An H₂O Maser survey towards BGPS sources in the Outer Galaxy

Hong-Wei Xi^{1,2}, Jian-Jun Zhou^{1,3}, Jarken Esimbek^{1,3}, Gang Wu^{1,3}, Yu-Xin He^{1,2}, Wei-Guang Ji^{1,3}, Xiao-Ke Tang^{1,2} and Ye Yuan^{1,3}

¹ Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011, China; xihongwei@xao.ac.cn

² University of Chinese Academy of Sciences, Beijing 100049, China

³ Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi 830011, China

Received 2015 May 3; accepted 2015 December 25

Abstract We performed an H₂O maser survey towards 274 Bolocam Galactic Plane Survey (BGPS) sources with 85° < l < 193° using the Nanshan 25 m radio telescope. We detected 25 H₂O masers, and five of them are new detections. The detection rate of H₂O masers in our sample is 9% which is very low. The detection rate of H₂O masers increases as the 1.1 mm flux density of BGPS sources increases, and both the peak flux density and luminosity of H₂O masers increase as the sources evolve. The detection rate of H₂O masers toward BGPS sources without HCO⁺ emission is low. The BGPS sources associated with both H₂O and CH₃OH masers seem to be more compact than those only associated with H₂O masers. This indicates that the sources with both masers may be in a relatively later evolutionary stage. The strongest H₂O maser source G133.715+01.217, also well known as W3 IRS 5 which has a flux density of 2.9×10³ Jy, was detected at eight different nearby positions. By measuring the correlation between the flux densities of these H₂O masers and their angular distance from the true source location, we get the influence radius $r = \frac{1}{0.8} \log(\frac{F_0}{3 \text{ mms}})$. For our observations, strong sources can be detected anywhere within this radius. It is helpful to determine whether or not a weak maser nearby the strong maser is a true detection.

Key words: masers — radio lines: ISM — stars: formation

1 INTRODUCTION

Massive stars (with main sequence masses $\geq 8 M_{\odot}$) mainly lie in the spiral arms of the Milky Way (MW). They inject significant amounts of energy into the MW, and play an important role in its evolution. They are also the main provider of ultraviolet (UV) radiation. The energetic stellar wind forms diffuse media which could form the next generation of stars (Zinneker 1990). Eventually, they form the heavy elements at the end of their life when they explode as supernovae (Kennicutt 2005). However, the formation of massive stars still remains a mystery. They are deeply embedded in the parental molecular cloud in which they formed. It is hard to observe them at optical wavelengths due to the heavy extinction. Masers associated with massive star formation could penetrate thick clouds at centimeter and millimeter wavelengths. They provide a powerful tool for investigating the dynamics and physical conditions of massive star-forming regions at very high angular resolutions (Sanna et al. 2010a,b; Moscadelli et al. 2011).

 H_2O , CH_3OH and OH masers are common interstellar masers associated with a star formation region (SFR). H_2O masers are the most common maser species in our MW (Caswell 2007). They are associated with both lowand high-mass SFRs. It is widely accepted that the H_2O masers are collisionally excited by outflows or jets from an SFR. High angular resolution observations of H_2O masers (Sanna et al. 2010a,b) have been used to research the kinematic properties and to measure the magnetic strength of a molecular cloud via Zeeman splitting (Surcis et al. 2011), and to find accurate distances via their trigonometric parallax (Hachisuka et al. 2006). Hence, searching for more interstellar H_2O masers is important for the investigation of massive star formation as well as the structure of the MW.

The Bolocam Galactic Plane Survey (BGPS) (Aguirre et al. 2011) is a 1.1 mm continuum survey of 170 deg^2 of the Galactic plane in the northern hemisphere with the Bolocam instrument employed at the Caltech Submillimeter Observatory (CSO). Dunham et al. (2010) suggested that BGPS sources are the cradles of high-mass stars since they contain high-mass SFRs at different evolutionary stages. BGPS sources are good targets for H₂O maser surveys.

In this paper, source selection and observation are described in Section 2. The results of observation are shown in Section 3. We also give the description for individual masers in Section 4. The discussions are given in Section 5, and the conclusions are given in Section 6.

2 SOURCE SELECTION AND OBSERVATION

The sources in our sample were selected from BGPS source catalog v1.0.1. Our aim is to to investigate the activities of star formation in BGPS sources that are located in the outer Galaxy. The BGPS sources with longitude between 85° and 194° are the main targets for our search for H₂O masers. Schlingman et al. (2011) performed observations of HCO⁺ and N₂H⁺ toward 1882 BGPS sources. 77% of the sources show HCO⁺ emission which traces a region with high column density. Dunham (2012) conducted an H₂O maser survey towards the BGPS sources which show HCO⁺ emission. We note that many of these sources are located in the outer Galaxy. First, we select sources which were not included in the observations of Schlingman et al. (2011) (67.5", half of the Half Power Beam Width (HPBW) of the Nanshan radio telescope is used as a criterion to judge the association). As a result, we select 182 BGPS sources. Second, we select some sources from Schlingman et al. (2011) to investigate the correlation between H₂O masers and HCO⁺ emission. Considering that the detection rate of H₂O masers may be very low for those BGPS sources which do not show HCO⁺ emission, we randomly select 54 and 38 BGPS sources with and without HCO⁺ emission. In total, there are 274 BGPS sources in our sample used for further analysis.

In Table 1, we give the name and equatorial coordinates for all the 274 BGPS sources. The detection results of HCO^+ in Schlingman et al. (2011) are also given in the table.

The coordinates of the peak 1.1 mm continuum position in the BGPS source catalog v1.0.1 are used to search for H₂O masers. The longitude of the BGPS sources in our sample ranges from 85.010° to 193.006°, while the latitude ranges from -1.466° to 4.168°. The 1.1 mm flux density of BGPS sources within an aperture of 120" is used in this paper. It should be noted that the flux density in the version of the BGPS catalog published in the Rosolowsky et al. (2010) catalog should be multiplied by a factor of 1.5 (Aguirre et al. 2011). Hence, the flux densities of our sample range from 0.12 Jy to 59.13 Jy. The BGPS catalog v2.0 (Ginsburg et al. 2013) was released near the end of our survey. In this version, Ginsburg et al. (2013) performed a re-reduction of the original BGPS and gave more precise parameters (coordinates and flux density) for the objects. The latest version of the BGPS catalog is v2.1. The limited observation time did not allow us to re-observe our sources with new coordinates in v2.1. So, it is necessary to compare the parameters of our sample with those of their counterparts in v2.1; for further details see Section 5.2.

The Nanshan 25 m radio telescope, employed by Xinjiang Astronomical Observatory, was used for a 22 GHz H_2O maser survey towards the sources in our sample from September 2012 to August 2013. It has an HPBW of 135" at 22 GHz, and its pointing accuracy is better than 18". The telescope is equipped with one dual circular polarization (left and right) cryogenic K-band receiver as the front-end and a dual input digital filter bank (DFB) sys-

tem with 8192 channels as the back-end. The system temperature under good weather conditions is \sim 50 K. The bandwidth is 64 MHz, and the corresponding velocity resolution is 0.11 km s⁻¹. The single point mode was used for the observation. The offset-points were located 10 arcmin away from the Galactic plane in the direction of the Galactic latitude of the on-points. The integration time was 360 s for each on-point and offset-point, and total integration time was 720 s for each source. All of the observations were performed in good weather and the elevation of observation was kept between 20° and 70°. The corresponding root mean square (rms) noise level was ~ 0.36 Jy. The conversion factor between the main-beam brightness temperature and flux density was 0.091 K Jy^{-1} . A noise diode was used in the flux density calibration. The absolute error was less than 20%.

Due to the limited observation time, we did not perform on the fly (OTF) or five-point observations towards the newly detected H_2O masers. Hence, we cannot give the position for the new detection in this paper.

3 DATA REDUCTION AND RESULTS

The spectra were reduced using the GILDAS/CLASS package¹ developed at IRAM and the Observatoire de Grenoble. The two circular polarization signals were averaged for data analysis. All spectra were smoothed by averaging four consecutive channels in order to improve the signal to noise (S/N) ratio. This resulted in a velocity resolution of 0.44 km s⁻¹ and an average rms of 0.17 Jy. A feature is considered to be a maser when the S/N ratio is above 3. We detected a similar maser line profile toward some sources which are closer to each other. This indicates that strong maser emission may be detected several beams away from the source. In this case, we suggest that the strongest maser is a true detection. We discuss the influence radius of a maser with given flux density in Section 5.1. As a result, we detected 25 H₂O masers. The detection rate is 9%. Five out of 25 are new detections. The results about whether a BGPS source is associated with an H₂O maser are given in Table 1, in which the observation date and rms for each source are listed as well. The parameters describing the H₂O masers are listed in Table 2 and the corresponding spectra of the H₂O masers are displayed in Figure 1. The dashed line represents the systematic velocity derived from N_2H^+ (Shirley et al. 2013) or ${}^{12}CO^{234}$.

There are three H_2O masers with flux density exceeding 10^2 Jy ($H_2O-5656$ G133.715+01.217, $H_2O-5668$ G133.949+01.063 and $H_2O-5746$ G188.792+01.027). The strongest H_2O maser is $H_2O-5656$ G133.715+01.217, well known as W3 IRS 5, which has a peak flux density of 2.9×10^3 Jy.

¹ http://www.iram.fr/IRAMFR/GILDAS/

² http://www.radioast.csdb.cn

³ http://www.dlh.pmo.cas.cn

⁴ http://www.csdb.cn

Table 1 The parameters of BGPS sources towards which we searched for H_2O masers. Col. (1) gives the indices of BGPS sources in our survey. Col. (2) gives the names of BGPS source in version 1.0.1. The indices and BGPS source names are also used for citing the H_2O masers detected in the position. The equatorial coordinates in J2000 are given in Cols. (3) and (4). Cols. (5) to (7) show that whether there are WISE point sources, HII regions and RMS sources associated with BGPS sources. The evolutionary phases of BGPS sources are listed in Col. (8). The searching results of HCO⁺ from Schlingman et al. (2011) and Shirley et al. (2013) are listed in Cols. (9) and (10), in which '-' represents no observation performed toward the BGPS source. Col. (11) shows the result of our survey of H_2O masers. The rms in each spectrum is listed in Col. (12), and the observation date is given in Col. (13).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ID	BGPS name	RA	DEC	WISE	HII	RMS	Phase	HCO^+	HCO^+	H_2O	rms	date
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(v1.0.1)	(J2000)	(J2000)					(S11)	(S13)		Jy	dd-mm-yyyy
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	$H_2O-5527$	G085.010-01.322	20 58 25.1	+43 44 15	Ν	Ν	Ν	1	-	Ν	Ν	0.16	19-03-2013
	$H_2O-5528$	G085.012-01.324	20 58 26.0	$+43\ 44\ 15$	Ν	Ν	Ν	1	-	Ν	Ν	0.14	19-03-2013
$ H_20-553 (6085.02-00.300) 20 \le 407.8 +44 \le 43 \\ H_20-5531 (6085.030+0.036 \times 20 \le 11.80 +44 \le 90.2 \\ H_20-5532 (6085.040-00.14 20 \le 33.18) +44 \le 30.2 \\ H_20-5533 (6085.040-00.14 20 \le 33.18) +44 \le 30.2 \\ H_20-5533 (6085.040-00.14 20 \le 33.18) +44 \le 30.2 \\ H_20-5535 (6085.040-00.14 20 \le 37.18) +44 \le 43.3 \\ H_20-5535 (6085.040-00.148 20 \le 37.2 +43 \le 32.9 \\ H_20-5535 (6085.070-0.118 20 \le 37.2 +43 \le 32.9 \\ H_20-5535 (6085.070-0.118 20 \le 37.2 +43 \le 32.9 \\ H_20-5535 (6085.070-0.118 20 \le 37.2 +43 \le 32.9 \\ H_20-5535 (6085.070-0.116 20 \le 37.4 +44 \le 32.9 \\ H_20-5535 (6085.070-0.116 20 \le 37.4 +43 \le 32.9 \\ H_20-5540 (6085.11-0.0462 20 \le 10.96 +44 \le 75.7 \\ H_20-5540 (6085.11-0.0462 20 \le 10.96 +44 \le 75.7 \\ H_20-5540 (6085.11-0.0462 20 \le 10.96 +44 \le 75.7 \\ H_20-5541 (6085.16-0.0174 20 \le 10.81 +44 \le 43 N N N 1 N N N 0.11 19.0-32.01 \\ H_20-5545 (6085.16-0.0174 20 \le 10.81 +44 \le 43 N N N 1 - N N 0.14 31.0-32.01 \\ $	$H_2O-5529$	G085.016+00.426	20 50 58.3	$+44\ 52\ 09$	Y	Ν	Ν	2	-	Ν	Ν	0.16	19-03-2013
$ H_{20} - 553 (608 \\ $	$H_2O-5530$	G085.022-00.300	20 54 07.8	$+44\ 24\ 33$	Ν	Ν	Ν	1	-	Ν	Ν	0.15	19-03-2013
	H ₂ O-5531	G085.030+00.362	20 51 18.0	$+44\ 50\ 21$	Y	Ν	Y	3	Y	Y	Ν	0.13	19-03-2013
	$H_2O-5532$	G085.042-00.144	20 53 31.9	+44 31 29	Y	Ν	Ν	2	Υ	Y	Ν	0.14	19-03-2013
	$H_2O-5533$	G085.043-00.166	20 53 38.0	$+44\ 30\ 43$	Y	Ν	Ν	2	-	Y	Ν	0.13	19-03-2013
	H ₂ O-5534	G085.046-01.136	20 57 46.0	+435309	Y	Ν	Ν	2	Y	Y	Ν	0.14	19-03-2013
	$H_2O-5535$	G085.049+00.448	20 50 59.9	+445433	Y	Ν	Ν	2	-	Ν	Ν	0.11	19-03-2013
	H ₂ O-5536	G085.072-01.158	20 57 57.2	+435329	Y	Ν	Ν	2	-	Y	Ν	0.13	19-03-2013
	H ₂ O-5537	G085.073-00.140	20 53 37.8	+44 33 06	Y	Ν	Ν	2	Y	Y	Ν	0.11	19-03-2013
	$H_2O-5538$	G085.073-00.168	20 53 45.0	$+44\ 32\ 02$	Y	Ν	Ν	2	-	Y	Ν	0.11	19-03-2013
	$H_2O-5539$	G085.078-00.132	20 53 36.6	+44 33 36	Y	Ν	Ν	2	Y	Y	Ν	0.10	19-03-2013
	$H_2O-5540$	G085.111+00.462	20 51 09.6	+44 57 57	Ν	Ν	Ν	1	Ν	Ν	Ν	0.11	19-03-2013
	$H_2O-5541$	G085.111-01.204	20 58 17.5	+435330	Y	Ν	Ν	2	Ν	Y	Ν	0.16	31-03-2013
	$H_2O-5542$	G085.120+00.474	20 51 08.1	+445847	Ν	Ν	Ν	1	Ν	Y	Ν	0.17	31-03-2013
	$H_{2}O-5543$	G085.156-01.174	20 58 19.6	+435640	Ν	Ν	Ν	1	-	Y	Ν	0.14	31-03-2013
	$H_{2}O-5544$	G085.206-00.134	20 54 04.8	+443925	Ν	Ν	Ν	1	-	Ν	Ν	0.14	31-03-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{2}O-5545$	G085.212-00.140	20 54 07.7	+443927	Ν	Ν	Ν	1	-	Ν	Ν	0.18	31-03-2013
	$H_{2}O_{-5546}$	$G085.236 \pm 00.022$	20 53 31.0	+444648	Y	Ν	Ν	2	Y	Y	Ν	0.13	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5547	G085.260+00.008	20 53 39.8	$+44\ 47\ 22$	Ŷ	N	N	2	Ŷ	Ŷ	N	0.12	24-01-2013
	$H_2O - 5548$	G085.266 + 00.020	20 53 38.0	+44 48 06	Ŷ	N	N	2	Ŷ	Ŷ	N	0.13	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5549$	$G085.378 \pm 00.022$	20 54 01 8	+445320	N	N	N	1	_	Ŷ	N	0.10	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O=5550$	G085.385-01.466	21 00 23.3	+435536	Y	N	N	2	-	Ň	N	0.099	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5551	G085.412 + 00.002	20 54 14.4	+445407	Ŷ	Y	Y	3	Y	Y	Y	0.16	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5552$	G085 456-00 060	20 54 40 2	+445345	Ŷ	N	N	2	N	Ň	N	0.081	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5553$	G085.481-00.060	20 54 45.8	+445456	Ŷ	N	N	2	N	Y	N	0.17	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O-5554$	G085.820+00.396	20 54 01.2	+452804	N	N	N	1	_	N	N	0.14	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O - 5555$	G086.989 + 00.526	20 57 48.6	+462636	Y	N	Y	3	-	N	N	0.15	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O - 5556$	G088.096 + 00.413	21 02 33.7	$+47\ 12\ 10$	Ŷ	N	N	2	-	N	Y	0.14	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O - 5557$	G089.635 + 00.171	21 09 46.6	$+48\ 10\ 50$	Ŷ	Y	Y	3	-	N	N	0.14	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5558	G089.725+00.217	21 09 56.5	+48 16 40	Υ	Y	Ν	3	-	Ν	Ν	0.13	24-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{2}O-5559$	G098.856+02.932	21 40 29.6	+563553	Υ	Y	Y	3	-	Y	Ν	0.20	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5560	G098.978+03.960	21 36 08.1	+572648	Υ	Ν	Ν	2	Υ	Y	Y	0.17	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5561	G099.115+03.926	21 37 03.4	+573045	Ŷ	N	N	2	Ŷ	Ŷ	N	0.16	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5562	G099.981+04.168	21 40 42.6	$+58\ 16\ 01$	Ŷ	N	N	2	Ŷ	Ŷ	Y	0.19	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5563	G099.992+03.094	21 46 02.3	+572736	Ν	Ν	Ν	1	-	Y	Ν	0.14	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5564	G109.995-00.282	23 05 23.2	+595358	Y	Ν	Ν	2	Υ	Y	Y	0.17	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5565	G109.997-00.088	23 04 47.0	+600441	Y	Y	Ν	3	Y	Y	Ν	0.17	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5566	G110.003+00.330	23 03 28.4	+602748	Υ	Ν	Ν	2	Ν	Ν	Ν	0.15	15-12-2012
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5567	G110.003-00.074	23 04 47.0	+600536	Ν	Ν	Ν	1	Ν	Ν	Ν	0.22	23-01-2013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{2}O-5568$	G110.003-00.248	23 05 20.3	+595601	Ν	Ν	Ν	1	Ν	Ν	Ν	0.17	23-01-2013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{2}O-5569$	G110.016+00.270	23 03 46.4	+602451	Υ	Ν	Ν	2	Y	Y	Ν	0.18	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5570	G110.039-00.284	23 05 42.9	+595454	Y	Ν	Ν	2	Y	Y	Ν	0.19	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{2}O-5571$	G110.070-00.214	23 05 43.7	+595931	Ν	Ν	Ν	1	Ν	Ν	Ν	0.19	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{2}O-5572$	G110.073-00.088	23 05 20.5	+60.06.30	Υ	Ν	Ν	2	Y	Y	Ν	0.15	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5573	G110.087+00.126	23 04 45.6	+601837	Υ	Ν	Ν	2	Y	Y	Ν	0.099	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5574	G110.087+00.084	23 04 53.7	$+60\ 16\ 18$	Υ	Ν	Ν	2	Υ	Y	Ν	0.11	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5575	G110.105-00.030	23 05 23.6	+601027	Y	Ν	Ν	2	Ν	Ν	Ν	0.10	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O - 5576$	G110.113+00.050	23 05 11.8	+601503	Ŷ	N	Y	3	Y	Y	N	0.26	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O - 5577$	G110.126 + 00.086	23 05 11.1	+601722	Ŷ	N	N	2	Ŷ	Ŷ	N	0.26	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O-5578$	G110.141+00.084	23 05 17.7	+601735	Ň	N	N	1	Ň	Ň	N	0.23	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5579$	G110.156 + 00.238	23 04 55.0	+602627	Y	N	N	2	N	N	N	0.25	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5580$	G110.203+00.010	23 05 59 4	+60.15.00	Ň	N	N	1	N	N	N	0.24	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5581$	G110.228+00.956	23 03 05 5	+610738	Y	N	N	2	Y	Y	N	0.22	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5587$	G110.228 + 00.958	23 03 05 1	+610744	Ň	N	N	1	Ŷ	Ŷ	N	0.22	23-01-2013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O-5583	G110 237-00 008	23 06 18 0	+601448	Y	N	N	2	N	N	N	0.26	23-01-2013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O = 5582$	G110.257 + 00.000 $G110.251 \pm 00.032$	23 06 16 6	+60.17.20	Ň	N	N	1	Y	Y	N	0.23	23-01-2013
H ₂ O-5586 G110.509-00.914 23 11 05.1 +59 30 57 Y N N 2 - N N 0.24 23-01-2013	$H_2O = 5585$	G110.254 - 00.578	23 08 12 8	+594345	Ŷ	N	N	2	Ň	Ň	N	0.23	23-01-2013
	$H_2O-5586$	G110.509-00.914	23 11 05.1	$+59\ 30\ 57$	Ŷ	N	N	2	-	N	N	0.24	23-01-2013

Table 1 - Continued

ID	BGPS name	RA	DEC	WISE	HII	RMS	Phase	HCO^+	HCO^+	H_2O	rms	date
	(v1.0.1)	(J2000)	(J2000)					(S11)	(S13)		Jy	dd-mm-yyyy
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
$H_2O-5587$	G110.516-00.884	23 11 03.3	$+59\ 32\ 47$	Ν	Ν	Ν	1	-	Ν	Ν	0.25	23-01-2013
$H_2O-5588$	G110.537-00.550	23 10 11.9	$+59\ 51\ 47$	Ν	Ν	Ν	1	-	Ν	Ν	0.23	23-01-2013
H ₂ O-5589	G110.546-00.438	23 09 55.9	+59 58 14	Y	N	N	2	-	N	N	0.21	23-01-2013
H ₂ O-5590	G110.609-00.892	23 11 45.1	+59 34 25	N	N	N	1	-	N	N	0.22	23-01-2013
H ₂ O-5591	G110.787+00.370	23 09 13.4	+604832	Y	N	N	2	-	N	N	0.25	23-01-2013
$H_2O = 5592$	G110.795 + 00.382	23 09 14.8	+604923	Y	IN N	IN N	2	-	Y	IN N	0.25	23-01-2013
$H_2O = 5593$	$G110.882 \pm 00.022$	23 11 01.8	+60.31.25	Y V	IN N	IN N	2	-	IN N	IN N	0.21	23-01-2013
$H_2O-5594$	$G110.893 \pm 00.500$	23 09 25.8	+610130	I V	IN N	IN N	2	-	IN N	IN N	0.21	23-01-2013
$H_2O = 5595$	$G110.903 \pm 00.082$	23 09 55.5	+010018	I V	IN N	IN V	2	-	IN V	IN N	0.18	23-01-2013
$H_2O = 5590$	G110.985-00.982 G111.082 00.076	23 14 43.0	+393742 +594013	I V	IN N	I N	2	v	I V	IN N	0.19	23-01-2013
H ₂ O 5508	G111.082 = 00.970 $G111.156 \pm 00.580$	23 13 28.8	+61.08.38	I N	N	N	1	N	I N	N	0.23	23-01-2013
$H_2O=5590$	$G111.150 \pm 00.500$ $G111.162 \pm 00.600$	23 15 15 0	± 595757	v	N	N	2	N	N	N	0.22	23-01-2013
$H_2O=5577$ $H_2O=5600$	G111.102-00.000 G111.192-00.900	23 16 04 6	+594651	Y	N	N	2	N	N	N	0.22	23-01-2013
$H_2O = 5600$ $H_2O = 5601$	G111 192-00 796	23 15 46 7	+595240	Y	Y	Y	3	Y	Y	N	0.20	18-08-2013
$H_2O = 5602$	G111.248+00.810	23 11 22.6	+61 23 29	Ň	Ň	Ň	1	N	Ň	N	0.16	22-01-2013
$H_2O = 5603$	G111.278-00.746	23 16 16.5	+595719	Y	N	N	2	N	N	N	0.19	22-01-2013
$H_2O - 5604$	G111.284-00.664	23 16 05.1	+60.02.03	Ŷ	Y	Y	3	Y	Y	N	0.18	22-01-2013
H ₂ O-5605	G111.302+00.808	23 11 48.1	+612436	Y	N	N	2	N	N	N	0.17	22-01-2013
H ₂ O-5606	G111.308-00.880	23 16 52.9	+595027	Y	Ν	Ν	2	Ν	Ν	Ν	0.16	22-01-2013
$H_{2}O-5607$	G111.382-00.662	23 16 48.7	+60.04.16	Y	Ν	Ν	2	Ν	Ν	Ν	0.16	23-01-2013
$H_2O-5608$	G111.382+00.706	23 12 44.3	$+61\ 20\ 42$	Ν	Ν	Ν	1	Y	Y	Ν	0.16	23-01-2013
$H_2O-5609$	G111.424-00.556	23 16 49.4	$+60\ 11\ 06$	Y	Ν	Ν	2	Y	Y	Ν	0.15	23-01-2013
$H_2O-5610$	G111.484+00.746	23 13 24.3	$+61\ 25\ 12$	Y	Ν	Ν	2	Y	Y	Ν	0.069	22-01-2013
$H_2O-5611$	G111.516+00.688	23 13 50.0	$+61\ 22\ 40$	Y	Ν	Ν	2	Y	Y	Ν	0.096	22-01-2013
$H_2O-5612$	G111.522+00.800	23 13 32.1	$+61\ 29\ 03$	Ν	Ν	Y	3	Y	Y	Y	0.094	22-01-2013
$H_2O-5613$	G111.528+00.818	23 13 31.6	$+61 \ 30 \ 11$	Y	Ν	Ν	2	Y	Y	Ν	0.082	22-01-2013
$H_2O-5614$	G111.534+00.372	23 14 55.9	$+61\ 05\ 25$	Y	Ν	Ν	2	Y	Y	Ν	0.065	22-01-2013
$H_2O-5615$	G111.564+00.578	23 14 32.5	$+61\ 17\ 35$	Ν	Ν	Ν	1	Ν	Ν	Ν	0.082	22-01-2013
$H_2O-5616$	G111.606+00.614	23 14 45.5	$+61\ 20\ 31$	Y	Ν	Ν	2	Ν	Ν	Ν	0.068	22-01-2013
$H_2O-5617$	G111.632+00.198	23 16 12.4	+605749	Ν	Ν	Ν	1	Ν	Ν	Ν	0.055	22-01-2013
H ₂ O-5618	G111.632+00.754	23 14 32.0	$+61\ 28\ 54$	N	Ν	N	1	Y	Y	Ν	0.068	22-01-2013
H ₂ O-5619	G111.638+00.098	23 16 32.8	+605221	Y	N	N	2	N	N	N	0.060	22-01-2013
$H_2O-5620$	G111.650+00.048	23 16 47.1	+604948	Y	N	N	2	Y	Y	N	0.059	22-01-2013
$H_2O-5621$	G111.650 + 00.414	23 15 42.2	$+61\ 10\ 1/$	Y	IN N	N N	2	Y	Y	IN N	0.17	23-01-2013
$H_2O-5622$	GIII.650+00.796	23 14 32.7	+61 31 39	Y	IN N	IN N	2	IN V	N	IN N	0.14	23-01-2013
$H_2O = 5025$	G111.008+00.390 G111.680+00.358	23 13 17.7	$+61\ 20\ 32$	I V	IN N	IN N	2	I N	I N	IN N	0.12	23-01-2013
$H_2O = 5024$	$G111.080 \pm 00.558$ $G111.716 \pm 00.640$	23 10 00.1	+610748	I N	IN N	IN N	2 1	IN N	IN N	IN N	0.14	23-01-2013
$H_2O=5025$ $H_2O=5626$	$G111.710\pm00.040$ $G111.716\pm00.658$	23 15 32.1	+01 24 22 +61 25 22	V	N	N	2	N	N	N	0.13	23-01-2013
$H_2O=5020$ $H_2O=5627$	$G111.710\pm00.038$ $G111.716\pm00.776$	23 15 28.8	$\pm 61 \ 31 \ 58$	I N	N	N	1	V	V	N	0.14	23-01-2013
$H_2O=5627$ $H_2O=5628$	G111.716+00.778 G111.716+00.778	23 15 07.5	+61 32 05	Y	N	N	2	Y	Y	N	0.12	23-01-2013
$H_2O = 5620$ $H_2O = 5629$	G111748+00328	23 16 43 0	+61.07.35	Y	N	N	2	Ŷ	Y	N	0.15	23-01-2013
$H_2O = 5630$	G111.778+00.504	23 16 25.6	$+61\ 18\ 06$	Ň	N	N	1	Ŷ	Ŷ	N	0.18	23-01-2013
H ₂ O-5631	G111.796+00.462	23 16 41.5	$+61\ 16\ 08$	N	N	N	1	Ŷ	Ŷ	N	0.17	23-01-2013
H ₂ O-5632	G111.796+00.600	23 16 16.8	+61 23 51	Ν	Ν	Ν	1	Y	Y	Y	0.23	23-01-2013
$H_2O-5633$	G111.820+00.504	23 16 45.2	$+61\ 19\ 00$	Ν	Ν	Ν	1	Ν	Ν	Ν	0.21	23-01-2013
$H_2O-5634$	G111.876+00.818	23 16 14.9	+61 37 47	Y	Y	Ν	3	Y	Y	Ν	0.10	21-01-2013
$H_2O-5635$	G111.882+00.992	23 15 46.0	+61 47 39	Y	Υ	Y	3	Y	Y	Y	0.11	22-01-2013
$H_2O-5636$	G111.936+00.638	23 17 15.6	$+61\ 28\ 59$	Ν	Ν	Ν	1	Ν	Ν	Ν	0.11	22-01-2013
$H_2O-5637$	G111.948+00.536	23 17 39.4	$+61\ 23\ 31$	Y	Ν	Ν	2	Ν	Ν	Ν	0.097	22-01-2013
$H_2O-5638$	G111.954+00.964	23 16 25.3	+61 47 39	Ν	Ν	Ν	1	Ν	Ν	Ν	0.097	22-01-2013
$H_2O-5639$	G111.983+00.774	23 17 12.9	+61 37 36	Y	Ν	Ν	2	-	Ν	Ν	0.094	22-01-2013
$H_2O-5640$	G132.950+00.743	02 18 10.7	$+61\ 54\ 56$	Ν	Ν	Ν	1	-	Y	Ν	0.11	15-12-2012
$H_2O-5641$	G132.965+00.739	02 18 16.8	+615426	Ν	Ν	Ν	1	-	Y	Ν	0.13	15-12-2012
$H_2O-5642$	G133.001+00.753	02 18 36.5	+615431	Y	Ν	Ν	2	-	Y	Ν	0.10	15-12-2012
H ₂ O-5643	G133.206+01.109	02 21 16.9	$+62\ 10\ 30$	Y	N	N	2	-	Y	N	0.17	15-12-2012
H ₂ O-5644	G133.408+01.181	02 23 07.1	$+62\ 10\ 24$	Y	N	N	2	-	Y	N	0.11	15-12-2012
H ₂ O-5645	G133.413+01.185	02 23 09.8	$+62\ 10\ 32$	Y	N	N	2	-	Y	N	0.097	15-12-2012
$H_2O-5646$	G133.513 + 00.971	02 23 19.8	+615625	N	N	N	1	-	Y	N	0.090	15-12-2012
$H_2U = 5647$	$G_{133.555} + 01.003$	02 23 45.5	+615720	IN N	IN N	IN N	1	-	IN N	IN N	0.090	15-12-2012
$H_2O = 5648$	$G_{122} = 562 + 01.015$	02 23 49.6	+015/50	IN NT	IN N	IN NT	1	-	IN NI	IN NI	0.091	15-12-2012
H ₂ O 5650	$G_{122}G_{02} + 01.019$	02 23 32.2	+01 38 04	IN NZ	IN NT	1N NT	1	-	IN V	IN N	0.10	15-12-2012
$H_2O = 3030$	$G133.003 \pm 01.131$ $G133.616 \pm 00.111$	02 24 31.3	+02.03.31 $\pm61.05.40$	í V	IN N	IN	2	-	I V	IN N	0.079	15-12-2012
$H_2O=3031$ $H_2O=5652$	$G133646\pm01177$	02 21 39.0	$\pm 62.05.49$ $\pm 62.05.11$	I V	N	N	2	-	ı V	N	0.099	18-10-2012
$H_2O=5052$ $H_2O=5652$	$G133.663\pm01.177$	02 25 10 0	$+62\ 05\ 17$	ı V	N	N	2	-	I V	N	0.21	18-10-2012
1120-3033	G155.005+01.105	52 25 10.0	1020317	1	14	1 N	4	-	1	14	0.17	10 10-2012

 Table 1 — Continued

ID	BGPS name	RA	DEC	WISE	HII	RMS	Phase	HCO^+	HCO^+	H_2O	rms	date
	(v1.0.1)	(J2000)	(J2000)					(S11)	(S13)		Jy	dd-mm-yyyy
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
H ₂ O-5654	G133.670+01.163	02 25 09.8	$+62\ 03\ 53$	Y	N	N	2	-	Y	N	0.18	18-10-2012
H ₂ O-5655	G133.694 + 01.215	02 25 30.8	+62.06.17	Y	N	Y	3	-	Y	N	0.25	18-10-2012
$H_2O-5656$	G133.715 + 01.217	02 25 40.8	+62.05.58	Y	Y	Y	3	-	Y	Y	6.4	18-10-2012
$H_2O = 5057$	G133./1/+00.039 G132.718+01.112	02 24 01.0	+613430	I V	IN N	IN N	2	-	IN N	IN N	0.21	18-10-2012
$H_2O = 5058$	$G_{122}, 727 + 00, 621$	02 25 25.7	+620003	I V	IN N	IN N	2	-	IN N	IN N	0.21	18-10-2012
$H_2O = 5000$	$G_{133}, 727 + 00.021$ $G_{133}, 720 + 01.282$	02 25 59.0	+01.52.13	I V	IN N	IN N	2	-	IN V	IN N	0.25	16-10-2012
$H_2O-3000$	$G133.729 \pm 01.263$ $G122.720 \pm 00.625$	02 23 39.3	+62.09.22	I V	IN N	IN N	2	-	I	IN N	0.15	23-12-2013
$H_2O = 5662$	$G_{133.730+00.023}$	02 24 02.2	+01.32.24	I N	IN N	IN N	2 1	-	IN V	IN N	0.24	18-10-2012
$H_2O = 5662$	$G_{122}^{-}7_{22}^{-}+01.317$	02 26 00 0	+021112	IN V	IN N	IN N	2	-	I V	IN N	0.23	18-10-2012
H ₂ O-5664	$G133.735\pm01.029$ $G133.735\pm01.085$	02 20 09.9	$\pm 61.58.09$	v	N	N	2	-	v	N	0.24	18-10-2012
H ₂ O-5665	$G133.735 \pm 01.005$ $G133.736 \pm 01.271$	02 25 20.5	$\pm 62.08.32$	v	N	N	2	_	v	N	0.20	18-10-2012
H ₂ O=5666	$G_{133}730\pm01.271$	02 26 01.2	$+62\ 00\ 32$ $+62\ 12\ 04$	N	N	N	1	_	Y	N	0.35	18-10-2012
$H_2O = 5667$	G133748 + 01059	02 25 28 3	+615623	Y	N	N	2	_	Y	Y	0.20	18-10-2012
$H_2O=5668$	$G_{133}748 + 01197$	02 25 20.5	+62.04.07	Ŷ	N	Y	3	_	Ŷ	Ŷ	0.48	18-10-2012
H ₂ O-5669	G133.777 + 01.177	02 26 03.1	+620224	Ŷ	N	Ň	2	-	Ŷ	N	0.33	18-10-2012
$H_2O-5670$	G133.778+01.201	02 26 08.5	+620342	Ŷ	N	N	2	-	Ŷ	N	0.25	18-10-2012
H ₂ O-5671	G133.784+01.421	02 26 51.9	$+62\ 15\ 54$	Y	Y	Ν	3	-	Ν	Ν	0.096	15-12-2012
H ₂ O-5672	G133.790+01.107	02 25 57.0	$+61\ 58\ 11$	Y	Ν	Ν	2	-	Y	Ν	0.087	15-12-2012
$H_2O-5673$	G133.790+01.447	02 26 59.7	+62 17 13	Y	Ν	Ν	2	-	Y	Ν	0.10	15-12-2012
$H_2O-5674$	G133.801+01.225	02 26 23.4	+620435	Ν	Ν	Ν	1	-	Y	Ν	0.091	15-12-2012
$H_2O-5675$	G133.811+01.267	02 26 35.9	$+62\ 06\ 43$	Y	Ν	Ν	2	-	Y	Ν	0.095	15-12-2012
$H_2O-5676$	G133.854+01.229	02 26 49.9	+620338	Y	Ν	Ν	2	-	Y	Ν	0.095	15-12-2012
$H_2O-5677$	G133.865+01.057	02 26 23.2	+61 53 47	Y	Ν	Ν	2	-	Y	Ν	0.091	15-12-2012
$H_2O-5678$	G133.890+01.137	02 26 50.2	+615743	Y	Ν	Ν	2	-	Y	Ν	0.081	15-12-2012
$H_2O-5679$	G133.902+01.355	02 27 36.3	$+62\ 09\ 39$	Y	Ν	Ν	2	-	Y	Ν	0.097	15-12-2012
$H_2O-5680$	G133.907+01.327	02 27 33.0	$+62\ 07\ 59$	Ν	Ν	Ν	1	-	Ν	Ν	0.11	15-12-2012
$H_2O-5681$	G133.913+01.409	02 27 51.1	$+62\ 12\ 27$	Y	Ν	Ν	2	-	Ν	Ν	0.096	15-12-2012
$H_2O-5682$	G133.914+01.395	02 27 49.5	$+62\ 11\ 37$	Ν	Ν	Ν	1	-	Ν	Ν	0.10	15-12-2012
$H_2O-5683$	G133.919+01.157	02 27 07.2	$+61\ 58\ 13$	Y	Ν	Ν	2	-	Y	Ν	0.10	15-12-2012
$H_2O-5684$	G133.949+01.063	02 27 04.2	$+61\ 52\ 19$	Y	Y	Y	3	-	Y	Y	1.8	15-12-2012
$H_2O-5685$	G133.961+01.121	02 27 20.5	$+61\ 55\ 18$	Y	Y	Ν	3	-	Y	Ν	0.11	15-12-2012
$H_2O-5686$	G133.965+00.851	02 26 33.1	$+61\ 40\ 06$	Y	Ν	Ν	2	-	Ν	Ν	0.10	15-12-2012
$H_2O-5687$	G133.968+00.877	02 26 39.7	$+61\ 41\ 28$	Y	Ν	Ν	2	-	Ν	Ν	0.10	15-12-2012
$H_2O-5688$	G133.985+00.427	02 25 26.4	$+61\ 15\ 55$	Ν	Ν	N	1	-	Ν	Ν	0.11	15-12-2012
H ₂ O–5689	G133.985+00.441	02 25 28.9	$+61\ 16\ 42$	Y	N	N	2	-	Y	N	0.11	15-12-2012
$H_2O = 5690$	G133.99/+00.519	02 25 48.4	$+61\ 20\ 49$	Y	N	N	2	-	Y	N	0.11	15-12-2012
H ₂ O-5691	G134.009+00.429	02 25 37.9	$+61\ 15\ 30$	N	N	N	1	-	Y	N	0.080	15-12-2012
$H_2O = 5692$	$G134.021 \pm 00.411$ $G124.025 \pm 00.412$	02 25 40.3	+61 14 15	Y V	IN N	IN N	2	-	Y V	IN N	0.090	15-12-2012
$H_2O = 3093$	$G134.023 \pm 00.413$ $G124.051 \pm 00.600$	02 23 42.0	+61 14 10	I V	IN N	IN N	2	-	I V	IN N	0.082	15-12-2012
$H_2O = 5695$	G134.031 + 00.099 G134.074 + 00.700	02 26 40.0	+61 29 44 +61 20 47	I V	N	N	2	-	I V	N	0.090	15 12 2012
$H_2O=5696$	$G134.074\pm00.709$ $G134.203\pm00.753$	02 20 39.0	$\pm 61 29 47$ $\pm 61 20 27$	v	N	N	2	-	v	N	0.092	15-12-2012
$H_2O=5697$	$G134,203\pm00.733$ $G134,211\pm00,621$	02 27 46 7	$\pm 61 21 54$	v	N	N	2	_	N	N	0.090	15-12-2012
$H_2O = 5698$	G134.211 + 00.021 G134.211 + 00.729	02 28 06 4	+61 27 56	Y	N	N	2	_	Y	N	0.001	15-12-2012
$H_2O = 5699$ $H_2O = 5699$	G134212+00829	02 28 25 7	+61 33 29	Ŷ	N	N	2	-	Ŷ	N	0.080	15-12-2012
$H_2O = 5700$	G134.218 + 00.787	02 28 20.8	+613100	Ŷ	N	N	2	-	Ŷ	N	0.089	15-12-2012
H ₂ O-5701	G134.221+00.811	02 28 26.1	+61 32 18	Y	Ν	Ν	2	-	Y	Ν	0.081	15-12-2012
$H_{2}O-5702$	G134.236+00.639	02 28 02.1	$+61\ 22\ 21$	Ν	Ν	Ν	1	-	Y	Ν	0.077	15-12-2012
$H_2O-5703$	G134.241+00.751	02 28 24.5	$+61\ 28\ 31$	Y	Y	Ν	3	-	Y	Ν	0.082	15-12-2012
$H_2O-5704$	G134.265+01.147	02 29 49.4	$+61\ 50\ 04$	Y	Ν	Ν	2	-	Y	Ν	0.083	15-12-2012
$H_2O-5705$	G134.281+00.855	02 29 02.4	+61 33 26	Y	Y	Y	3	-	Y	Y	0.089	15-12-2012
$H_2O-5706$	G134.817+01.355	02 34 49.2	$+61\ 49\ 03$	Ν	Ν	Ν	1	-	Y	Ν	0.090	15-12-2012
$H_2O-5707$	G134.830+01.317	02 34 48.2	$+61\ 46\ 37$	Y	Ν	Ν	2	-	Y	Ν	0.090	15-12-2012
$H_2O-5708$	G134.896+01.545	02 36 04.4	$+61\ 57\ 41$	Y	Ν	Ν	2	-	Y	Ν	0.10	15-12-2012
$H_2O-5709$	G135.637+02.431	02 44 58.1	$+62\ 28\ 08$	Y	Ν	Ν	2	-	Ν	Ν	0.080	15-12-2012
$H_2O-5710$	G135.891-00.461	02 37 05.7	+59 43 33	Y	Ν	Ν	2	-	Y	Y	0.095	15-12-2012
$H_2O-5711$	G136.223+01.082	02 44 38.5	$+60\ 59\ 52$	Y	Ν	Ν	2	Y	Y	Ν	0.099	15-12-2012
$H_2O-5712$	G136.384+02.268	02 50 09.1	$+61\ 59\ 53$	Y	Y	Y	3	Y	Y	Y	0.095	15-12-2012
$H_2O-5713$	G136.512+01.196	02 47 11.4	$+60\ 58\ 41$	Ν	Ν	Ν	1	-	Ν	Ν	0.098	15-12-2012
$H_2O-5714$	G136.533+01.232	02 47 28.9	$+61\ 00\ 04$	Ν	Ν	Ν	1	Y	Y	Ν	0.096	15-12-2012
H ₂ O-5715	G136.539+01.238	02 47 32.9	$+61\ 00\ 14$	N	N	N	1	Y	Y	N	0.10	15-12-2012
H ₂ O-5716	G136.671+01.212	02 48 26.2	+605524	Y	N	N	2	Y	Y	N	0.10	15-12-2012
$H_2O = 5717$	G136.716+01.332	02 49 11.6	+610043	Y	N	N	2	N	N	N	0.096	15-12-2012
$H_2U = 5/18$	$G130.719 \pm 00.782$	02 4/ 16.1	+60.30.54	Y	Y NT	IN NT	5	Y	Y	IN N	0.13	15-12-2012
$H_2 O = 5/19$	$G_{126} \otimes 25 + 01.140$	02 49 19.0	+60.4729	IN V	IN NT	IN NT	1	IN NT	IN NT	IN NT	0.13	15-12-2012
$H_2O = 3/20$ $H_2O = 5721$	$G_{130.023} + 01.130$ $G_{136.840} + 01.150$	02 49 10.8	$\pm 60.40.37$ $\pm 60.47.22$	I V	IN N	IN N	2				0.14	15-12-2012
1120-3721	0100049701.100	02 ty J1./	T00 47 23	1	1 N	1 N	4	1	1	1	0.12	15-12-2012

Table 1 - Continued

ID	BGPS name	RA	DEC	WISE	HII	RMS	Phase	HCO^+	HCO^+	H_2O	rms	date
	(v1.0.1)	(J2000)	(J2000)					(S11)	(S13)		Jy	dd-mm-yyyy
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
H ₂ O-5722	G136.891+01.100	02 49 39.5	$+60\ 43\ 35$	N	N	N	1	Y	Y	N	0.12	15-12-2012
$H_2O = 5723$	G136.914 + 01.092	02 49 47.5	+604234	Y	Y	N	3	-	Y	N	0.13	15-12-2012
$H_2O = 5724$	$G136.945 \pm 01.092$ $G136.070 \pm 01.118$	02 50 01.6	+604144	Y V	IN N	IN N	2	-	Y V	Y N	0.12	15-12-2012
$H_2O = 5725$	$G130.979 \pm 01.118$ $G137.067 \pm 03.004$	02 30 22.2	+604214	I N	IN N	IN N	2 1	-	I V	IN V	0.13	15-12-2012
$H_2O = 5720$	$G137.007 \pm 03.004$ $G137.481 \pm 00.638$	02 50 15.5	$+02\ 20\ 38$	V	N	N	1	-	I V	I N	0.19	15-12-2012
$H_2O=5727$ $H_2O=5728$	$G137.481 \pm 00.038$ $G137.506 \pm 01.394$	02 55 13 6	+60.42.50	N I	N	N	1	-	Y	N	0.17	16-12-2012
$H_2O = 5729$	G137.538+01.276	02 55 01 0	+603540	Y	N	N	2	-	Ŷ	N	0.20	16-12-2012
$H_2O=5730$	G137.586+01.312	02 55 29.9	+60.36.16	Ŷ	N	N	2	-	Ŷ	N	0.19	16-12-2012
H ₂ O-5731	G137.617+01.350	02 55 52.4	+603724	Ν	Ν	Ν	1	-	Y	Ν	0.17	16-12-2012
$H_{2}O-5732$	G137.634+01.508	02 56 35.1	+604523	Y	Ν	Ν	2	-	Ν	Ν	0.21	16-12-2012
H ₂ O-5733	G137.665+01.526	02 56 53.1	+604527	Y	Ν	Ν	2	-	Ν	Ν	0.23	16-12-2012
$H_2O-5734$	G137.705+01.490	02 57 02.3	$+60\ 42\ 25$	Y	Ν	Ν	2	-	Y	Ν	0.12	21-01-2013
$H_2O-5735$	G137.707+01.442	02 56 52.3	+60 39 49	Y	Ν	Ν	2	-	Ν	Ν	0.11	21-01-2013
$H_2O-5736$	G137.713+01.442	02 56 54.9	+60 39 39	Y	Ν	Ν	2	-	Ν	Ν	0.12	21-01-2013
H ₂ O-5737	G137.713+01.472	02 57 01.7	$+60\ 41\ 15$	Y	Ν	N	2	-	Y	N	0.13	21-01-2013
H ₂ O–5738	G137.744+01.492	02 57 19.3	+604128	Y	N	N	2	-	Y	N	0.13	21-01-2013
$H_2O = 5739$	G137.770+01.450	02 57 21.0	+603831	N	N	N	1	-	Y	N	0.14	21-01-2013
$H_2O-5740$	$G137.780 \pm 01.458$	02 57 27.1	+60.38.39	Y V	IN N	IN N	2	-	Y V	IN N	0.14	21-01-2013
$H_2O = 5741$	$G138.144 \pm 01.082$ $G128.205 \pm 01.556$	03 00 30.1	+60.40.14	I V	IN V	IN V	2	-	I V	IN N	0.15	21-01-2013
$H_2O=5742$ $H_2O=5743$	$G_{138,295+01.550}$ $G_{138,466+01,632}$	03 03 02 3	+60.29.13 +60.28.19	Y	N	I N	2	-	Y	N	0.079	23-01-2013
$H_2O=5743$ $H_2O=5744$	$G138.469\pm01.584$	03 02 52 7	+602541	Y	N	N	2	_	N	N	0.076	23-01-2013
$H_2O = 5745$	G138503+01646	03 03 21 8	+60.27.57	Y	N	N	2	_	Y	Y	0.093	23-01-2013
$H_2O = 5746$	G188.792 + 01.027	06 09 05.9	+215039	Ŷ	Y	N	3	-	Ŷ	Ŷ	0.40	23-01-2013
H ₂ O-5747	G188.948 + 00.883	06 08 52.9	+213816	Ŷ	Ŷ	Y	3	-	Ŷ	Ŷ	0.057	23-01-2013
$H_2O-5748$	G188.975+00.911	06 09 02.7	+21 37 37	Y	N	N	2	-	Y	N	0.047	23-01-2013
H ₂ O-5749	G188.991+00.859	06 08 52.9	+21 35 16	Y	Ν	Ν	2	-	Y	Ν	0.052	23-01-2013
$H_2O-5750$	G189.015+00.823	06 08 47.8	+21 32 58	Y	Ν	Ν	2	-	Y	Y	0.047	23-01-2013
$H_2O-5751$	G189.030+00.781	06 08 40.1	$+21 \ 31 \ 01$	Y	Y	Y	3	-	Y	Ν	0.043	23-01-2013
$H_2O-5752$	G189.032+00.793	06 08 43.1	$+21 \ 31 \ 15$	Y	Ν	Υ	3	-	Y	Ν	0.036	23-01-2013
$H_2O-5753$	G189.116+00.643	06 08 19.7	+21 22 29	Ν	Ν	Ν	1	-	Ν	Ν	0.055	23-01-2013
$H_2O-5754$	G189.231+00.893	06 09 30.6	$+21\ 23\ 39$	Y	Y	Ν	3	-	Y	Ν	0.053	23-01-2013
H ₂ O-5755	G189.646+00.131	06 07 30.9	+203946	N	Ν	Ν	1	-	N	N	0.051	23-01-2013
H ₂ O–5756	G189.659+00.185	06 07 44.7	+204036	Y	N	N	2	-	N	N	0.054	23-01-2013
H ₂ O-5757	G189.682+00.185	06 07 47.5	+20.39.27	Y	N	N	2	-	Y	N	0.086	22-01-2013
$H_2O = 5750$	$G189.713 \pm 00.333$	06 08 25.1	+204209	IN V	IN N	IN N	1	-	Y V	IN N	0.085	22-01-2013
$H_2O = 5759$	$G189.744 \pm 00.333$ $G180.776 \pm 00.342$	06 08 24.6	+204034	I V	IN N	IN N	2	-	I V	IN V	0.070	22-01-2013
$H_2O=5760$ $H_2O=5761$	$G_{189.770\pm00.345}$ $G_{189.782\pm00.265}$	06 08 17 8	+20.39.07 $\pm 20.36.32$	I V	N	N	2	-	I V	I N	0.072	22-01-2013
H ₂ O=5762	$G_{189,782\pm00,323}$	06 08 30 8	+20.38.13	Y	N	N	2	_	Y	N	0.007	11-09-2012
$H_2O = 5762$ $H_2O = 5763$	G189.783 + 00.433	06 08 55.8	+204120	Ŷ	N	N	2	-	Ŷ	N	0.072	22-01-2013
$H_2O = 5765$ $H_2O = 5764$	G189.783+00.465	06 09 03.0	+204215	Ŷ	N	N	2	-	Ŷ	N	0.065	22-01-2013
H ₂ O-5765	G189.788+00.281	06 08 22.2	+203641	N	N	N	1	-	Ŷ	N	0.066	22-01-2013
H ₂ O-5766	G189.789+00.291	06 08 24.6	+203652	Ν	Ν	Ν	1	-	Y	Ν	0.080	22-01-2013
$H_2O-5767$	G189.804+00.355	06 08 40.8	$+20\ 38\ 00$	Y	Ν	Ν	2	-	Y	Ν	0.065	22-01-2013
$H_2O-5768$	G189.810+00.369	06 08 44.6	$+20\ 38\ 06$	Y	Ν	Ν	2	-	Y	Ν	0.073	22-01-2013
$H_2O-5769$	G189.831+00.343	06 08 41.5	$+20\ 36\ 11$	Y	Ν	Ν	2	-	Y	Ν	0.069	22-01-2013
$H_2O-5770$	G189.834+00.317	06 08 36.0	$+20\ 35\ 19$	Y	Ν	Ν	2	-	Y	Ν	0.064	22-01-2013
H ₂ O-5771	G189.836+00.303	06 08 33.1	+203449	Y	Ν	Ν	2	-	Y	Ν	0.072	22-01-2013
$H_2O-5772$	G189.864+00.499	06 09 20.5	+203902	Y	Y	Y	3	-	Y	N	0.071	22-01-2013
H ₂ O-5773	G189.879+00.319	06 08 42.1	$+20\ 32\ 58$	Y	N	N	2	-	Y	N	0.082	22-01-2013
H ₂ O-5774	$G189.885 \pm 00.319$	06 08 42.9	+20.32.39	Y	N	N	2	-	Y	N	0.087	22-01-2013
H_2O_{-5776}	G189.888+00.303	06 08 39.6	+20.32.05	Y	N	N	2	-	Y	N	0.072	22-01-2013
$H_2 O = 5777$	$G189.921 \pm 00.331$	06 08 50.0	+20.31.00	I V	IN N	IN N	2	-	Y V	IN N	0.074	22-01-2013
$H_2O=5777$	$G_{189.950\pm00.231}$ $G_{189.951\pm00.331}$	06 08 53 8	+202044 ± 202032	I V	N	N	2	-	I V	N	0.080	22-01-2013
$H_2O=5779$	$G189.990\pm00.353$	06 09 03 4	+20.29.32 +20.28.11	Y	N	N	2	_	Y	N	0.009	22-01-2013
$H_2O=57.9$ $H_2O=5780$	$G190.006\pm00.353$	06 09 07 2	+202011 +202734	Y	N	N	2	_	Y	N	0.085	22-01-2013
$H_2O = 5780$ $H_2O = 5781$	G190.044 + 00.501	06 09 52.7	+20.30.52	Ŷ	Ŷ	N	3	-	Ŷ	N	0.10	22-01-2013
H ₂ O-5782	G190.054+00.533	06 09 51.7	$+20\ 30\ 03$	Y	Y	N	3	-	Ŷ	Y	0.098	22-01-2013
$H_2O-5783$	G190.063+00.679	06 10 25.7	+203345	Ŷ	Ň	N	2	-	Ŷ	N	0.10	22-01-2013
$H_2O-5784$	G190.171+00.733	06 10 51.2	$+20\ 29\ 38$	Y	Ν	Ν	2	-	Y	Ν	0.10	22-01-2013
$H_2O-5785$	G190.192+00.719	06 10 50.5	$+20\ 28\ 11$	Ν	Ν	Ν	1	-	Y	Ν	0.11	22-01-2013
$H_2O-5786$	G190.240+00.911	06 11 39.5	$+20\ 31\ 12$	Ν	Ν	Ν	1	-	Y	Ν	0.15	22-01-2013
$H_2O-5787$	G192.581-00.043	06 12 52.9	$+18\ 00\ 29$	Y	Y	Y	3	-	Y	Ν	0.15	18-08-2013
H ₂ O-5788	G192.596-00.051	06 12 52.8	+17 59 30	Y	Y	Y	3	-	Y	Y	0.39	22-01-2013
$H_2O-5789$	G192.602-00.143	06 12 33.1	+175633	Y	Ν	Ν	2	-	Ŷ	Ν	0.54	22-01-2013

 Table 1 — Continued

ID	BGPS name	RA	DEC	WISE	HII	RMS	Phase	HCO^+	HCO^+	H_2O	rms	date
	(v1.0.1)	(J2000)	(J2000)					(S11)	(S13)		Jy	dd-mm-yyyy
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
$H_2O-5790$	G192.629-00.123	06 12 41.0	+175539	Y	Ν	Ν	2	-	Y	Ν	0.51	22-01-2013
$H_2O-5791$	G192.629-00.157	06 12 33.5	$+17\ 54\ 40$	Y	Ν	Ν	2	-	Y	Ν	0.71	22-01-2013
$H_2O-5792$	G192.644+00.003	06 13 10.5	+175832	Y	Ν	Ν	2	-	Y	Ν	0.86	22-01-2013
$H_2O-5793$	G192.662-00.083	06 12 53.7	$+17\ 55\ 07$	Y	Ν	Ν	2	-	Y	Ν	0.075	23-01-2013
$H_2O-5794$	G192.719+00.043	06 13 28.6	+175541	Y	Y	Ν	3	-	Y	Ν	0.073	23-01-2013
$H_2O-5795$	G192.764+00.101	06 13 46.8	+175502	Y	Ν	Ν	2	-	Y	Ν	0.081	23-01-2013
$H_2O-5796$	G192.816+00.127	06 13 58.8	$+17\ 53\ 03$	Y	Ν	Ν	2	-	Y	Ν	0.075	23-01-2013
$H_2O-5797$	G192.968+00.093	06 14 09.6	$+17\ 44\ 03$	Ν	Ν	Ν	1	-	Y	Ν	0.069	23-01-2013
$H_2O-5798$	G192.981+00.149	06 14 23.7	$+17\ 44\ 56$	Y	Y	Ν	3	-	Y	Ν	0.079	23-01-2013
$H_2O-5799$	G192.985+00.177	06 14 30.3	+17 45 31	Y	Ν	Ν	2	-	Y	Ν	0.080	23-01-2013
$H_2O-5800$	G193.006+00.115	06 14 19.0	$+17\ 42\ 42$	Y	Ν	Ν	2	-	Y	Ν	0.077	23-01-2013

In our survey, single point observation mode was used to search for H₂O masers. The limited time led us to not perform OTF observations towards detected H₂O masers to derive the maser positions. We used data from the BeSSeL⁵ survey observed using the VLA to inspect the association between BGPS sources and the H₂O masers we detected. We derived the precise position of H₂O masers by comparing the positions and velocities of H₂O masers, in which 2 arcmin (\sim HPBW) was used for matching H₂O masers. There were five H₂O masers (H₂O-5562 G099.981+04.168, H₂O-5684 $H_2O-5746$ G133.949+01.063, G188.792+01.027, $H_2O - 5747$ G188.948+00.883 and $H_2O - 5760$ G189.776+00.343) which had been previously observed using the VLA. We found that all of these five masers were within the elliptical region encompassed by the BGPS source. Hence, these five masers were associated with the BGPS sources, assuming that they are not chance alignments along the line of sight. Considering the comparison above, most of the H₂O masers we detected are associated with the BGPS sources. However, there may be some cases where the masers that we detected were not associated the BGPS sources that we observed due to the large beam size of Nanshan. Further OTF or high resolution observations are also needed to confirm the location of the new detections.

Comparing with previous works, we found there were 10 sources associated with H₂O masers in which no H₂O masers were detected in our observation. Four of ten (H₂O-5559 G098.856+02.932, H₂O-5671 G133.784+01.421, $H_2O-5742$ G138.295+01.556, and H₂O-5798 G192.981+00.149) were observed by Valdettaro et al. (2001), but negative results were obtained. In our observation, the rms was about a tenth of or lower than that in Valdettaro et al. (2001). Further observations towards these sources are needed to confirm whether H₂O maser emission is associated with these regions. In four of the ten sources (H₂O-5592 G110.795+00.382, H₂O-5604 G111.284-00.664, H₂O-5634 G111.876+00.818 and $H_2O-5751$ G189.030+00.781), the flux densities of H_2O masers detected in previous works were above the rms in our observation. The masers should be detected in our observation, if we assume that the flux density of the H₂O maser is invariable. But the negative results suggest that the missed H₂O masers could be caused by variation of H_2O masers. In one of the ten sources ($H_2O-5655$ G133.694+01.215), the flux density of the H_2O maser in the previous work was about ten times as intense as the rms in our observation. The H₂O maser was not distinguished from the shadow of the nearby intense H₂O maser (H₂O-5655 G133.715+01.217 W3 IRS 5). Hence, the large beam size of Nanshan had some influence on our detection result. In one of ten sources ($H_2O-5576$ G110.113+00.050), the flux density of the H_2O maser was lower than 3×rms in our observation. Therefore, we did not detect the maser. Hence, the sensitivity of the observation also influenced the results of our observation. Compared with the results obtained in previous works, we could estimate that the missed H₂O masers were mainly caused by variation of H₂O masers. The large beam size of the telescope and the sensitivity of the observation also had some influence on the result of observation.

4 INDIVIDUAL SOURCES

Most of the sources we detected had previously been observed. The H_2O masers in previous works were matched with the detection in our observation, if the masers are within 135" (HPBW of the Nanshan telescope) from BGPS sources and have a similar velocity range. We perform a comparison between our detection and previous observations. The variation of H_2O masers in peak flux density, peak velocity and velocity range will be analyzed in the following part.

 $H_2O-5551$ G085.412+00.002: Urquhart et al. (2011) detected this H_2O maser with a velocity range from -39.6 km s⁻¹ to -12.9 km s⁻¹. The peak velocity was located at -32.5 km s⁻¹ with peak flux density of 69.2 Jy. In our detection, the maser has a narrower velocity range from -39.6 km s⁻¹ to -27.4 km s⁻¹. The feature located at -32.5 km s⁻¹ has disappeared, and the most intense feature instead appears at -34.1 km s⁻¹. The peak flux density decreases to 24 Jy.

 $H_2O-5556$ G088.096+00.413: Sunada et al. (2007) detected this H_2O maser whose velocity ranges from

⁵ http://bessel.vlbi-astrometry.org/home

Fig. 1 Spectra of 22 GHz water masers. The dashed line represents the systematic velocity.

 -47.0 km s^{-1} to -38.5 km s^{-1} . The peak feature was located at -43.9 km s^{-1} with flux density of 6.99 Jy. We detected this maser in our observation. We only detected one feature located at -39.1 km s^{-1} in the spectrum, and the velocity range was from -40.8 km s^{-1} to -38.2 km s^{-1} . The peak flux density has increased to be 9.3 Jy in our observations.

 $\rm H_2O-5560~G098.978+03.960$: This $\rm H_2O$ maser is a new detection which shows a double peak in the spectrum. The peak feature is located at $-6.8~\rm km~s^{-1}$ and has a flux density of 23 Jy.

 $H_2O-5562$ G099.981+04.168: This source is also known as WB110. This H_2O maser was detected by Bae et al. (2011). The velocity range was from -20.96 km s⁻¹ to 3.27 km s⁻¹, and the most intense feature was located

 Table 2
 Parameters of H₂O Masers

ID	BGPS name	RA	DEC	F_{peak}	V_{peak}	$V_{\rm range}$	S_{ν}	rms	Ref
	(v1.0.1)	(J2000)	(J2000)	(Jy)	$({\rm km} {\rm s}^{-1})$	(km s^{-1})	$(Jy \text{ km s}^{-1})$	(Jy)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
$H_2O-5551$	G085.412+00.002	20:54:14	+44:54:07	24	-34.1	-39.6, -27.4	45	0.16	[4]
$H_2O-5556$	G088.096+00.413	21:02:33	+47:12:09	9.3	-39.1	-40.8, -38.2	10	0.14	[2]
$H_2O-5560$	G098.978+03.960	21:36:08	+57:26:48	23	-6.8	-15.6, -5.9	32	0.17	new
$H_2O-5562$	G099.981+04.168 (WB110)	21:40:42	+58:16:01	43	0.4	-10.6, 12.2	1.3×10^{2}	0.19	[3]
$H_2O-5564$	G109.995-00.282	23:05:23	+59:53:58	0.86	-50.5	-61.5, -48.8	2.0	0.17	[1]
$H_2O-5612$	G111.522+00.800	23:13:32	+61:29:03	3.6	-60.2	-71.2, -44.6	7.2	0.094	[4]
$H_2O-5632$	G111.796+00.600	23:16:16	+61:23:51	4.1	-47.3	-48.1, -46.4	3.1	0.23	new
$H_2O-5635$	G111.882+00.992	23:15:46	+61:47:39	1.8	-50.6	-53.1, -39.2	6.4	0.11	[2]
$H_2O-5656$	G133.715+01.217 (W3 IRS 5)	02:25:40	+62:05:58	2.9×10^{3}	-36.8	-54.5, -25.8	9.3×10^{3}	6.4	[4]
$H_2O-5667$	G133.748+01.059	02:25:28	+61:56:23	4.5	-48.7	-49.6, -36.1	5.5	0.30	new
$H_2O-5668$	G133.748+01.197 (W3 3)	02 25 53	$+62\ 04\ 07$	54	-37.3	-44.1, -26.4	2.2×10^{2}	0.48	[1]
$H_2O-5684$	G133.949+01.063 (W3 OH)	02:27:04	+61:52:19	9.1×10^2	-48.4	-60.7, -44.6	2.1×10^{3}	1.8	[2]
$H_2O-5705$	G134.281+00.855	02:29:02	+61:33:26	7.7	-59.6	-61.7, -36.4	9.2	0.089	[1]
$H_2O-5710$	G135.891-00.461	02:37:05	+59:43:32	7.4	-26.9	-31.5, -25.6	11	0.095	[1]
$H_2O-5712$	G136.384+02.268	02:50:09	+61:59:53	3.6	-47.6	-48.9, -40.5	4.7	0.095	[4]
$H_2O-5721$	G136.849+01.150	02:49:31	+60:47:23	3.6	-43.0	-45.5, -39.6	4.8	0.12	[1]
$H_2O-5724$	G136.945+01.092	02:50:01	+60:41:44	2.5	-41.8	-47.7, -41.0	2.6	0.12	new
$H_2O-5726$	G137.067+03.004	02:58:13	+62:20:38	9.7	-50.4	-53.8, -45.7	23	0.19	[2]
$H_2O-5745$	G138.503+01.646 (S201)	03:03:21	+60:27:57	5.6	-31.8	-37.7, -28.5	6.3	0.09	[2]
$H_2O-5746$	G188.792+01.027 (Gem 1)	06:09:06	+21:50:39	1.6×10^{2}	-7.7	-14.4, -3.0	4.1×10^{2}	0.40	[2]
$H_2O-5747$	G188.948+00.883	06:08:52	+21:38:16	6.2	7.0	-4.8, 10.0	16	0.057	[2]
$H_2O-5750$	G189.015+00.823	06:08:47	+21:32:58	0.21	-2.2	-2.6, -1.4	0.24	0.047	new
$H_2O-5760$	G189.776+00.343 (S252 A)	06:08:35	+20:39:08	8.8	9.1	4.0, 17.6	31	0.072	[2]
$H_2O-5782$	G190.054+00.533	06:09:51	+20:30:03	0.89	16.5	15.7, 19.1	1.0	0.098	[1]
$H_2O-5788$	G192.596-00.051 (S255/7)	06:12:52	+17:59:31	76	3.1	-0.7, 11.9	1.5×10^2	0.39	[2]

Notes: Col. (1) gives the indices of BGPS sources in our survey. Col. (2) shows the name of BGPS source in catalog v1.0.1, followed by well known names. Cols. (3) and (4) give the coordinates of peak position of BGPS source in J2000 where we search for an H₂O maser. The peak flux density, peak velocity, velocity range and integrated flux density of the H₂O maser are listed in Cols. (5) to (8). The rms in each spectrum is given in Col. (9). The references are listed in Col. (10). These references correspond to: [1] Valdettaro et al. (2001), [2] Sunada et al. (2007), [3] Bae et al. (2011), [4] Urquhart et al. (2011).

at -10.01 km s⁻¹ with a flux density of 27.08 Jy. In our detections, the velocity range was from -10.6 km s⁻¹ to 12.2 km s⁻¹. The feature located at 11.2 km s⁻¹ was a new detection. The peak velocity was at 0.4 km s⁻¹, and the peak flux density increased to 43 Jy.

H₂O-5564 G109.995-00.282: This H₂O maser was discovered by Wouterloot & Walmsley (1986). Valdettaro et al. (2001) performed a re-observation towards this source. However, a negative result was obtained with an rms of 2.1 Jy between -136.3 km s⁻¹ and 32.3 km s⁻¹. This may be due to the high rms. We detected this maser in our sensitive observation (rms 0.17 Jy). The maser has a velocity range from -61.5 km s⁻¹ to -48.8 km s⁻¹. The peak feature has flux density of 0.86 Jy located at -50.5 km s⁻¹.

 $H_2O-5612 G111.522+00.800$: Urquhart et al. (2011) detected this H_2O maser to have a velocity range from -85.1 km s^{-1} to -65.0 km s^{-1} . The peak flux density was 102.4 Jy which was located at -71.2 km s^{-1} . In our observation, we also detected this maser. The velocity range varied from -71.2 km s^{-1} to -44.6 km s^{-1} . The most intense feature at -71.2 km s^{-1} in Urquhart et al. (2011) was also seen in our observation, but the flux density was very weak (only a few tenths of a Jy). This maser had peak flux density of 3.6 Jy at -60.2 km s^{-1} . The peak flux density of this maser has decreased over a three year period to only a few percent of that observed by Urquhart et al. (2011). $H_2O-5632$ G111.796+00.600: This is a new detection. Only a single feature appears in the spectrum. The peak flux density was 4.1 Jy at -47.3 km s⁻¹. The velocity range was from -48.1 km s⁻¹ to -46.4 km s⁻¹.

H₂O-5635 G111.882+00.992: Sunada et al. (2007) detected this maser whose peak flux density was 7.45 Jy at -44.01 km s⁻¹, and the velocity range was from -58.5 km s⁻¹ to -40.5 km s⁻¹. In our observation, the velocity range was from -53.1 km s⁻¹ to -39.2 km s⁻¹. The most intense feature had vanished in our observation. Instead the peak flux density was 1.8 Jy at -50.6 km s⁻¹.

 $H_2O-5656~G133.715+01.217$: This source is the well-known source W3 IRS 5. Urquhart et al. (2011) detected this H_2O maser. The velocity range of the maser was from $-80.9~{\rm km~s^{-1}}$ to $5.5~{\rm km~s^{-1}}$, and the most intense feature had flux density of 1.5×10^4 Jy at $-39.5~{\rm km~s^{-1}}$. This is the most intense maser in our observation. The velocity range was from $-54.5~{\rm km~s^{-1}}$ to $-25.8~{\rm km~s^{-1}}$, which is narrower than that in Urquhart et al. (2011). The most intense feature at $-39.5~{\rm km~s^{-1}}$ in Urquhart et al. (2011) has become the fourth most intense feature. The most intense feature in our observation had a flux density of 2.9×10^3 Jy at $-36.8~{\rm km~s^{-1}}$. This maser had decreased by more than 10^4 Jy. Urquhart et al. (2011) may have observed this source during an outburst in the maser activity.

 $H_2O-5667$ G133.748+01.059: This is a newly detected H_2O maser. The velocity range was from

-49.6 km s⁻¹ to -36.1 km s⁻¹. The peak flux density was 4.5 Jy at -48.7 km s⁻¹.

H₂O-5668 G133.748+01.197: The source is also known as W3 3. Valdettaro et al. (2001) detected this H₂O maser with a velocity range from -49.4 km s⁻¹ to -30.3 km s⁻¹. The peak velocity was at -39.3 km s⁻¹ with a flux density of 69.65 Jy. In our observations, a similar velocity range was detected from -44.1 km s⁻¹ to -26.4 km s⁻¹. The peak velocity was located at -37.3 km s⁻¹, and the peak flux density was 54 Jy in our observations.

H₂O-5684 G133.949+01.063: Sunada et al. (2007) detected this H₂O maser having a wide velocity range from -111.5 km s⁻¹ to 6.0 km s⁻¹. The most intense feature was located at -46.8 km s⁻¹ with a flux density of 659.34 Jy. We detected this maser as showing a much narrower velocity range from -60.7 km s⁻¹ to -44.6 km s⁻¹. The weak features were not detected in the spectrum which may be caused by high rms of 1.9 Jy. The peak flux density was 9.1×10^2 Jy at -48.4 km s⁻¹. The most intense feature detected by Sunada et al. (2007) was not detected in our observations.

H₂O-5705 G134.281+00.855: Xiang & Turner (1995) discovered this maser, and Valdettaro et al. (2001) performed re-observation toward this source. However, a negative result was obtained in their observation with the velocity coverage from -110.0 km s⁻¹ to 110 km s⁻¹. The spectrum of this source in our observation showed an intense feature accompanying a few weak features. The most intense feature was located at -59.6 km s⁻¹ with flux density of 7.7 Jy. The velocity range was from -62.7 km s⁻¹ to -36.4 km s⁻¹.

 $\rm H_2O-5710~G135.891-00.461$: Observations by Valdettaro et al. (2001) did not detect any H_2O maser emission in this source in the velocity range from $-72.1~\rm km~s^{-1}$ to 12.1 km s^{-1}. This maser was detected in our observation. The maser had a velocity range from $-31.5~\rm km~s^{-1}$ to $-25.6~\rm km~s^{-1}$. The peak flux density was 7.4 Jy at $-26.9~\rm km~s^{-1}$.

 $H_2O-5712$ G136.384+02.268: Urquhart et al. (2011) detected this maser showing a velocity range from -48.6 km s⁻¹ to -37.6 km s⁻¹. The peak flux density was 30.0 Jy at -45.8 km s⁻¹. We detected this maser in our observation. But the most intense feature detected in Urquhart et al. (2011) had vanished, and instead the peak flux density in our observation was 3.6 Jy at -47.6 km s⁻¹, which was just a tenth of that in Urquhart et al. (2011).

 $\rm H_2O-5721~G136.849+01.150$: Han et al. (1998) discovered this $\rm H_2O$ maser. A re-observation was performed by Valdettaro et al. (2001) with velocity coverage from $-130.0~\rm km~s^{-1}$ to 86.0 km s $^{-1}$, but a negative result was obtained. In our observation, this maser had velocity range from $-45.5~\rm km~s^{-1}$ to $-39.6~\rm km~s^{-1}$. The peak feature was located at $-43.0~\rm km~s^{-1}$ with a flux density of 3.6 Jy.

 $H_2O-5724$ G136.945+01.092: This is a newly detected H_2O maser. Two peaks are observed in the spectrum. The velocity range was from -47.7 km s⁻¹ to

-41.0 km s⁻¹. The peak flux density was 2.5 Jy at -41.8 km s⁻¹.

H₂O-5726 G137.067+03.004: Sunada et al. (2007) detected this H₂O maser showing a velocity range from -59.0 km s^{-1} to -38.0 km s^{-1} , and the peak flux density was 10.99 Jy at -50.8 km s^{-1} . In our observation, the maser showed a narrower velocity range from -53.8 km s^{-1} to -45.7 km s^{-1} . The peak flux density was 9.7 Jy at -50.4 km s^{-1} in our observation. Because the velocity resolution was 0.44 km s⁻¹ in our spectrum, the peak feature that we detected was also the one detected in Sunada et al. (2007).

 $\rm H_2O-5745~G138.503+01.646$: This source is also known as S201. Sunada et al. (2007) detected this $\rm H_2O$ maser. The maser had a velocity range from $-37.5~\rm km~s^{-1}$ to $-30.0~\rm km~s^{-1}$, and the peak flux density was 0.97 Jy at $-35.2~\rm km~s^{-1}$. We detected this maser with velocity range from $-37.7~\rm km~s^{-1}$ to $-28.5~\rm km~s^{-1}$ which was very similar to the previous observation. The peak flux density was 5.6 Jy at $-31.8~\rm km~s^{-1}$, so the maser has increased in intensity by a factor of approximately five.

 $H_2O-5746$ G188.792+01.027: This source is known as Gem 1. Sunada et al. (2007) detected this H_2O maser with velocity range from -25.0 km s⁻¹ to 5.5 km s⁻¹. The peak feature was located at -7.7 km s⁻¹ with flux density of 265.33 Jy. We detected this maser as well. The maser showed a velocity range from -14.4 km s⁻¹ to -3.0 km s⁻¹. We detected the same peak feature at -7.7 km s⁻¹ with a flux density of 1.6×10^2 Jy. The peak flux density has decreased by 100 Jy.

 $\rm H_2O-5747~G188.948+00.883$: Sunada et al. (2007) detected this H_2O maser showing a velocity range from $-9.0~\rm km~s^{-1}$ to 7.5 $\rm km~s^{-1}$, and a peak flux density of 20.09 Jy at 2.5 $\rm km~s^{-1}$. We detected this maser which had a velocity range from $-4.8~\rm km~s^{-1}$ to 10.0 $\rm km~s^{-1}$. The peak velocity was at 7.0 $\rm km~s^{-1}$, and the peak flux density was 6.2 Jy.

 $H_2O-5750~G189.015+00.823$: This H_2O maser is a new detection. The maser had a velocity range from $-2.6~{\rm km~s^{-1}}$ to $-1.4~{\rm km~s^{-1}}$. Only one feature is detected in the spectrum, and it is relatively weak with a peak flux density of 0.21 Jy (about four times the rms noise). The peak velocity was located at $-2.2~{\rm km~s^{-1}}$.

 $H_2O-5760$ G189.776+00.343: This source is also known as S252 A. Sunada et al. (2007) performed multiepoch observations towards this source. The peak flux density varied from 3.20 Jy to 0.64 Jy in a year. The last observation gave the velocity range of the maser from 12.0 km s⁻¹ to 14.5 km s⁻¹ and the peak flux density of 0.64 Jy at 13.3 km s⁻¹. In our observations, the velocity range was from 4.0 km s⁻¹ to 17.6 km s⁻¹. The most intense feature detected in Sunada et al. (2007) had vanished, and instead the peak feature was at 9.1 km s⁻¹. The peak flux density is 8.8 Jy which is an increase by a factor of 10 from the last observation by Sunada et al. (2007).

 $H_2O-5782$ G190.054+00.533: Han et al. (1998) discovered this H_2O maser. Valdettaro et al. (2001) performed

additional observations of this source, but did not detect any emission in the velocity range from -151.0 km s⁻¹ to 63.0 km s⁻¹ with an rms of 0.72 Jy. In our observation, the maser had velocity range from 15.7 km s⁻¹ to 19.1 km s⁻¹. The most intense feature was located at 16.5 km s⁻¹ with a flux density of 0.89 Jy.

 $\rm H_2O-5788~G192.596-00.051$: This source is known as S255/7. Sunada et al. (2007) detected this H₂O maser in two epochs of observations. The peak flux density varied from 27.46 Jy to 88.12 Jy in half a year. The velocity range was from -9.0 km s⁻¹ to 14.5 km s⁻¹, and peak flux density was 88.12 Jy at 2.3 km s⁻¹ in the last observation by Sunada et al. (2007). We detected this maser showing a velocity range from -0.7 km s⁻¹ to 11.9 km s⁻¹. The peak velocity was located at 3.1 km s⁻¹. The peak flux density in our observations was 76 Jy, which was similar to the observation result of Sunada et al. (2007).

5 DISCUSSION

5.1 The Influence Radius of a Strong H₂O Maser

Due to the large beam size of the telescope, we find that H₂O maser spectra detected at nine different positions show nearly the same line profile but with different flux density (see Fig. 2). Four features of all of the spectra appear at the same velocity which strongly suggests that these nine spectra come from one H₂O maser. It is reasonable to believe that the strongest one is the true detection and the others are fake detections. Valdettaro et al. (2001) demonstrated that the emission of the strong maser can be seen in the side lobes up to an angular distance of 30 HPBWs from a large region mapped toward Orion KL. If our interpretation of your meaning is not correct, please explain your meaning more clearly. If we assume that the strongest H₂O maser G133.715+01.217 is a true detection, then it was also detected at eight other nearby sources (see Fig. 2). We may obtain the influence radius for a given intensity flux density of an H₂O maser by plotting the peak flux density as a function of angular distance. This could help us to eliminate fake detections from real ones.

We plot the peak flux density as a function of angular distance in Figure 3. The flux density is in log-scale and the angular distance is in the unit of HPBW. It clearly shows that the peak flux density decreases as an exponential function of the angular distance. We perform the linear fitting between the peak flux density in log-scale and angular distance in the unit of HPBW. The best fitting linear line is plotted as a solid line. The dotted line represents the average rms (0.17 Jy) in our observation. We can see that an H_2O maser with flux density of 3×10^3 Jy can be seen as far as five HPBWs away from its true position. We assume that the correlation between detected flux density and angular distance is the same as that shown in Figure 3. The best fitting formula for the Nanshan 25 m radio telescope is $F = F_0 \times 10^{-0.8d}$, where F_0 is the flux density of the H_2O maser, d is the angular distance to the H_2O maser in the unit of HPBW, and F is the detected flux density at an angular distance of d. If the rms is given and a feature with S/N above 3 is considered as a maser detection, then the influence radius is given by $r = \frac{1}{0.8} \log(\frac{F_0}{3 \text{ rms}})$.

For the most intense H_2O maser in W49N with flux density of ~ 10⁴ Jy (Zhou et al. 2002), the maser could be detected at a position with angular distance of 5.4 HPBWs (~ 12') away above an rms of 0.17 Jy. But for most of the masers in our detection, their flux densities are a few Jy, and the corresponding influence radius is just 1.2 HPBWs (~ 167") for masers with a peak flux of 5 Jy. We used this formula to estimate the influence radius. A weak maser with a similar line profile within the influence radius of the strongest maser is considered to be a fake detection.

5.2 Comparison between Our Sample Sources in v1.0.1 and Their Counterparts in v2.1

We selected our sample sources from the BGPS catalog v1.0.1 and began the H_2O maser survey in August 2012. The BGPS catalog v2.0 was released near the end of our observations, which provided more reliable coordinates and flux densities for sources. The latest BGPS catalog version is v2.1. Since the 1.1 mm flux density within an aperture of 120" is used for further analysis in this paper, we compare the flux density with an aperture of 120'' from our sample sources in v1.0.1 and that of their counterparts in v2.1. Only 70% of the individual sources in v2.1 have an obvious v1.0.1 counterpart and vice versa (Ginsburg et al. 2013), so a portion of our sources in BGPS catalog v1.0.1 may have no counterparts in v2.1. When the angular distance between any two sources coming from v1.0.1 and v2.1 respectively is less than 67.5'' (half of the HPBW of Nanshan 25 m), they are considered to be the same source. As a result, 188 out of 274 sources in our sample have counterparts in v2.1. We plot their 1.1 mm flux densities in v1.0.1 versus those in v2.1 in Figure 4. The former have been corrected by multiplying a factor of 1.5 which is applied in flux densities of v1.0.1. The dashed line represents the equality line. It clearly shows that all of the sources are around the equality line. Hence there is no systemic deviation between catalog v1.0.1 and v2.1. So, using flux densities of our sources in catalog v1.0.1 is reasonable. Because the other 86 out of 274 sources ($\sim 30\%$) of our sample do not have their counterparts in v2.1, we use the parameters listed in the BGPS catalog v1.0.1 in further analysis below.

5.3 Classification of BGPS Sources

The Wide-field Infrared Survey Explorer (WISE) (Wright et al. 2010; Jarrett et al. 2011) is a NASA medium-class Explorer mission that was launched on 2009 December 14. WISE mapped the whole sky simultaneously in four infrared (IR) bands centered at 3.4, 4.6, 12 and 22 μ m. The flux density at 5 σ are 0.08, 0.1, 1 and 6 mJy respectively. WISE All-Sky Source catalog⁶ was used for exploring the IR emission of BGPS sources. The WISE point sources

⁶ http://irsa.ipac.caltech.edu/cgi-bin/Gator/nph-dd

Fig. 2 Nine spectra with the same line profile but detected at different positions are shown in the figure. The BGPS name of the position is listed above each spectrum.

Fig. 3 The peak flux density in nine spectra is plotted as a function of angular distance. The flux density is in log-scale and the angular distance is the unit of HPBW. The solid line represents the best fitting linear line. The dotted line represents $3 \times$ the average rms in our detection.

Fig.4 A comparison of flux density with an aperture of 120'' between the BGPS catalog v1.0.1 and v2.1. The correction factor of 1.5 is applied in flux density of v1.0.1. The dashed line represents the equality line.

classified as extragalactic objects by Koenig et al. (2012) are eliminated in our further analysis.

Using data from 0.00, 0.00, 1.00 in the WISE survey, Anderson et al. (2014) compiled a catalog of ~8000 Galactic HII regions and HII region candidates by their characteristic mid-IR (MIR) morphology. Also, ~1500 cataloged sources with a radio recombination line (RRL) or detected H_{α} emission are known to be HII regions. Their work provided us with a complete and reliable HII region catalog that we have used to select the BGPS sources containing relatively evolved massive stars.

The goal of the Red MSX Source (RMS) survey⁷ is to systematically search the entire Galaxy for massive young stellar objects (MYSOs) (Hoare et al. 2004; Urquhart et al. 2008). The target sources are mid-IR bright point sources that are selected from the Midcourse Space Experiment (MSX) Galactic plane survey (Price et al. 2001). The RMS survey identified 1992 MYSO candidates which are classified into the following categories: "Evolved star", "PN", "OH/IR star", "Young/old star?", "HII regions", "HII/YSO" and "YSO". We only use the "Young/old star?", "HII regions", "HII/YSO" and "YSO" as the signature of a relatively evolved massive star and marked those objects as young RMS.

The sources provided in the three catalogs described above were used to classify 274 BGPS sources in our sample. HII regions, young RMS sources and WISE point sources were considered to be associated with the BGPS sources, if they were in the elliptical region of BGPS sources provided in the catalog v1.0. Table 1 shows the result of whether a BGPS source is associated with WISE point sources, HII regions or RMS sources. The BGPS sources associated with at least one HII region or at least one young RMS source are classified as Phase 3. The BGPS sources which are not associated with any HII region or any young RMS source but are associated with at least one WISE point source are classified as Phase 2. The sources which are not associated with any HII region, young RMS source or WISE point source are classified as Phase 1. We use this classification scheme as the evolutionary stage of BGPS sources. The classification result is also shown in Table 1. As a result, there are 67, 169 and 38 BGPS sources in Phases 1, 2 and 3 respectively. The distributions of 1.1 mm flux densities for Phase 1, 2 and 3 sources are shown in Figure 5. The mean flux densities are 0.55, 1.1 and 5.2 Jy respectively which are represented by dotted lines. These clearly show that the mean flux density is increasing as the BGPS sources evolve from Phases 1 to 3. The trend is similar to that shown in Dunham et al. (2011). We use this classification in further analysis in this paper.

5.4 Detection Rate of H₂O Masers

In Figure 6, we plot the number of BGPS sources associated with and without an H_2O maser as a function of

Table 3 H₂O Maser Detection Rates in Phases 1, 2 and 3

	Phase 1	Phase 2	Phase 3
Maser	2(3.0%)	11(6.5%)	12(31.6%)
Total	67	169	38

the 1.1 mm flux density of BGPS sources with an aperture of 120''. The detection rates in each bin are shown as triangles. They clearly show that the detection rate of an H_2O maser increases as the 1.1 mm flux density increases. Chen et al. (2012) also found that the detection rate of 95 GHz Class I methanol masers towards BGPS sources significantly increases as the integrated 1.1 mm flux density increase. The same trend was also found for 6.7 GHz Class II methanol masers (Sun et al. 2014). This shows that Class I and II CH₃OH masers, and H₂O masers are closely related to the 1.1 mm emission of BGPS sources. Chen et al. (2012) developed a criterion based on 1.1 mm integrated flux density of BGPS sources to search for Class I CH₃OH masers. Hence, a similar criterion could be developed to search for H₂O masers toward BGPS sources. However, the sample of H₂O masers is too small to do so in this paper.

The number of BGPS sources with and without H₂O masers in Phases 1, 2 and 3 and corresponding detection rates are listed in Table 3. The detection rates in Phases 1, 2 and 3 are 3%, 7% and 32%, respectively. The detection rates escalate from Phases 1 to 3. The detection rate in Phase 3 is much higher than that in Phases 1 and 2. However, the detection rates for Phases 1 and 2 are similar to each other. The BGPS sources in Phase 1 are not associated with HII regions, RMS sources or WISE point sources. Hence, the sources in Phase 1 have no or have weak star formation activity. The only two sources in Phase 1 are H₂O-5632 G111.796+00.600 and $H_2O-5726 G137.067+03.004$. One of them is a new detection, and neither maser has a position measured from high resolution observation. Further observation is needed for these two H₂O masers to confirm the association with the BGPS sources. Considering the possibility stated above, the detection rate in Phase 1 may drop. The difference in detection rate between Phases 1 and 2 may become more obvious. This escalation trend in detection rate from Phases 1 to 3 shows that the H₂O maser prefers the relatively evolved stars. As the H₂O masers are pumped by collision, intense star formation activities such as outflows and jets may provide ideal conditions for exciting H₂O masers.

Shirley et al. (2013) performed observations of HCO⁺ and N₂H⁺ simultaneously toward BGPS sources. Their target catalog contains all of the sources in our sample. Their detection results of HCO⁺ are shown in Table 1. There are 191 sources showing HCO⁺ emission and 83 sources in which Shirley et al. (2013) did not detect HCO⁺ emission under the mean limit of 0.174 K. Compared with our H₂O maser sample, we found that 24 out of 25 H₂O masers we detected are among the 191 sources which are associated with HCO⁺ emission. One out of 25 H₂O

⁷ http://www.ast.leeds.ac.uk/RMS/

Fig. 5 This figure shows the distribution of 1.1 mm flux density in each phase. The dotted line represents the mean 1.1 mm flux density in the phase.

Fig.6 This figure shows the distribution of 1.1 mm flux density of BGPS sources with an aperture of 120''. The solid line represents the BGPS sources in our sample and the dotted line represents the BGPS sources associated with H₂O masers. The detection rate of the H₂O maser in each bin is represented by a triangle.

masers was associated with a source which did not show HCO^+ emission with an rms under 0.08 K. This implies that the H₂O masers preferentially appear in the sources with HCO^+ emission. The mean T_{mb}^{pk} and median T_{mb}^{pk} are 3.126 K and 2.928 K respectively for the sources with H₂O masers. The mean T_{mb}^{pk} and median T_{mb}^{pk} are 0.938 K and 0.621 K respectively for the sources without H₂O masers. Both mean and median T_{mb}^{pk} show the trend that H₂O masers prefer to appear in the sources not only with HCO⁺ emission but also with stronger HCO⁺ emission. Hogerheijde et al. (1998) revealed that the emission of HCO⁺ was dominated by outflow motion, and H₂O masers also trace outflows (Sanna et al. 2010a,b). This seems to be the reason why the H₂O masers we detected are associated with the sources showing stronger HCO⁺ emission. This trend also provides us with a method of source selection to search for H₂O masers.

5.5 Spatial Distribution of H₂O Masers

The spatial distribution of BGPS sources in our sample is shown in the upper panel of Figure 7. The grey dots represent the BGPS sources without H₂O masers. The BGPS sources associated with H₂O masers are plotted as diamonds. The small, medium and large diamonds represent the maser sources in Phases 1, 2 and 3, respectively. Our sources are concentrated in a few regions, and it is hard to determine whether the detection rate of H₂O masers varies as the longitude increases. We divided the sources into three portions (part 1: $80^\circ < l < 120^\circ$, part 2: $120^{\circ} < l < 160^{\circ}$, part 3: $160^{\circ} < l < 200^{\circ}$). The detection rate of H₂O masers is 7.1%, 10.4% and 10.9% in parts 1, 2 and 3, respectively. The nearly constant detection rates of H₂O masers suggest that star formation is not correlated with Galactic longitude in the outer Galaxy. Dunham (2012) performed an H₂O maser survey towards BGPS sources, and yielded a detection rate of 40%. Another H₂O maser survey towards BGPS sources performed by Xi et al. (2015) also gave a detection rate as high as 48.4%. Compared with the previous H₂O maser survey towards BGPS sources, the detection rate in our survey is rather low. The source selection may be attributed to low detection. Another possible reason may be that star formation in the outer Galaxy is much weaker.

Fig.7 The positions of BGPS sources in our sample are plotted in the upper panel. The lower panel shows the systematic velocity versus Galactic longitude of BGPS sources in our sample. The sources without H_2O masers are shown by grey dots. The H_2O masers within BGPS sources in Phases 1 to 3 are represented by small, medium and large diamonds respectively.

200 BGPS sources have known systematic velocity derived from N₂H⁺ or ¹²CO. H₂O masers were detected toward 24 of these 200 sources. We show the distribution of systematic velocity as a function of the Galactic longitude of the BGPS sources in the lower panel of Figure 7. The legend in the upper panel in Figure 7 still applies in the lower panel. Three spiral arms (Local Arm, Perseus Arm and Outer arm which are derived from a polynomiallogarithmic model fitting to only the HII region by Hou & Han (2014)) of the Galaxy in the second quadrant are shown in the lower panel. It clearly shows that most H₂O masers are located between the Perseus Arm and Outer arm, rather than in the spiral arms. We note that the H_2O masers in the gap between spiral arms contain seven H₂O masers in Phase 3. This distribution suggests that there exists a new region which is undergoing massive star formation. Hou & Han (2014) built a four-arm model based on the distribution of HII regions, giant molecular clouds and masers. The best fitting result shows the possible existence of another spiral arm between the Perseus Arm and the Outer Arm. The seven H_2O masers in Phase 3 may be located in the possible spiral arm predicted by Hou & Han (2014). The other four H_2O masers in Phase 3 are located around the longitude of 190°. The known spiral arms are near each other. It is hard to distinguish in which arm they are located. The H₂O masers in Phase 2 around a longitude of 100° are located in the Local Arm.

5.6 1.1 mm Emission from BGPS Sources

In Figure 8, we plot the integrated flux density of BGPS sources versus the flux density within an aperture of 40'' of BGPS sources. The grey dots represent the BGPS sources without H₂O masers. The empty circles represent the BGPS sources with only H₂O masers. We check the association with the 6.7 GHz CH₃OH maser in previous work (Ellingsen 2007; Pandian et al. 2007; Xu et al. 2008; Caswell 2009; Green et al. 2010; Szymczak et al. 2012;

Fig. 8 The integrated flux density of BGPS sources versus the flux density within an aperture of 40''. The BGPS sources without H₂O masers are plotted with grey dots. The BGPS sources with only H₂O masers are plotted with empty circles and the BGPS sources with both H₂O and CH₃OH masers are plotted with filled circles.

Bayandina et al. 2012). Seven BGPS sources associated with both H_2O and CH_3OH masers are represented by filled circles. It clearly shows that the BGPS sources associated with masers tend to have higher integrated flux density and flux density within an aperture of 40", and so tend to have a higher mass. The flux density within an aperture of 40" accounts for most of the integrated flux density in the BGPS sources associated with masers, and so these sources tend to be more compact. This trend was also shown in Titmarsh et al. (2014). It also appears that the BGPS sources associated with both H_2O and CH_3OH masers are more compact than those only associated with an H_2O maser. More matter is accreted onto the protostar as the clump evolves. This implies the more compact sources may be relatively older. Hence, the BGPS

Fig.9 The peak velocities of the H₂O maser versus the systematic velocities are plotted by squares. The vertical bars represent the total velocity ranges of H₂O masers. The dashed line represents equality. The dotted lines show a deviation of ± 10 km s⁻¹ from the dashed line.

sources associated with both H_2O and CH_3OH masers may be older than those only associated with H_2O masers. Titmarsh et al. (2014) performed a similar comparison and suggested that the BGPS sources associated with both H_2O and CH_3OH masers may be older than those only associated with CH_3OH masers. Combining these two results, we suggest that the BGPS sources associated with both H_2O and CH_3OH masers may be older than those associated with either only H_2O or only CH_3OH masers.

5.7 Velocities of H₂O Masers

24 out of 25 H₂O masers have systematic velocity derived from N_2H^+ or ${}^{12}CO$. We plotted the velocity of H₂O masers versus the systematic velocity in Figure 9. The squares show the peak velocity of H₂O masers. The vertical bars show the total velocity ranges of H₂O masers. The dashed line represents equality and the dotted lines represent a deviation of ± 10 km s⁻¹ from the dashed line. The peak velocities of H₂O masers in our sample all lie within $\pm 10 \text{ km s}^{-1}$ from systematic velocities. This confirms association between H₂O masers and BGPS sources. We also found that there is no high velocity emission shown in our sample, if we use the a threshold of a 30 km s⁻¹ deviation from systematic velocity. But 28% of H₂O masers show high velocity emission in Caswell & Breen (2010) based on a sample of 32 H₂O masers, if we use the same criterion. There are 19% of H₂O masers showing high velocity emission in Caswell & Breen (2010), if a stronger criterion of 50 km s⁻¹ is used.

The average velocity range of H_2O masers in our sample is 8.5 km s⁻¹, and the median velocity range is 7.9 km s⁻¹. Breen et al. (2010a) performed a survey

of H₂O masers. The average and median velocity ranges are 27 km s⁻¹ and 15 km s⁻¹ for the 2003 epoch, and 30 km s⁻¹ and 15 km s⁻¹ for the 2004 epoch respectively. Their results were based on the sample of 379 H₂O masers. Titmarsh et al. (2014) gave a similar average and median velocity range of 27 km s⁻¹ and 17 km s⁻¹ respectively.

This clearly shows that the deviation of H₂O maser features from systematic velocity in our sample is much smaller than that shown in previous works. The velocity ranges in our sample are also smaller. The rms varies from \sim 40 to \sim 50 mJy in Breen et al. (2010a), and the rms varies from ~ 40 to ~ 80 mJy or from ~ 100 to ~ 160 mJy depending on integration time in Titmarsh et al. (2014). The rms in Breen et al. (2010a) and Titmarsh et al. (2014) is lower than or just a fourth of the rms in our observation. This makes them able to detect more weak features of H₂O masers. Since the features of H₂O masers with high velocities have relatively low intensities, the high velocity features are the missed ones in our observations. This may be the most probable reason why the velocity range is narrow and there is no high velocity feature detected in our observations. Another possible reason may be our biased source selection. The sources in our sample are located in the outer Galaxy, which may indicate that the conditions of SFR in the outer Galaxy differ from those in the inner Galaxy.

5.8 Flux Density and Luminosity of H₂O Masers

In Figure 10, we show the distribution of peak flux density (left panel) and luminosity (right panel) of H₂O masers in our sample from Phases 1 to 3. Considering that there are only two H₂O masers in Phase 1, which cannot give a statistically reliable result, we only analyze the variation of peak flux and luminosity of H₂O masers in Phases 2 and 3. There are 11 and 12 sources in Phases 1 and 2 respectively in the distribution of peak flux density. We calculate the luminosity for the H₂O masers which have measured distances, and there are 10 and 12 sources in Phases 1 and 2 respectively in the distribution of luminosity. The vertical bars represent the average value in each phase. The median peak flux is 5.6 Jy and 24 Jy in Phases 2 and 3, respectively. The average peak flux is 9.9 Jy and 3.4×10^2 Jy in Phases 2 and 3, respectively. Both average peak flux and median peak flux show an increment as the sources evolve. We also note that there is a large overlap in flux density of H₂O masers between Phases 2 and 3. Breen et al. (2010a) suggested that the flux density of H₂O masers increases with age, and our result is consistent with their prediction. However, the K-S test gave a p value of 0.20 which suggested there is no significant difference in peak fluxes between Phases 2 and 3. This may be caused by the small size of our sample.

We also performed the K-S test for luminosity of Phases 2 and 3. The test gave a p value of 0.04 which suggested a significant difference in luminosity between Phases 2 and 3. The average luminosity is

M Phase $\circ \circ \circ \infty$ $\diamond \leftrightarrow \diamond$ $\diamond \diamond$ \diamond $\land \land$ $\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$ $\langle \! \! \otimes \!\! \rangle$ Evolutionary Stage \sim Phase $\sim \infty \infty$ ~ Phase \diamond \diamond 10³ 10⁴ 10⁰ 10^{2} 10^{3} 10⁰ 10¹ 10² 10⁵ 10⁶ 10⁷ 10^{1} 10 Luminosity of H₂O /Jy km s⁻¹ kpc² Peak Flux of H₂O /Jy

Fig. 10 The peak flux (*left panel*) and the luminosity (*right panel*) of H_2O masers in our sample versus the evolutionary stage from Phases 1 to 3. The vertical bars represent the average value in each phase.

 6.0×10^2 Jy km s⁻¹ kpc² and 1.1×10^5 Jy km s⁻¹ kpc² in Phases 2 and 3, respectively. The median luminosity is 5.5×10^2 Jy km s⁻¹ kpc² and 2.1×10^3 Jy km s⁻¹ kpc² in Phases 2 and 3, respectively. This suggests that the luminosity increases as the sources evolve. There is an overlap in luminosity between Phases 2 and 3 as well as in flux density. The H₂O masers with luminosity higher than 10^4 Jy km s⁻¹ kpc² only appear in Phase 3. This implies that the high luminosity H₂O masers may only be excited by relatively evolved sources. Breen et al. (2010b); Breen & Ellingsen (2011) also found that the luminosity of CH₃OH masers increases as they evolved.

6 CONCLUSIONS

We performed an H₂O maser survey toward 274 BGPS sources with $85^{\circ} < l < 193^{\circ}$ using the Nanshan 25 m radio telescope. We detected 25 H₂O masers, and five of them are new detections. The total detection rate (9%) is much lower than that of previous H₂O maser surveys targeted towards BGPS sources.

The detection rate of H_2O masers increases as the 1.1 mm flux densities of BGPS sources increase; both peak flux density and luminosity of H_2O masers increase as the sources evolve. The detection rate of H_2O masers toward BGPS sources without HCO⁺ emission is low. These findings are helpful for selecting target sources for future H_2O maser searches.

The strongest H₂O maser source G133.715+01.217, which has a flux density of 2.9×10^3 Jy, was detected at eight different nearby positions. By fitting the correlation between the flux densities of these H₂O masers and their angular distances, we get the influence radius $r = \frac{1}{0.8} \log(\frac{F_0}{3 \text{ mms}})$ for our observation. Here F_0 is the flux density of the H₂O maser, r is the angular distance to the H₂O maser in the unit of HPBW, and rms is the sensitivity of observation. The strong maser could be detected anywhere within the radius. The BGPS sources associated with both H_2O and CH_3OH masers seem to be more compact than those only associated with H_2O masers. This indicates that the former sources may be relatively older than the latter sources. This trend is also shown in a large sample in Titmarsh et al. (2014).

Acknowledgements This work was funded by the National Natural Science Foundation of China under grant 11373062 and partly supported by the National Basic Research Program of China (973 program, 2012CB821802) and the National Natural Science Foundation of China under grant Nos. 11433008, 11303081 and 10873025, and the Program of the Light in China's Western Region (LCRW) under grant Nos. RCPY201202 and XBBS-2014-24. This work is based on observations made with the Nanshan 25 m radio telescope, which is operated by the Key Laboratory of Radio Astronomy, Chinese Academy of Sciences.

References

- Aguirre, J. E., Ginsburg, A. G., Dunham, M. K., et al. 2011, ApJS, 192, 4
- Anderson, L. D., Bania, T. M., Balser, D. S., et al. 2014, ApJS, 212, 1
- Bae, J.-H., Kim, K.-T., Youn, S.-Y., et al. 2011, ApJS, 196, 21
- Bayandina, O. S., Val'tts, I. E., & Larionov, G. M. 2012, Astronomy Reports, 56, 553
- Breen, S. L., Caswell, J. L., Ellingsen, S. P., & Phillips, C. J. 2010a, MNRAS, 406, 1487
- Breen, S. L., & Ellingsen, S. P. 2011, MNRAS, 416, 178
- Breen, S. L., Ellingsen, S. P., Caswell, J. L., & Lewis, B. E. 2010b, MNRAS, 401, 2219
- Caswell, J. L. 2007, in IAU Symposium, 242, eds. J. M. Chapman & W. A. Baan, 194
- Caswell, J. L. 2009, PASA, 26, 454

- Caswell, J. L., & Breen, S. L. 2010, MNRAS, 407, 2599
- Chen, X., Ellingsen, S. P., He, J.-H., et al. 2012, ApJS, 200, 5
- Dunham, M. K. 2012, in IAU Symposium, 287, eds. R. S. Booth,W. H. T. Vlemmings, & E. M. L. Humphreys, 286
- Dunham, M. K., Robitaille, T. P., Evans, II, N. J., et al. 2011, ApJ, 731, 90
- Dunham, M. K., Rosolowsky, E., Evans, II, N. J., et al. 2010, ApJ, 717, 1157
- Ellingsen, S. P. 2007, MNRAS, 377, 571
- Ginsburg, A., Glenn, J., Rosolowsky, E., et al. 2013, ApJS, 208, 14
- Green, J. A., Caswell, J. L., Fuller, G. A., et al. 2010, MNRAS, 409, 913
- Hachisuka, K., Brunthaler, A., Menten, K. M., et al. 2006, ApJ, 645, 337
- Han, F., Mao, R. Q., Lu, J., et al. 1998, A&AS, 127, 181
- Hoare, M. G., Lumsden, S. L., Oudmaijer, R. D., et al. 2004, in Astronomical Society of the Pacific Conference Series, 317, Milky Way Surveys: The Structure and Evolution of our Galaxy, eds. D. Clemens, R. Shah, & T. Brainerd, 156
- Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A., & van Langevelde, H. J. 1998, ApJ, 502, 315
- Hou, L. G., & Han, J. L. 2014, A&A, 569, A125
- Jarrett, T. H., Cohen, M., Masci, F., et al. 2011, ApJ, 735, 112
- Kennicutt, R. C. 2005, in IAU Symposium, 227, Massive Star Birth: A Crossroads of Astrophysics, eds. R. Cesaroni, M. Felli, E. Churchwell, & M. Walmsley, 3
- Koenig, X. P., Leisawitz, D. T., Benford, D. J., et al. 2012, ApJ, 744, 130
- Moscadelli, L., Sanna, A., & Goddi, C. 2011, A&A, 536, A38
- Pandian, J. D., Goldsmith, P. F., & Deshpande, A. A. 2007, ApJ, 656, 255
- Price, S. D., Egan, M. P., Carey, S. J., Mizuno, D. R., & Kuchar, T. A. 2001, AJ, 121, 2819

- Rosolowsky, E., Dunham, M. K., Ginsburg, A., et al. 2010, ApJS, 188, 123
- Sanna, A., Moscadelli, L., Cesaroni, R., et al. 2010a, A&A, 517, A71
- Sanna, A., Moscadelli, L., Cesaroni, R., et al. 2010b, A&A, 517, A78
- Schlingman, W. M., Shirley, Y. L., Schenk, D. E., et al. 2011, ApJS, 195, 14
- Shirley, Y. L., Ellsworth-Bowers, T. P., Svoboda, B., et al. 2013, ApJS, 209, 2
- Sun, Y., Xu, Y., Chen, X., et al. 2014, A&A, 563, A130
- Sunada, K., Nakazato, T., Ikeda, N., et al. 2007, PASJ, 59, 1185
- Surcis, G., Vlemmings, W. H. T., Curiel, S., et al. 2011, A&A, 527, A48
- Szymczak, M., Wolak, P., Bartkiewicz, A., & Borkowski, K. M. 2012, Astronomische Nachrichten, 333, 634
- Titmarsh, A. M., Ellingsen, S. P., Breen, S. L., Caswell, J. L., & Voronkov, M. A. 2014, MNRAS, 443, 2923
- Urquhart, J. S., Hoare, M. G., Lumsden, S. L., Oudmaijer, R. D., & Moore, T. J. T. 2008, in Astronomical Society of the Pacific Conference Series, 387, Massive Star Formation: Observations Confront Theory, eds. H. Beuther, H. Linz, & T. Henning, 381
- Urquhart, J. S., Morgan, L. K., Figura, C. C., et al. 2011, MNRAS, 418, 1689
- Valdettaro, R., Palla, F., Brand, J., et al. 2001, A&A, 368, 845
- Wouterloot, J. G. A., & Walmsley, C. M. 1986, A&A, 168, 237
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
- Xi, H., Zhou, J., Esimbek, J., et al. 2015, MNRAS, 453, 4203
- Xiang, D., & Turner, B. E. 1995, ApJS, 99, 121
- Xu, Y., Li, J. J., Hachisuka, K., et al. 2008, A&A, 485, 729
- Zhou, J. J., Zheng, X. W., & Chen, Y. X. 2002, A&A, 390, 281
- Zinneker, H. 1990, in Astrophysics and Space Science Library,
- 162, Physical Processes in Fragmentation and Star Formation, eds. R. Capuzzo-Dolcetta, C. Chiosi, & A. di Fazio, 201