0163 0.813 2.0211 1.057 1.9534 2.329

Table 5 Relative Errors for Different Gray Deviations When Teff = 10 000 K using SPSO

Parameter True value
γ = 0 γ = 5 γ = 15 γ = 30

SPSO εrel% SPSO εrel% SPSO εrel% SPSO εrel%

Teff 10000.0 10000.0 0.000 9724.2 2.758 9633.0 3.670 10876.9 8.769

ζ × 10−19 2.0000 2.0000 0.000 2.0763 3.813 2.1138 5.688 1.8436 7.820
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Fig. 5 Teff relative error compared with the gray rate for the six
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Fig. 6 Relative error compared with the gray rate for the six
plans.

Stellar effective temperatures and detected angular pa-

rameters depend on the inversion plans. This reflects the

different properties of the estimated parameters.

To demonstrate the effect of the gray rate (δ) on the

inverse parameters, we added random standard deviations

to the exact parameters computed from the direct problem.

That is,

Ymea = Yexact + σ · ς, (17)

where ς is a normally distributed random variable with zero

mean and unit standard deviation. The standard deviation

of the measured Eλ1−λ2
, for a measured error γ at 99%

confidence is

σ=(Yexact × γ%) /2.576. (18)

For comparison, the relative error is

εrel= 100 × (Yest−Yexact) /Yexact. (19)

The stellar effective temperature was set to 5000 K, and

the detected angular parameter was set to 2.0 × 10−19.

We then calculated radiation flux data for the six bands.

Normally distributed deviations were added to the radia-

tion flux data, and then the data with no deviations were

used to solve the inverse calculations of the effective tem-

perature and detected angular parameter. The data for the

six plans are shown in Table 3. The variations of the effec-

tive temperature and detected angular parameter with gray

deviations are shown in Figures 5 and 6 respectively.

As shown in Figures 5 and 6, the relative errors of the

six plans were very close to 0 when there were no gray

deviations. The estimated parameters are very consistent

with the true values. This shows that each plan satisfies the

requirement that there are no gray deviations. When there

were gray deviations, an increase in gray deviations corre-

sponded to an increase in the relative error of the effective

temperature and detected angular parameter. The relative

errors for Plans A, C and D increased more rapidly and sig-

nificantly than the gray rate. When the gray rate increased

by 30%, the effective temperature for Plans A and C in-

creased by 157.5% and 112.7% respectively, while the de-

tected angular parameter of Plan D increased by 141.4%.

This shows that there are strong absorption or emission

lines when using these three plans, and that they produce

the effective temperature and detected angular parameter

values that represent deviations from the initial spectral ra-

diation power data.

The inversion results for Plans B, E, and F were rel-

atively good, as shown by the detailed errors in Figures 7

and 8. The inversion results for Plan B were the closest to

the true values. When the gray rate increased by 30%, the

relative errors in the effective temperature and detected an-

gular parameter increased by 5.4% and 5.1% respectively.

Therefore, the relative errors of the inversion results were

much smaller than the gray deviations, indicating that the

inversion results for Plan B were the best.
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Fig. 7 Teff relative error compared with the gray rate for the
three plans.
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Fig. 8 Relative error compared with the gray rate for the three
plans.

In the above results, the effective temperature was set

to 5000 K. Considering the large range of effective temper-

ature, different effective temperatures correspond to differ-

ent bands of radiation power. We must verify the accuracy

of the results for different effective temperatures.

Next, we verified the accuracies of stellar effective

temperatures and detected angular parameters for differ-

ent radiation power data obtained from different effective

temperatures (1000 K and 10 000 K).

We then set the effective temperature to 1000 K or

10 000 K, and used the obtained band radiation power in

the inverse problem. The results are shown in Tables 4 and

5. When the effective temperature was 1000 K and the gray

rate increased by 30%, the relative errors in the effective

temperature and detected angular parameter only increased

by 1.4805% and 2.329% respectively. When the effective

temperature was 10 000 K, the relative errors in the effec-

tive temperature and detected angular parameter only in-

creased by 8.769% and 7.820% respectively. The relative

errors in the inversion parameters were much smaller than

the gray rate, and the estimates were close to the initial

data. Therefore, the inversion requirement was satisfied.

The relative errors in the estimates obtained by the in-

verse calculations are less than the gray deviations of the
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Fig. 9 Comparison of effective temperatures in the liter-

ature and estimated values in this work. The differences

∆Teff=
(

T
ref

eff −T
thiswork

eff

)

are plotted at the bottom (with red

dots and error bars representing the means and standard devi-

ations of differences respectively in the individual temperature

bins).

raw data for different effective temperatures. Plan B can be

used to calculate the raw data without gray deviations, and

to calculate the original data with gray deviations.

Case 3. The impact of repeated calculations on the in-

version results

Repeated calculations affect the inversion results. As

shown in Table 6, when the effective temperature was

5000 K, the detected angular parameter was 2.0 × 10−19

and the gray deviation was 30%, the relative errors changed

with repeated calculations. The relative error of the effec-

tive temperature was stable at 5.369% and the relative er-

ror of the detected angular parameter was stable at 5.098%.

This shows that the method can stably calculate the effec-

tive temperature and the detected angular parameter.

Our analysis below is based on the above results.

Although the maximum radiation flux was for Plan A, the

radiation wavelength interval was too small. This resulted

in a large inversion error. There were long bands of 18.2–

25.1 µm for Plans C and D, which also caused large inver-

sion errors. However, Plan B did not have these problems,

and produced the best inversion results. It used larger band

intervals of 6.8–10.8 µm, 4.24–4.45 µm and 13.5–15.9

µm, which have big radiation fluxes. So, we used Plan B
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Fig. 10 Relative errors for different Teff between 3000–5000 K.
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Fig. 11 Relative errors for different Teff between 5000–6000 K.
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Fig. 12 Relative errors for different Teff between 6000–7000 K.

as the inverse solution for the stellar flux data of the MSX

catalog.

4 DATA COMPARISON AND ANALYSIS

The results of the above numerical experiments demon-

strated that the model and SPSO algorithm produced

highly accurate and stable calculations of stellar effec-

tive temperatures and detected angular parameters. We de-

termined the accuracy using an error analysis with dif-

ferent temperatures and different band combinations, and

checked the stability by analyzing repeated calculations.

This model and algorithm can solve the stellar flux data in-

Table 6 Results for Different Numbers of Calculations,

Demonstrating the Stability of the Inversion.

Calculation Effective temperatures Error Detected angular Relative

numbers (K) (%) parameters (10−19) error (%)

1 5268.4705 5.369 1.8980343 5.098

2 5268.4714 5.369 1.8980339 5.098

3 5268.4711 5.369 1.8980340 5.098

4 5268.4711 5.369 1.8980340 5.098

5 5268.4706 5.369 1.8980343 5.098

6 5268.4713 5.369 1.8980339 5.098

7 5268.4694 5.369 1.8980348 5.098

8 5268.4693 5.369 1.8980348 5.098

9 5268.4702 5.369 1.8980344 5.098

10 5268.4705 5.369 1.8980343 5.098

version problem for effective temperatures between 1000

and 20 000 K, with detected angular parameters between

1.0×10−21
−1.0×10−16 and a gray rate below 30%. When

calculating the radiation flux data for the MSX catalog, we

used the parameter settings and algorithm suggested by the

above analysis.

We calculated the stellar effective temperatures and

detected angular parameters for the MSX catalog using the

average radiation flux data for each band based on the pro-

posed algorithm.

Figure 9 compares our results with 336 true values

known in literatures (Alves-Brito et al. 2010; Bergemann

& Gehren 2008; Bihain et al. 2004; Burris et al. 2000;

Carney et al. 2003; Charbonnel & Primas 2005; Fulbright

& Johnson 2003; Gratton et al. 2000; Hansen et al. 2012;

Ishigaki et al. 2010; Gratton et al. 2003; Ishigaki et al.

2012; Jonsell et al. 2005; Ishigaki et al. 2013; Mishenina &

Kovtyukh 2001; Reddy et al. 2006; Roederer et al. 2008;

Saito et al. 2009; Simmerer et al. 2004; Takada-Hidai et al.

2002; Takeda & Honda 2005; Van Eck et al. 2003; Yong

et al. 2003; Fulbright 2000; Høg et al. 2000; Monet et al.

2003; Marshall 2007; Kiraga 2012). The estimated effec-

tive temperatures are consistent with previously reported

data. The errors are shown at the bottom in Figure 9. Most

errors were less than 10%, except for those corresponding

to individual stars. These inversion results are quite reli-

able.

Stellar effective temperatures calculated using the

MSX catalog are mostly concentrated in 3000–7000 K.

The relative errors are different within this temperature

range. The relative errors for three temperature ranges

(3000–5000 K, 5000–6000 K and 6000–7000 K) are

shown in Figures 10, 11 and 12 respectively. We can use

these results to determine the best inversion temperature

range for this computational model. The errors were uni-

formly distributed around 6% for effective temperatures of

3000–5000 K, whereas they were mostly less than 6% for

effective temperatures of 5000–6000 K. The overwhelm-

ing majority of errors were less than 6% for effective

temperatures of 6000–7000 K. Therefore, this model is

most suitable for high temperatures between 6000–7000 K.

This conclusion is consistent with the theory. According to
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Fig. 13 Histogram distribution of stellar effective temperatures

in the MSX catalog.

Plank’s law, higher effective temperatures correspond to

larger radiation fluxes. The impact of high temperature is

smaller than that of low temperature at the same gray rate.

The histogram distribution of Teff in the MSX catalog

is plotted as Figure 13. As we can see, the stellar effec-

tive temperatures mainly range from 3000 K to 7000 K,

and temperature from 4000 K to 6000 K is a hot region.

The errors in these ranges are acceptable. The means of

differences in individual temperature bins from 4300 K to

6000 K are close to 0 K, and the errors of temperatures

are within 200 K. The model and method can be applied to

calculation of temperatures using the MSX catalog.

5 SUMMARY

We used features of stellar spectral radiation and sky sur-

veys to establish a computational model for stellar effective

temperatures, detected angular parameters and gray rates.

We applied known stellar flux data in some bands to de-

termine stellar effective temperatures and detected angu-

lar parameters using SPSO. We first verified the reliability

of the SPSO algorithm, and then found reasonable param-

eters that produced accurate estimates under certain gray

deviation levels. Finally, we calculated 177 860 stellar ef-

fective temperatures and detected angular parameters using

the MSX catalog data. We found that the estimated stellar

effective temperatures were very accurate when compared

with stellar effective temperatures that are published in lit-

eratures. We selected bands of 6.8–10.8 µm, 4.24–4.45

µm and 13.5–15.9 µm in our inversion. Our results were

very accurate. The gray deviation has a smaller impact

on the inversion results if the bands are closer to shorter

wavelengths for temperatures of 6000–7000 K. This work

makes full use of catalog data and presents a new way of

studying stellar characteristics. It proposes a novel way of

calculating stellar effective temperatures and detected an-

gular parameters.
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